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Most fatigue models must somehow identify and count individual load events before quantifying the
damage induced by each one of them, making multiaxial fatigue damage calculations under non-
proportional variable amplitude loadings a challenging and laborious task in practical applications.
Moreover, to apply such models it is usually necessary to use semi-empirical methods to evaluate the
non-proportionality of the load path of each event, through path-equivalent ranges obtained e.g. using
a convex enclosure or the MOI (Moment Of Inertia) method. To avoid this burden, a new approach called
the Incremental Fatigue Damage methodology is proposed in this work to continuously accumulate mul-
tiaxial fatigue damage under actual service loads, without requiring path-equivalent range estimators or
rainflow counters. This new approach is not based on questionable Continuum Damage Mechanics con-
cepts, or on the integration of some unrealistic scalar damage parameter based on elastoplastic work.
Instead, inspired on multiaxial plasticity procedures, a framework of nested damage surfaces is intro-
duced, allowing the calculation of fatigue damage even for general 6D multiaxial load histories. In this
way, fatigue damage itself can be continuously integrated along the load path, considering damage
parameters adopted by traditional fatigue models and following reliable procedures well tested in engi-
neering practice. The proposed approach is experimentally validated by non-proportional tension-torsion
tests on tubular 316L stainless steel specimens.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Macroscopically speaking, fatigue damage can be regarded as a
continuous process caused in real time by cyclic elastoplastic
straining, usually localized in a single point of the structural com-
ponent. To quantify such a process, most fatigue crack initiation
models need to identify individual load cycles to compute the
damage induced at that critical point by each one of them. In this
way, such models require knowledge of the whole loading
sequence to assess damage induced by the current event. So they
are discrete in nature, since they can accumulate fatigue damage
D only after a full cycle or half-cycle is identified, detected e.g. from
a load reversal or from a hysteresis loop that closes.

Cycle identification under variable amplitude loading (VAL) is
not a major problem under uniaxial (or proportional) load histo-
ries, since the rainflow method is an appropriate and sufficient
cycle counting algorithm in this case [1]. But cycle detection and
counting can be a quite challenging task under multiaxial non-
proportional (NP) histories, where peaks/valleys of each stress or
strain component in general do not coincide with the peaks/valleys
of the other components. In this case, it is impossible to decide a
priori which points should be considered as load reversals for cycle
detection.

A simplistic approach [2] involves the application of a uniaxial
rainflow count to one stress or strain component that can be
assumed dominant in the multiaxial load history, assuming the
others as secondary. This approach might be appropriate for
quasi-proportional loadings, but under general NP VAL it will prob-
ably miss important load events in the secondary stress or strain
components. Indeed, the peaks and valleys of the stresses and
strains usually do not coincide, even if they act in the same direc-
tion, not to mention if they involve different stress or strain com-
ponents. In such cases, a truly multiaxial rainflow algorithm that
considers all stress or strain components must be adopted [3].

A number of multiaxial rainflow algorithms have been proposed
in the literature. They are either based on cycle counting of von
Mises equivalent stresses or strains such as the Wang-Brown,
Modified Wang-Brown or Path-Dependent Multiaxial Rainflow

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijfatigue.2016.12.008&domain=pdf
http://dx.doi.org/10.1016/j.ijfatigue.2016.12.008
mailto:meggi@puc-rio.br
mailto:jtcastro@puc-rio.br
mailto:wuhao@tongji.edu.cn
http://dx.doi.org/10.1016/j.ijfatigue.2016.12.008
http://www.sciencedirect.com/science/journal/01421123
http://www.elsevier.com/locate/ijfatigue


Nomenclature

CAL constant amplitude loading
CDM continuum damage mechanics
D fatigue damage
Dr or De generalized damage moduli with respect to stress or

strain increments
EI energy integration
e
!0 deviatoric strain vector in the 5D deviatoric space
EP elastic-plastic
EVICD event independent cumulative damage
IDD integration of damage differentials
IFD incremental fatigue damage
LE linear elastic
mi multiaxial ratcheting exponent of each hardening sur-

face i
n
!0
r or n

!0
e normal unit vector in 5D deviatoric stress or strain
spaces

N fatigue life (in number of cycles)

NLDA non-linear damage accumulation
NLK non-linear kinematic
NP non-proportional
rri or rei radius of each damage surface i in 5D deviatoric stress

or strain spaces
s
!0 deviatoric stress vector in the 5D deviatoric spaces
v
!0
ri or v

!0
ei surface translation directions in 5D deviatoric stress or
strain spaces

VAL variable amplitude loading
b
!0
ri or b

!0
ei damage surface backstresses in 5D deviatoric stress or
strain spaces

ra stress amplitude
vri or vei ratcheting exponent of each damage surface i for

stress or strain spaces
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methods [4–6], or on cycle counting of shear or normal stress (or
strain) components acting on candidate planes from the critical-
plane approach [7]. In the former case, cycles are identified in an
effort to maximize the von Mises ranges between pairs of 6D stress
(or strain) states, not necessarily maximizing damage since mean/
maximum-stress effects are neglected in this search. In the latter
case, a uniaxial rainflow is enough to count a single projected nor-
mal stress (or strain) component, but a 2D multiaxial rainflow is
needed to combine both in-plane and out-of-plane shear compo-
nents acting on the candidate plane. However, these 2D rainflow
methods [3,5] for the critical-plane approaches unfortunately do
not take into account mean/maximum-stress effects either. Critical
plane criteria formulated on the frequency (instead of time)
domain have been proposed too, but their accuracy is also affected
by the uncertainty related to the algorithm used to count loading
cycles [8]. Besides, the time to frequency transformation spoils
the loading order sequence, losing in this way the capacity to
model one of the most important features of fatigue loads, namely
the memory effects associated with plastic events.

Moreover, the existing multiaxial rainflow algorithms are nei-
ther very robust nor consistent, since they can output very differ-
ent half-cycles depending on the choice of the initial counting
point of a periodic load history. Very complex multiaxial NP VAL
histories may also be fragmented into too many half-cycles that
might lead to non-conservative fatigue life predictions, by missing
larger embedded cycles that are not accounted for. Furthermore,
fatigue damage computation requires the calculation of path-
equivalent stress or strain ranges from the rainflow-counted paths.
Convex enclosure methods and the very efficient MOI method have
been adopted for this purpose [9]. Although these methods have
been proven effective for simple periodic loadings, they are phe-
nomenological routines that might have issues with non-periodic
multiaxial NP loadings with highly variable amplitudes or over-
loads. In summary, most fatigue damage calculation routines
require methods for cycle identification, counting, and path-
equivalent range computation, but no universal algorithms are so
far available in the literature for properly dealing with complex
NP multiaxial histories.

A completely different calculation approach is followed in this
work, assuming fatigue damage is a continuous variable, whose
increments can be computed as the loading proceeds. Fatigue dam-
age is continuously calculated after each infinitesimal stress or
strain increment, thus it does not need the identification of load
cycles. In this way, this continuous fatigue damage approach does
not require rainflow counting or path-equivalent range computa-
tions to deal with complex multiaxial loads.

However, beware that not all methods based on incremental
damage parameters overcome the need for identifying load cycles:
e.g. some creep-fatigue interaction models [10–13] consider con-
tinuous variations of damage, but they still require either well-
defined cycles (cycle-based damage rules), or detection of load
reversals (which are ill-defined for NP multiaxial loadings). Other
creep-fatigue models provide time-incremental damage rules
without considering any load reversal, but they are unable to cor-
rectly predict cyclic damage [13]. Thus, to correctly account for
cyclic damage without requiring cycle detection, stress or strain-
incremental damage rules must be adopted.

Dang Van’s pioneer multiaxial fatigue criterion is a good exam-
ple of a cycle-independent model [14], but it is only applicable for
fatigue limit evaluations, being incapable of calculating finite dam-
age. Papadopoulos’ 1994 integral method [15] does not require the
definition of load cycles, however, similarly to Dang Van’s method,
it is only applicable for endurance limit calculations, so it is not
able to calculate finite damage. Moreover, Papadopoulos’ 2001 fur-
ther extensions of Dang Van’s initial model to finite lives [16] end
up requiring the definition of load cycles, or must assume that the
loading is periodic. Morel’s method [17], on the other hand, does
not require the definition of load cycles, since it is based on an inte-
gration of the accumulated mesoscopic plastic strain; however,
this method is based on strain instead of on fatigue damage
integration.

Most works based on the idea of continuous damage evaluation,
without cycle detection or counting, use Continuum Damage
Mechanics (CDM) concepts [18–20]. CDM models describe damage
as the progressive loss of material integrity, which supposedly can
be inferred from its effect on macroscopic properties such as elastic
stiffness or even coefficient of thermal expansion. These global
parameters can be a good option for quantifying the deterioration
of composites or other materials that fail due to distributed dam-
age. However, for materials that fail by fatigue due to localized
damage, like most metallic alloys, CDM approaches need to be sup-
plemented by purely phenomenological damage evolution equa-
tions that are difficult to calibrate and sometimes even
incompatible with classic and well-proven multiaxial fatigue
methods based on the sensible critical-plane idea [7]. In fact, most
of these empirical CDM equations are based on mathematical tools
that do not provide a better insight into the physical phenomenon,
only on its effects.
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However, CDM is not the only approach that can lead to incre-
mental damage calculations without the need to identify load
cycles. A few local-approach techniques have been proposed based
on direct or indirect measures of fatigue damage, through the con-
tinuous integration of strain energy density, damage parameters,
or fatigue damage itself. These incremental damage models can
be divided into two main types: the Energy Integration (EI)
approach, where the strain energy (either plastic or elastic-
plastic) or some other energy-based damage parameter (developed
to consider e.g. mean or maximum-stress effects) is directly inte-
grated and compared to a critical value; and the Incremental Fatigue
Damage (IFD) approach, where fatigue damage itself (instead of an
indirect damage parameter) is integrated until reaching a suitable
critical value, e.g. 1.0 according to Miner’s rule. These two
approaches are further discussed next.
2. The energy integration (EI) approach

The EI approach integrates the elastoplastic work or some other
energy-based damage parameter along the load path. Under low-
cycle multiaxial conditions, this is usually obtained by integrating
the product between stress and plastic strain increments for all six
components, adding them up into a single scalar quantity. To
extend such energy-based models to high-cycle fatigue, measures
of the elastic work must also be introduced, otherwise under
macroscopically linear elastic (LE) conditions the associated zero
plastic work would always predict infinite lives.

Moreover, to consider mean/maximum stress effects on fatigue
damage, such elastic-plastic (EP) work parameters are usually mul-
tiplied by some stress term to define an energy-based damage
parameter (instead of just energy). Such a damage parameter is
then integrated along any multiaxial load history path, without
the need to project stresses or strains onto any candidate planes,
to detect load reversions, or to use any rainflow algorithm to iden-
tify individual cycles or equivalent ranges.

The EI approach then supposes that crack initiation occurs when
the computed energy-based integral reaches a critical value that
would be a scalar material constant, independent of the number
of applied cycles N. This seems a good idea, but unfortunately
the critical accumulated EP work associated with crack initiation
is a function of N for most materials. Indeed, the wishful N-
independence would require that the material’s Coffin-Manson
elastic b and plastic c exponents are such that b + c = �1, a condi-
tion that is not verified in most structural alloys, as shown in
Table 1 for well-known eN parameter estimates calibrated for hun-
dreds of materials [1].

As a result, any approach following the direct integration of the
strain energy or any other energy-based damage parameter most
likely requires the identification of individual cycles to evaluate
N, a highly undesired feature. Some EI models implicitly normalize
the adopted integral to be able to compare it with a unit critical
value; however, by embedding the critical value into the normal-
Table 1
Estimates of Coffin-Manson’s elastic and plastic exponents, showing that their sum b
+ c is not close enough to �1 to justify the existence of a critical energy parameter
described by a material constant that is completely independent of N or of the stress
or strain amplitudes per cycle.

Estimates b c b + c

Manson (1965) �0.12 �0.6 �0.72
Muralidharan–Manson (1988) �0.09 �0.56 �0.65
Bäumel–Seeger (steels, 1990) �0.087 �0.58 �0.667
Bäumel–Seeger (Al & Ti, 1990) �0.095 �0.69 �0.785
Roessle-Fatemi (2000) �0.09 �0.56 �0.65
Medians (steels, 2001) �0.09 �0.59 �0.68
Medians (Al, 2001) �0.11 �0.66 �0.77
ized energy-based damage parameter, its calibration should also
depend on N. In addition, energy parameters are scalar quantities
that do not reflect the directional nature of crack initiation under
fatigue loads, which must be considered for so-called directional-
damage materials, like most metallic alloys, which fail predomi-
nantly due to a single dominant crack. For such important materi-
als, energy parameters should be calculated on individual
candidate planes, ignoring in each case any EP work component
that does not cause fatigue damage on that particular plane, as in
Liu’s energy-based critical-plane model [21]. But such energy-
based models might require as well cycle detection to compute
the critical accumulated damage parameter on the critical plane,
if indeed this value is a function of N, as usual.

However, fatigue damage models based on the EI approach usu-
ally assume the critical value of the chosen energy-based integral is
independent of N. Probably the most famous EI model is the EVent
Independent Cumulative Damage (EVICD) method, proposed in 1987
in Ott’s thesis [22] and further developed and reviewed in [23,24].
The method is based on a continuous integration of a damage
parameter that combines plastic work with the normal stress on
the instantaneous maximum shear stress plane or on octahedral
planes, known as EVICD-N or EVICD-J1, respectively. The EVICD-
N variation is recommended for directional-damage materials,
where the mean/maximum-stress effect is controlled by the nor-
mal stress r\ perpendicular to the critical plane. The EVICD-J1
variation adopts the hydrostatic stress rh for mean/maximum-
stress effects, so it is applicable for the so-called distributed-
damage materials (which fail due to distributed damage in all direc-
tions), especially if their strengths are pressure-sensitive. But the
assumption of plastic (instead of EP) strain energy as the main con-
tributor to fatigue damage makes both EVICD variations limited to
ductile materials that display measurable plastic deformation, pre-
venting their use in most high-cycle applications where damage
can occur under macroscopically elastic cycles. Furthermore, most
EVICD implementations adopt Mróz/Garud kinematic hardening
models to calculate the resulting multiaxial plastic strains
[25,26], from which plastic work is evaluated. However, Mróz/Gar-
ud’s multi-linear models can predict false ratcheting even in bal-
anced histories, as well as wrongfully predict zero plastic
straining in an EP neutral loading [27].

To avoid these major drawbacks, Jiang et al. implemented the
EVICD method [28] using non-linear kinematic (NLK) hardening
models instead of Mróz/Garud’s, providing reasonable predictions
both for low and high-cycle fatigue lives (for their materials)
between103 and 107 cycles. However, they used theNLKmodel only
to compute multiaxial strains from stresses, considering plastic
memory but not the important damage memory effect discussed by
Kreiser et al. [29]. Indeed, the current arrangement of hardening sur-
faces in the NLK model is used to compute both plastic strains and
the energy-based damage parameter, so it assumes that plastic
memoryanddamagememorycanbe storedwith the samesetof sur-
faces. In the next section, it will be shown that accurate damage cal-
culations can only be achieved by adopting two separate and
independent sets of surfaces: hardening surfaces for plastic strain
calculations, and damage surfaces to obtain the resulting damage,
which can then be used inMiner’s (or any other) damage accumula-
tion rule.

Another cycle-independent model following the EI approach
was proposed by Jiang [30], which assumes the plastic strain
energy on a material plane is the major cause of fatigue damage,
similar to the EVICD-N version of the EVICD method. Damage
increments are continuously calculated at every load step as a
function of plastic strain energy increments, a mean stress term,
and a so-called material memory parameter. But, in addition to
the previously discussed issues with adopting energy parameters
in a formulation without explicit cycle detection, this model



M.A. Meggiolaro et al. / International Journal of Fatigue 100 (2017) 502–511 505
requires the use of a memory surface that expands or contracts fol-
lowing empirical evolution equations, requiring an additional
material parameter to control their rate. Moreover, this memory
surface works as an indirect way to detect load reversals, which
can work for simple multiaxial NP load paths, but probably not
for general VAL conditions, which would require several memory
surfaces to properly store plastic memory.

Still another EI model was introduced by Kreiser et al. [29],
called Non-Linear Damage Accumulation (NLDA). The NLDA is based
on Ellyin’s model [31], which assumes as well that fatigue damage
is controlled by the strain energy density. Even though it considers
not only plastic but also elastic strain energy, the accumulated
total work required to initiate a microcrack is not a material con-
stant and still depends on the number of cycles N, as discussed
before; thus it is impossible to calculate without cycle and reversal
detection, as desired in a truly cycle-independent fatigue model.

In summary, although EI models can be an interesting energy-
based approach to predict fatigue crack initiation, their fitting
parameters should be a function of the unknown fatigue life N, still
requiring the definition and identification of load cycles; other-
wise, their robustness could be compromised if their life predic-
tions are based on model parameters calibrated for a significantly
different fatigue life. Nevertheless, if properly calibrated, such
energy methods could provide reasonable fatigue life estimates
for both constant and variable amplitude loading, as experimen-
tally verified in [32].

3. The incremental fatigue damage (IFD) approach

Instead of integrating strain energy or other energy-based dam-
age parameters, the IFD approach integrates fatigue damage itself.
As a result, it follows an idea similar to Miner’s rule, integrating dif-
ferentials of fatigue damage until reaching 1.0 (or any other suit-
able critical value DC). No cycle detection or counting is required,
since damage is continuously integrated as the loading is applied.
For uniaxial histories, this approach makes use of the derivative
of the normal stress r with respect to damage D, called here gen-
eralized damage modulus Dr, thus

Dr � dr=dD ) D ¼
Z

dD ¼
Z

ð1=DrÞ � dr ð1Þ

For instance, consider a simple uniaxial constant amplitude
loading (CAL) history with stress amplitudera. During a load event
or half-cycle, the excursion of the stress r from �ra to +ra could
be integrated according to Eq. (1) to find the associated fatigue
damage D = 1/2N, however without explicitly calculating the fati-
gue life N. The damage D from this half-cycle is initially zero in
the load valley when r = �ra, as well as in the beginning the range
Dr = r�(�ra) = 0, and continuously grows toward the value
D = 1/2N until r reaches the peak +ra, when Dr = r�(�ra)
= 2ra. To illustrate this idea, Wöhler’s stress-based damage model
can be adopted for simplicity without considering mean or
maximum-stress effects (but these effects, as well as strain-based
models, will be discussed later). A simplified relation between
the current stress state r and the continuous damage D from the
half-cycle excursion �ra ? + ra can then be obtained from
Wöhler’s curve written in Basquin’s notation:

ra ¼ rc � ð2NÞb ) Dr
2

¼ r� ð�raÞ
2

¼ rc

Db
) D ¼ rþ ra

2rc

� ��1=b

ð2Þ

The generalized damage modulus Dr during this half-cycle is
such that

1
Dr

¼ dD
dr

¼ � 1
bðrþ raÞ

rþ ra

2rc

� ��1=b

ð3Þ
from which the fatigue damage D = 1/2N can be calculated using the
integral

D ¼
Z þra

�ra

� 1
bðrþ raÞ

rþ ra

2rc

� ��1=b

� dr ¼ rþ ra

2rc

� ��1=b
�����
þra

�ra

¼ ra

rc

� ��1=b

¼ 1
2N

ð4Þ

If this conceptually simple procedure could be generalized to
multiaxial NP VAL histories, integrating damage along a general
multiaxial load path, then cycle identification, multiaxial rainflow
counting, and stress (or strain) range calculations would not be
required to obtain the resulting fatigue damage D. However, this
nice statement is easier said than done, since Dr depends not only
on the current stress state (r in this uniaxial case), but also on the
previous loading history (the value �ra from the last reversal), see
Eq. (3). So, IFD models need to allow Dr to vary as a function of the
stress level and of the existing state of damage [27], a challenging
task for multiaxial NP histories.

3.1. Early incremental fatigue damage models

Wetzel and Topper proposed in 1971 the first uniaxial incre-
mental fatigue model [33]. This pioneer IFD model predicts fatigue
crack initiation associating damage with discretized elements of a
uniaxial stress-strain model. Plastic memory is stored using
Martin-Topper-Sinclair’s rheological model and push-stack algo-
rithm [34,35], which automatically reproduces Masing’s behavior
and the rainflow method under uniaxial conditions [1]. Wetzel
used each element of the stress-strain model not only to evaluate
plastic strains, but also fatigue damage, storing in this way the
damage memory required for a correct damage integration in cyclic
histories. Even though the push-stack concept is able to detect and
count cycles in uniaxial histories, fatigue damage integration is
continuously carried out without waiting for each hysteresis loop
to close, thus Wetzel’s work can indeed be classified as a truly
IFD approach method, albeit limited to uniaxial loads. Landgraf
et al. [36] discussed in 1975 the implementation of Wetzel’s
method in fatigue life predictions for notched members under
VAL. However, they ended up following the traditional discrete
path consisting of damage calculation for closed hysteresis loops,
instead of using a continuous numeric integration of fatigue dam-
age along the (uniaxial) load path.

It was only in 2000 that Wetzel’s idea was finally revisited, in
Chu’s IFDmethod [37]. Chumultiplied thecalculated fatiguedamage
differentials by a stress term similar to Goodman’s, thus including
mean/maximum-stress effects in Wetzel’s uniaxial IFD model.
Moreover, Chuoutlined thegeneralizationofWetzel’smodel tomul-
tiaxial NP loadings, indirectly detecting cycles using two simple
rules for tracking the so-called damage rate (the inverse of the pre-
viously defined generalized damage modulus Dr) with respect to
the stress amplitude. This alternative definition of closed hysteresis
loops is used for multiaxial fatigue histories based on an equivalent
von Mises stress, to reduce the problem to a uniaxial one. This
approach is appropriate for multiaxial proportional loadings, but
the damage memory is not properly stored for NP VAL histories,
where often no hysteresis loop actually closes, so any virtual loop
closure detection makes no sense. Chu’s IFD model still depends on
the definition of a load reversal for NP histories, because no proper
internal material variables were defined to store the existing state
of damage, which affects Dr according to [29], as discussed before.

Moreover, Chu performs fatigue damage integration using von
Mises stresses both in the damage parameter and in the load rever-
sal criterion, without projecting the original stresses onto suitable
candidate planes. Therefore, Chu’s methodmixes damage on differ-
ent material planes, certainly not a recommended practice for



506 M.A. Meggiolaro et al. / International Journal of Fatigue 100 (2017) 502–511
so-called directional-damage materials like most metallic alloys,
which usually initiate a single dominant fatigue crack.

Besides Wetzel’s method (improved by Chu), another major IFD
model is the Integration of Damage Differentials (IDD), proposed in
1993 by Stefanov [38–43]. He defined a so-called curvilinear inte-
gral based on the idea of damage integration, restricted for high-
cycle fatigue. Despite a good agreement with some experimental
data, his method requires heuristic case-by-case calibration of
damage derivatives with respect to normal or shear stresses, called
damage intensities or R-functions (which, for the normal stress
component, is the inverse of the parameter Dr defined above). Such
R-functions for shear histories or NP loading are frequently
assumed equal to uniaxial values, and empirically combined using
a simple Euclidean norm. Perhaps the need for specialized software
to solve the complex elliptic equations, as well as the complexity
involved in an accurate R-function calibration, has prevented the
widespread use of the IDD method.

Another issue with the IDD is that it neglects the damage
dependence on the load history (the damage memory), because
there are no internal variables to store the current material state.
Therefore, the R-functions calibrated for simple loading histories
might not reproduce the damage evolution induced by a complex
NP multiaxial history.

In addition, the IDD method mixes damage from different
planes, caused e.g. by orthogonal normal stress histories rx(t)
and ry(t). This does not agree with the critical-plane approach pre-
ferred for directional-damage materials like most metallic alloys,
since a single dominant microcrack initiating on a plane perpendic-
ular to rx(t) should not be influenced by the ry(t) history, and vice
versa. Therefore, their damage contributions should not be com-
bined, unless the microcrack plane keeps changing, or the material
fails due to distributed damage in several directions. It could be
argued that a case where all material planes suffer the same critical
damage should result in a lower fatigue life than a case where only
one plane suffers this very same damage [44]; however, if it fails
due to a single dominant microcrack, this difference should not
be large enough to justify the direct mixture of damage planes,
instead of following a critical-plane approach.

In the next section, the general IFD approach proposed in this
work is detailed.
4. Incremental fatigue with damage surfaces

The history-dependence of the generalized damage modulus Dr
is analogous to the load-order dependence of EP hysteresis loops,
but this damage memory is often neglected or overly simplified
in the few IFD models available. For instance, Wetzel’s model
accounts for both plasticity and damage memory, using the rheo-
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Fig. 1. Uniaxial rheological model for kinematic hardening with a series of spring-
slider elements of stiffness Hi and slider threshold ri, and resulting stress-strain
curve under monotonic tension.
logical model from Fig. 1. For plasticity calculations, its spring stiff-
nesses Hi from Fig. 1 are calibrated from the stress-strain curve,
while for damage computations they are calibrated from the
adopted damage equation. However, Wetzel’s rheological model
for damage calculation is only applicable for uniaxial histories,
and it does not include mean/maximum-stress effects.

Alternatively to rheological models, a direct analogy between
IFD and incremental plasticity could be used to store damage
memory using internal material variables. In incremental plastic-

ity, a 5D deviatoric stress increment ds
!0 can be used to calculate

the associated 5D plastic strain increment de
!0

pl from the current
generalized plastic modulus P, using a plastic flow rule [1,45]. In
the NLK incremental plasticity formulation, plastic memory is
stored by the current arrangement among the hardening surfaces

defined by their backstresses b
!0

i, from which the surface translation

directions v
!0
i are calculated (according to some translation rule) and

combined with pi coefficients to calculate the current P. No plastic

straining occurs if the stress increment ds
!0 happens inside the yield

surface, whose radius should be equal or smaller than the cyclic
yield strength SYc. The accumulated plastic strain p is then propor-

tional to the integral of the scalar norm jde!0
plj of the deviatoric plas-

tic strain increments.
Let’s now describe the proposed multiaxial IFD model using a

direct plasticity-damage analogy. In it, a 5D deviatoric stress incre-
ment ds

!0 can be used to calculate the associated 5D damage incre-

ment dD
!

0 from the current generalized damage modulus Dr, using a
damage evolution rule. In the IFD formulation, damage memory is
stored by the current arrangement among damage surfaces defined

by their damage backstresses b
!0
ri
, from which the damage surface

translation directions v
!0
ri
are calculated (according to some transla-

tion rule) and combined with dri coefficients to calculate the cur-
rent Dr. No damage occurs if the stress increment ds

!0 happens
inside the fatigue limit surface, whose radius should be equal or
smaller than the fatigue limit SL. The accumulated damage D is then

equal to the integral of the scalar norm jdD
!

0j of the damage incre-

ments. The damage backstress vector b
!0
r locates the center of the

current fatigue limit surface, which can be decomposed as the

sum of M damage backstresses b
!0
r1
, b
!0
r2
, . . ., b

!0
rM

that describe the
relative positions between centers of M consecutive damage sur-
faces, as illustrated in Fig. 2 for a 2D case. Note that the radius of
the fatigue limit surface can be set very close to zero if the material
does not have a clear fatigue limit.

Each damage surface has a constant radius rri, while the radius
differences between consecutive surfaces are defined as Drri =
rri+1 � rri. The fatigue limit surface and the failure surface are
defined, respectively, for i = 1 and i =M + 1, while the remaining

i = 2, 3, . . ., M are the damage surfaces. The lengths (norms) jb
!0
ri
j

are always between jb
!0
ri
j ¼ 0, if consecutive centers coincide, and

jb
!0
ij ¼ Drri

, if the damage surfaces are mutually tangent.
If a Mróz multi-surface formulation [25] was used for this IFD

model, then the radii rri of the various damage surfaces would
be equal to the stress levels associated with the chosen damage
values Dri that delineate the multi-linear representation of the
damage curve, see Fig. 3. Moreover, the slopes of this piecewise lin-
earization would be the generalized damage moduli Dri, for i = 1, 2,
. . ., M + 1. The calibration of these Dri could adopt, e.g., Basquin’s
representation of Wöhler’s curve to correlate stress and damage,
see Eq. (3).

However, the Mróz multi-surface formulation has several issues
[27]. For incremental plasticity problems, it can predict false ratch-
eting even in balanced load histories, as well as wrongfully predict



M.A. Meggiolaro et al. / International Journal of Fatigue 100 (2017) 502–511 507
zero plastic straining in EP neutral loadings. Analogously, if used in
the IFD context, such a formulation could predict an increase or
decrease in damage per cycle even for multiaxial constant ampli-
tude loadings, as well as wrongfully predict zero damage for a cir-
cular loading history following the contour of a damage surface
(which is always larger than the fatigue limit surface and thus
should result in damage). Wetzel’s damage calculation approach
using the rheological model from Fig. 1 would exactly reproduce
the Mróz multi-surface formulation, thus presenting the same
issues.

Therefore, even though damage memory is considered here
through multiple damage surfaces, a NLK formulation is adopted
for the proposed IFD model, allowing all surfaces to translate dur-
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M = 3, showing the damage backstress vector b

!0
r that defines the location of the

fatigue limit surface center, and its components b
!0
r1
, b
!0
r2
, and b

!0
r3

that describe the
relative positions between the centers of the M consecutive damage surfaces.
ing a damage process (instead of just the active surface and the
inner ones, as in the Mróz formulation). So, this non-linear IFD

model uses a 5D damage vector D
!

0 � [D1 D2 D3 D4 D5]
T that acts

as an internal variable that stores the current damage state (to
account for the damage memory). The scalars D1 through D5 are
signed damage quantities associated with each one of the 5D devi-

atoric stress vector s
!0
i directions. The 5D space adopted here repre-

sents deviatoric stresses s
!0 and deviatoric elastic and plastic strains

e
!0
el and e

!0
pl as

s
!0 � ½ s1 s2 s3 s4 s5 �T ; e

!0
el � ½ e1el e2el e3el e4el e5el �T ;

e
!0
pl � ½ e1pl e2pl e3pl e4pl e5pl �T ð5Þ

where

s1�rx�ðryþrzÞ=2¼3sx=2; s2�ðry�rzÞ
ffiffiffi
3

p
=2¼ðsy�szÞ

ffiffiffi
3

p
=2

s3�sxy
ffiffiffi
3

p
; s4�sxz

ffiffiffi
3

p
; s5�syz

ffiffiffi
3

p
(

ð6Þ

e1el � exel �
eyelþezel

2 ¼ 3
2 exel ; e2el �

eyel�ezel
2

ffiffiffi
3

p
¼ eyel�ezel

2

ffiffiffi
3

p

e3el �
cxyel
2

ffiffiffi
3

p
; e4el �

cxzel
2

ffiffiffi
3

p
; e5el �
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2

ffiffiffi
3

p
(

ð7Þ

e1pl � expl �
eyplþezpl

2 ¼ 3
2 expl ; e2pl �

eypl�ezpl
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ffiffiffi
3

p
¼ eypl�ezpl
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ffiffiffi
3

p
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2

ffiffiffi
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p
; e4pl �
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2

ffiffiffi
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8<
: ð8Þ

The accumulated damage D (analogous to the accumulated
plastic strain p) is obtained from the length of the path described

by the 5D damage vector D
!

0, calculated in either continuous or dis-
crete formulations from

D ¼
Z
path

dD ¼
Z
path

jdD
!0j ffi

X
path

DD ¼
X
path

jDD
!0j ð9Þ

If a given deviatoric stress state s
!0 is on the fatigue limit surface

with a normal unit vector n
!0
r, and if its infinitesimal increment ds

!0

is in the outward direction, then ds
!0T � n!0

r > 0 and a fatigue damage
increment is obtained from a damage evolution rule (inspired on the
Prandtl-Reuss flow rule):

dD
!0 ¼ ð1=DrÞ � ðds

!0T � n!0
rÞ � n

!0
r � f MSðr

!Þ ð10Þ
D

i 1 ix
i

i 1 i

r rd
dD D D

σ σ+
σ

σ σ+

−σ
= ≅

−
D

M 1 0σ + =D

1σD

M 1Dσ +2 iDσ i 1Dσ +  

deviatoric stress space, and corresponding radii rri and generalized damage moduli
ht). Stress amplitudes below rr1 are assumed to cause no damage, thus the vertical
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where f MSðr
!Þ is a scalar mean stress function of the current 6D stress

r
!

to account for mean or maximum-stress effects, which can be
defined e.g. from Goodman’s or Gerber’s (ra; rm) relations. For

distributed-damage materials, the mean stress function f MSðr
!Þ

could be based on the current hydrostatic stress rh, while for
directional-damage materials (which require the critical-plane

approach) f MSðr
!Þ could be based on the normal stress r\ perpen-

dicular to the candidate plane.
It is important to note that fatigue damage is not a proper phys-

ical quantity, at least when defined as a non-dimensional value
between 0 and 1. Therefore, Eq. (10) cannot be a physical law, since
it is intrinsically empirical in nature. Nevertheless, it has a mathe-
matical foundation: it quantifies variations within a potential field,
in this case the damage field defined by the adopted nested sur-
faces. Since variations within any potential field must be computed
normal to iso-potential surfaces, it is easy to justify why the dam-

age increments from Eq. (10) are calculated in the direction n
!0
r nor-

mal to the damage surfaces. In the same way that empirical fatigue
damage models have been successfully used in engineering prac-
tice, empirical evolution rules such as Eq. (10) can be much useful
in practice. In addition, the proposed IFD model can be easily cali-
brated from traditional SN/eN curve equations, as opposed to CDM
models that need purely mathematical damage evolution equa-
tions that are difficult to calibrate and usually are not related to
classic and well-proven fatigue models.

Except for the failure surface (which never translates), during
this damage process the fatigue limit and all damage surfaces suf-
fer translations given by

db
!0
ri ¼

dri � v!0
ri � dD; if jb!0

rij < Drri
0; if jb!0

rij ¼ Drri

�
ð11Þ

where dri are coefficients calibrated for each surface, and v
!0
ri
are the

damage surface translation directions adapted e.g. from the general
translation rule from [25]. For instance, Jiang-Sehitoglu’s translation
rule [46] gives the adapted expression

v
!0
ri ¼ n

!0
r � Drri � ðjb

!0
rij
�

DrriÞ
vri

� b
!0
ri ð12Þ

where vri are fitting exponents for each damage surface.
The current generalized damage modulus Dr is then obtained

from the consistency condition, which guarantees that the current
x 10-5

-1.5 -1 -0.5 0 0.5 1 1.5

-300

-200

-100

0

100

200

300

signed damage D1

no
rm

al
 s

tr
es

s 
(M

P
a)
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stress state is never outside the fatigue limit surface, taken from an
analogy to the NLK formulation

Dr ¼
XM
i¼1

dri � v
!0T
ri

 !
� n!0

r ð13Þ

allowing the calculation of the evolution of the damage vector D
!

0

from Eq. (10).
The (scalar) accumulated damage D is then obtained from Eq.

(9). This formulation can deal with any multiaxial stress history,
proportional or NP, and eliminates the need to define or count
cycles and find equivalent ranges, the major advantage of the pro-
posed IFD model.

To exemplify these ideas, Fig. 4 shows IFD predictions for a
material with Basquin’s parameters rc = 772.5 MPa and
b = �0.09, under the uniaxial loading history rx = {0? 300?
�300? 300} MPa. Jiang-Sehitoglu’s translation rule was adopted
with M = 16 surfaces, Dr1 = 10�8 (or any other small threshold
value for the fatigue limit), and DrM+1 = 0.01 (to improve the calcu-
lation accuracy and reduce the computational cost as opposed to
Miner’s DrM+1 = 1.0, appropriate as long as no single half-cycle
from the history is able to cause a damage increment greater than
0.01). The above calibration routine was applied using exponents
vri = 100 (i = 1, . . ., 16), an arbitrary high value that does not affect
the predictions.

Fig. 4 (left) shows the hysteresis loops rx � D1, where D1 is the

first component of the previously defined 5D damage vector D
!

0.
Notice in this figure that damage components such as D1 can
become negative, as a result of an unloading process. This is not

an issue, since D
!

0 is just an internal variable used to calculate the
actual fatigue damage. Indeed, the accumulated damage D is
obtained from the integral of the norm of the infinitesimal incre-

ments jdD
!

0j, see Eq. (9). It is important to emphasize that this ele-
mentary loading example is linear elastic, without any significant
macroscopic plasticity; the non-linear shape of the stress � dam-
age hysteresis loops is just a consequence of the non-linearity of
Wöhler-Basquin’s damage equation.

Fig. 4 (right) shows the resulting accumulated damage D as a
function of an accumulated stress, defined as the integral of the

infinitesimal deviatoric increments’ norm jds!0j (which is analogous
to the accumulated plastic strain p, but defined for stresses). The
depicted theoretical (discrete) damage is calculated in the
x 10-5
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Fig. 5. Tubular specimen mounted in a tension-torsion fatigue testing machine,
showing the axial/torsional extensometer.
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traditional way after counting each one of the three rainflow half-
cycles {0? 300}, {300? �300} and {�300? 300} MPa. Notice
how the continuous IFD calculations almost exactly reproduce, at
the end of each half-cycle, the discrete predictions. But in IFD the
calculated damage is continuous and does not require rainflow
counts, or even the definition or detection of a half-cycle.

One small issue with the non-linear IFD approach is the fact that
it assumes the damage from the initial event {0? 300} as exactly
half of the damage from {�300? 300} MPa, when in fact it should
be much smaller due to non-linearity in the damage equation. This
is because the IFD model implicitly assumes that another event
{�300? 0} will happen in the future, which would be combined
with the previous {0? 300} to correctly add both damage halves
into 1.0. This issue is irrelevant, since it will only affect the stress
path along the inner curve in Fig. 4 (left), which ends up contribut-
ing only as a single half-cycle, no matter how long the history is.
However, for a clearer comparison of the subsequent events, the
theoretical damage calculation in Fig. 4 (right) exceptionally
adopted the IFD’s half-damage value for the initial event.

Note that this trivial uniaxial example ignoredmean/maximum-
stress effects, adopting a mean stress function f MSðr

!Þ � 1. Future
works will address the inclusion of such effects, e.g. using mean
stress functions inspired on Fatemi-Socie’s damage parameter.

The presented non-linear IFD approach is not really needed to
analyze uniaxial load histories, where cycle detection is simple
and the (uniaxial) rainflow method is sufficient to count them.
The main advantage of this approach is for multiaxial histories,
where cycle detection and counting are still open problems that
depend on the adopted damage calculation routine.

For distributed-damage materials, invariant-based damage
models could be calibrated using the non-linear IFD approach with
the presented 5D definition of the damage vector D

!
0. For

directional-damage materials, which require the critical-plane
approach [7], the same non-linear IFD model could be adopted,
but only for the projected components on the studied candidate
plane. For instance, for a shear-based multiaxial damage model, a
2D damage vector D

!
0 could be correlated with the [sA sB] sub-

space of the candidate plane shear stresses.
All the formulations and the example presented above assumed

nominally linear elastic loading histories at the macroscopic scale,
whose damage can be calculated from SN models such as Wöhler-
Basquin’s and Goodman, but this is not a limitation for this
methodology. Indeed, the proposed IFD approach can be as well
extended for EP loading histories, whose fatigue damage must be
quantified by eN models. However, instead of using fatigue limit
and damage surfaces defined in stress spaces, strain spaces should
be used in the continuous damage calculations in such cases. A
generalized damage modulus De (instead of Dr) is thus defined,
which for uniaxial loading histories becomes the derivative of the
normal strain e with respect to damage D, thus De � de/dD.

In the strain-based version of the proposed IFD approach, the
5D deviatoric strain increment de

!0, defined in the 5D deviatoric
strain spaces from Eqs. (5)–(8), is used to calculate the associated
5D damage increment dD

!
0 from the current De, using a suitable

damage evolution rule. To do so, damage memory is stored by the
current arrangement among damage surfaces defined by their dam-
age backstrains b

!0
ei, from which the damage surface translation direc-

tions v
!0
ei are calculated according to some translation rule and

combined with material coefficients dei to calculate the current
De. The accumulated damage D is then equal to the integral of the
scalar norm jdD

!
0j of the damage increments. The same equations

from the stress-based version can be used in the strain-based
one, as long as the M damage surface backstrains b

!0
e1, b

!0
e2, . . .,

b
!0
eM; radii rei, and radius differences Drei � rei +1 � rei between con-

secutive damage surfaces are all defined as strain (instead of
stress) quantities.
5. Experimental results

The proposed IFD formulation is experimentally evaluated
using complex 2D tension-torsion stress histories, applied on
annealed tubular 316L stainless steel specimens in a tension-
torsion servo-hydraulic testing machine, see Fig. 5. The Coffin-
Manson curve for this material is
De=2 ¼ 0:0119 � ð2NÞ�0:277 þ 0:758 � ð2NÞ�0:582 ð14Þ
obtained from uniaxial eN tests.
The experiments consist of strain-controlled tension-torsion

cycles applied to eight tubular specimens, each one of them follow-
ing one of the eight periodic ex � cxy/

p
3 histories from Fig. 6. All

the tests were carried out until a small crack was detected on
the surface by visual inspection. In all specimens, the initiated
crack was later confirmed to have surface widths between 1 and
2 mm. This variability contributes to the uncertainties in the
experimental data, even though it can be inferred that the number
of growth cycles between 1 and 2 mm should be relatively small,
since the visual inspection was carried out on a frequent basis.

Table 2 compares the predicted and observed fatigue lives in
number of blocks, where each block consists of a full load period.
All predictions were performed using the strain-based version of
the proposed incremental plasticity formulation, assuming for sim-

plicity f MSðr
!Þ � 1 in Eq. (10).

As shown in Table 2, albeit the proposed IFD method does not
use any cycle detection or counting algorithm, all fatigue lives
are predicted with relatively small errors, well within the usual
scatter found in all fatigue life measurements. It also automatically
applies Miner’s rule under VAL, as it can be seen in the loading path
consisting of blocks of consecutive square and cross paths, since
the predicted number of blocks 482 is such that 1/482 ffi 1/751
+ 1/1314.

Similarly, the predicted 327 blocks of consecutive square, circle
and diamond paths is such that 1/327 ffi 1/751 + 1/996 + 1/1436.
Miner’s rule was also confirmed within the observed experimental
results, since e.g. in this latter case it would predict a life of 1/
(1/772 + 1/837 + 1/976) = 285 blocks, almost the same value as
the measured 288 blocks. Note that all the predictions listed in
Table 2 were based only on uniaxial Coffin-Manson data, without
any posterior curve fitting procedure.
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Fig. 6. Applied periodic ex � cxy/
p
3 strain paths on eight tension-torsion tubular specimens, all of them with normal and effective shear amplitudes 0.6%.

Table 2
Predicted and observed lives, in number of blocks, for each applied path.

Tension-torsion path Predicted Observed Error (%)

Cross 1314 1535 �14
Diamond 1436 976 +47
Triangle 1 1135 842 +35
Triangle 2 1180 840 +40
Circle 996 837 +19
Square 751 772 �3
Square/Cross 482 342 +41
Square/circle/diamond 327 288 +14
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As discussed above, the proposed method automatically repro-
duces Miner’s rule because of Eq. (9), which states that the result-
ing fatigue damage is a result of the integral over the path,
therefore it would be linearly additive. Miner’s rule still is the best
engineering tool for both high and low-cycle fatigue, however
under low-cycle conditions the order of the loading must be con-
sidered, to properly account for residual stress effects and plastic
memory in general. However, such effects are intrinsically consid-
ered in the proposed approach, since any stress-strain calculations
should be performed before fatigue damage integration, in a sepa-
rate incremental plasticity framework that considers the load
order. Therefore, all non-linearities and load order effects due to
plasticity are already considered in the proposed IFD model.

Nevertheless, it is important to note that Miner’s rule is not a
physical law. Therefore it can still result in significant prediction
errors for some particularly ordered histories, or in variable ampli-
tude histories with large variations in stress or strain amplitude. In
fact, the square/circle/diamond and the square/cross paths proba-
bly resulted in such an unusually high experimental agreement
with Miner’s rule because they involved similar (although not
equal) path-equivalent strain amplitudes.
6. Conclusions

A continuous multiaxial Incremental Fatigue Damage formula-
tion is proposed in this work, based on a direct analogy with incre-
mental plasticity models. Both proposed stress and strain-based
approaches can be formulated using traditional stress, strain, or
even energy-based SN and eN damage models, such as Wöhler-
Basquin, Coffin-Manson, Smith-Watson-Topper, or Fatemi-Socie,
making it an attractive and practical tool for engineering use. In
particular, the proposed IFD models do not require additional fit-
ting parameters, or complex calibration routines, as opposed to
equally continuous models that are based on traditional Contin-
uum Damage Mechanics approaches. The experimental results
show that the proposed method is able to predict quite well mul-
tiaxial fatigue lives under complex tension-torsion histories, even
though it does not require any cycle detection, multiaxial rainflow
counting, or path-equivalent range computations.
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