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a b s t r a c t

There are several methods or rules to estimate elastoplastic (EP) notch-tip stresses and strains from sim-
pler linear elastic calculations, an almost indispensable step for practical fatigue damage calculations.
Neuber’s and Molski-Glinka’s rules are perhaps the most popular for fatigue analyses of uniaxial load his-
tories. Their use in such elementary cases is relatively easy, but the general case of non-proportional mul-
tiaxial load histories require non-trivial incremental plasticity calculations to correlate EP stresses and
strains at the notch tip, a quite challenging task. However, for in-phase proportional multiaxial histories,
where the principal directions do not change and the load path in a stress diagram follows a straight line,
approximate calculation methods can be used to avoid the need for an incremental EP approach. Most of
these methods are based on Neuber’s rule, so they may result in conservative predictions, in particular
under near plane strain-dominated states associated with sharp notches. To minimize this problem, a
Unified Notch Rule (UNR) is proposed and evaluated in this work, by comparing its predictions with
EP Finite Element calculations on notched shafts, both for uniaxial and for in-phase proportional multi-
axial load histories. The UNR can reproduce Neuber’s or Molski-Glinka’s rules, interpolate their notch-tip
behaviors, or even extrapolate them for notches with increased transversal constraint, which affect the
plastic behavior at notch tips. Moreover, the UNR can also consider non-zero normal stresses perpendic-
ular to the free-surface.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction purposes, and even to automate such calculations to deal with
Most metallic alloys are direction-sensitive materials, which
tend to fail due to the growth of a single dominant crack under fati-
gue loading conditions [1]. The initiation of such cracks under mul-
tiaxial loads tends to be better described by critical-plane fatigue-
damage models, which search for the material plane at the critical
point where a suitable accumulated damage parameter is maxi-
mized. These fatigue-damage parameters depend on the stress/
strain range and peak histories at those critical points, usually a
notch tip, so in practice most fatigue life estimation routines need
to correlate nominal load histories with the stress and strain histo-
ries they induce at critical notch tips, which in the general case are
elastoplastic (EP) [2].

It is relatively simple to estimate EP stress/strain histories at
notch tips under uniaxial loading conditions for fatigue design
variable amplitude loads in a suitable computational code [3]. Neu-
ber’s [4–7] and Molski-Glinka’s [8] rules are well known and
widely used for such purposes. Nevertheless, it is less well known
that even in such uniaxial cases they should be used with the due
care under high nominal loads [2,9], and/or under high transversal
constraints that can induce near plane strain conditions, in special
at sharp notch tips. In the latter cases, Stephens et al. recommend
the use of the Linear strain concentration rule [10], an idea sup-
ported by data measured when developing the Critical Damage
model to estimate fatigue crack growth rates from eN properties
[11,12].

Moreover, the use of Neuber’s rule in its classical simplified
form (Kt�Drn)2 = Dr�De�E to model the effects of high nominal
stresses, where Drn is the nominal stress range that induces EP
stress and strain ranges Dr and De at the notch tip, usually leads
to fatigue damage predictions with significant numerical errors.
Besides, this is an inconsistent practice even when Drn can be
assumed as purely linear elastic (LE), because this formulation uses
two different constitutive equations to describe the same material.
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Nomenclature

b Coffin-Manson’s elastic exponent, or width of the cross
section of a rectangular beam [mm], or longest branch
of a bifurcated crack [lm]

c Coffin-Manson’s plastic exponent, or 2D crack width (or
semi-width) [mm], or shortest branch of a bifurcated
crack [lm]

E elasticity (or Young’s) modulus in tension [GPa], or
abbreviation for solved examples

E⁄ effective Young’s modulus (E⁄ = E under plane stress and
E⁄ = E/(1 � m2) under plane strain) [GPa]

EP elastoplastic
ex, ey, ez normal deviatoric strains
FE, FEM Finite Elements, Finite Element method
FES element size [mm]
hc, Hc cyclic strain-hardening exponent and coefficient [1,

MPa]
Hc
⁄ effective cyclic strain-hardening coefficient [MPa]

Kt linear elastic (or geometric) stress concentration factor
Ktr stress concentration factor for tension
Kts stress concentration factor for torsion
Ke elastoplastic strain concentration factor
Kr elastoplastic stress concentration factor
LE linear elastic
LIFO last-in-first-out
N life (in number of cycles)
Pi generalized plastic modulus of each hardening surface i

from Mróz [MPa]
ri radius of each hardening surface i [MPa]
RMSe root mean square error [%]
Rsr proportionality stress ratio
sx, sy, sz normal deviatoric stresses [MPa]
SYc cyclic yield strength [MPa]
UNR unified notch rule

VAL variable amplitude loading
a Newman’s 3D constraint factor (from a = 1 in pl-r to

a = 1/(1 � 2m) in pl-e), or thermal expansion coefficient
[lm/(m K)], or angle [rad]

aED energy dissipation coefficient
aU notch constraint factor
�aU effective notch constraint factor
De strain range at the critical point
Den nominal strain range
Dr stress range at the critical point [MPa]
Drn nominal stress range [MPa]
e1, e2, e3 principal strains
~e pseudo-strain (Hookean value calculated using the the-

ory of elasticity)
ec Coffin-Manson’s plastic coefficient
ex, ey, ez normal strains
/2, /3 biaxiality ratios e2/e1 and e3/e1 between principal

strains
k2, k3 biaxiality ratios r2/r1 and r3/r1 between principal

stresses
m Poisson ratio (or Poisson coefficient)
�m effective Poisson ratio
q notch tip radius [mm]
~r pseudo-stress (Hookean value calculated using the the-

ory of elasticity) [MPa]
r1, r2, r3 principal stresses [MPa]
rc Coffin-Manson’s elastic coefficient [MPa]
rn nominal stress [MPa]
rx, ry, rz normal stresses [MPa]
s shear stress [MPa]
sxy, sxz, syz shear stresses [MPa]
h cylinder sector cutting angle [deg]
� pseudo-values
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Indeed, the usual practice of correlating Drn with Den by Hooke’s
law and using Ramberg-Osgood (which does not recognize purely
LE strains) to model the DrDe loops they induce at the notch tip, is
at least inelegant even when Drn � 2SYc, where SYc is the cyclic
yield strength of the material. Moreover, under higher loads when
the nominal stress Drn is EP, Neuber’s rule clearly cannot be used
in that simplified form. These problems must be modeled by a sys-
tem of three equations containing Neuber and two Ramberg-
Osgood equations, one to describe the DrDe loops at the notch
tip, and the other to model the nominal DrnDen loops:

K2
t ¼ DrDe=DrnDen

De ¼ ðDr=EÞ þ 2ðDr=2HcÞ1=hc
Den ¼ ðDrn=EÞ þ 2ðDrn=2HcÞ1=hc

8><
>: ð1Þ

Contrary to what might be anticipated, this 3-equation system
does not overburden fatigue life calculations, which remain almost
identical to those used with the simplified LE Drn hypothesis: fati-
gue damage can be estimated by first obtaining the notch-tip stress
range Dr from the nominal EP ranges Drn and Den, using Neuber
and Ramberg-Osgood; then the corresponding De range from
Ramberg-Osgood again; and finally the life N from Coffin-Manson
or another suitable eN rule:

K2
t Dr2

n þ 2EDrn
Drn

2Hc

� �1=hc
" #

¼ Dr2 þ 2EDr Dr
2Hc

� �1=hc

)

) De ¼ Dr
E

þ 2 � Dr
2Hc

� �1=hc
¼ 2rc

E
ð2NÞb þ 2ecð2NÞc

ð2Þ
The minimum value the stress concentration factor Kr can reach
under high loads according to this consistent EP formulation for
Neuber’s system occurs when the elastic ranges are negligible:

K2
t

2EDrðhcþ1Þ=hc
n

ð2HcÞ1=hc

" #
¼ 2EDrðhcþ1Þ=hc

ð2HcÞ1=hc
) Kr;min ¼ Dr

Drn
¼ K2hc=ð1þhcÞ

t ð3Þ

Since by Neuber’s rule K2
t ¼ KrKe, the corresponding maximum

EP strain concentration factor calculated considering a Ramberg-

Osgood material is Ke;max ¼ K2
t =K

2hc=ð1þhcÞ
t ¼ K2=ð1þhcÞ

t , see Fig. 1.
Hence, the uniaxial Kr and Ke predicted by this consistent Neuber’s
rule formulation should be limited by the bounds:

K2hc=ð1þhc Þ
t 6Kr6Kt

Kt6Ke6K2=ð1þhc Þ
t

(
ðKr andKe definedwith respect toEPnominal stressesÞ

ð4Þ
Fig. 2 shows the non-conservative error curves errDr = (DrLE -

� DrEP)/DrEP resulting from the use of LE nominal stress ranges
in Neuber’s system to predict the corresponding maximum stress
ranges at a notch tip with Kt = 3. These error curves are presented
as a function of the Drn/2SYc ratio, for each one of 517 steels whose
properties are described in [13].

Fig. 3 presents still more relevant errors (which, once again, are
always non-conservative) induced by modeling Drn as LE when
estimating the resulting fatigue crack initiation lives N by Coffin-
Manson procedures, defining these errors by errN = (NLE � NEP)/
NEP. All these curves were calculated using measured cyclic proper-
ties of 517 steels as discussed in [13], so they reflect the influence



Fig. 1. Unlike the usual LE Drn formulation, which may lead to unrealistic
predictions like Kr < 1, the EP Drn formulation from Eq. (1) predicts that both the
stress and the strain concentration factors Kr and Ke tend to limit values given by
Eq. (4) at very high Drn/2SYc ratios.

Fig. 2. The non-conservative errors errDr = (DrLE � DrEP)/DrEP in ranges Dr
predicted at notch tips by modeling Drn as LE can be large even when Drn/2SYc < 1.
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of the Neuber formulation on the predicted stress range and the
consequent fatigue life initiation, for Kt = 3. Notice that even for
low nominal ranges Drn � 2SYc, this life estimation error can be
very large in many steels, a certainly most undesirable situation,
which can lead to unsafe non-conservative decisions.
Fig. 3. The non-conservative errors errN = (NLE � NEP)/NEP in predicted crack initi-
ation lives modeling Drn as LE can be very large: in average 213% for Drn/2SYc = 1.
Note that the curves in Figs. 2 and 3 are plotted only until the
notch stress amplitude reaches the true rupture stress of each
material. In some very ductile materials, the ratio Drn/2SYc can
reach values higher than 5, for two reasons: (i) such Drn/2 ampli-
tudes are modeled as true stresses, associated with true rupture
stresses that can be much higher than the ultimate strength SU
and cyclic yield strength SYc (which are based on engineering stres-
ses), especially for very ductile materials; and (ii) the elastoplastic
stress concentration factor can be much smaller than the linear-
elastic value Kt = 3 used in these figures, tending to 1.0 under very
high Drn/2SYc stress ratios.

It is not uncommon to find notched components that suffer
elastoplastic nominal stress cycles, especially when made of the
tough steels used in the automotive industry. Many high toughness
and high ductility steels can endure millions of cycles even under
elastoplastic notch stresses. If, on top of that, the studied compo-
nent has very mild notches, which is often the case in well-
designed or optimized profiles, then such long fatigue lives used
in practical applications can also be associated with elastoplastic
nominal stresses, which requires them to be modeled using e.g.
Ramberg-Osgood instead of Hooke’s law. Moreover, under variable
amplitude loadings it is not completely uncommon to have gross
yielding of the nominal section due to unexpected sparse over-
loads, which could still be associated with long fatigue lives if they
are rare events. In these overload events, proper calculations using
Ramberg-Osgood for both nominal and notch-root stresses are
needed to avoid numerical errors, which can be, as shown above,
very significant.

Likewise, Molski-Glinka’s rule can be applied to describe EP
stress/strain concentration effects by modeling the hysteresis loops
DrDe induced by the loading at the critical notch tip assuming LE
nominal stresses using Eq. (5):

ðKtDrnÞ2 ¼ Dr2 þ 4E

ð1þ hcÞð2HcÞ1=hc
Drðhcþ1Þ=hc ð5Þ

Since 4E/(1 + hc) < 2E, the EP stresses and strains estimated by
Molski-Glinka at notch tips are always smaller than those esti-
mated by Neuber, and larger than those estimated by the Linear
strain concentration rule, which assumes Ke = Kt. However, as
pointed out above for Neuber’s rule, the LE Drn hypothesis is only
appropriate to model low nominal stress ranges, much lower than
the cyclic yield strength range DSYc. Otherwise, stress/strain con-
centration rules should model both nominal and notch-tip stress-
strain relations as EP, using e.g. Ramberg-Osgood’s equation. Under
such conditions, Molski-Glinka’s rule applied to the DrDe loop
curve becomes

K2
t � Dr2

n þ
4EDrn

1þ hc

Drn

2Hc

� �1=hc
 !

¼ Dr2 þ 4EDr
1þ hc

Dr
2Hc

� �1=hc

ð6Þ

Before proceeding, let’s emphasize two points about all these
simplified procedures: first, EP stress/strain concentration rules
are just educated estimates for EP notch effects based on unique
LE Kt values. These rules provide reasonable but certainly not very
precise estimates for Kr and Ke. Better estimates only can be
obtained by numerically calculating EP Dr and De ranges using
(e.g.) advanced 3D FE techniques, which require erudition and
must be used with caution. In fact, such calculations are neither
trivial nor robust, as discussed later on. As Kr and Ke depend not
only on the geometry, but also on how and how much the material
strain-hardens, it is certainly better to whenever possible calibrate
them experimentally. Moreover, for very large strains the notch tip
radius can vary and affect Kr and Ke values along the loading/
unloading path. Such points are further discussed in [2,9].

However, to apply such simplified EP stress/strain concentration
rules under uniaxial but variable amplitude loading conditions
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(VAL) is not that easy. Efficient uniaxial eN-based VAL fatigue dam-
age calculations for un-notched components were initially pro-
posed on the pioneer work by Martin, Topper, and Sinclair [14].
The routines implemented in [3], which also use several elements
from the 4-point rainflow algorithm [15,16], are illustrated in
Fig. 4. This algorithm is called ‘‘real time rainflow” because it is able
to calculate the hysteresis loops, rainflow-count them, and obtain
the resulting fatigue damage in real time, as the stresses or strains
are input into the computer, without the need to know the entire
load history beforehand. Indeed, if implemented in a portable com-
puter connected to a strain measurement system, this algorithm
would be able to display in real time the damage so far induced
in the instrumented point, a really amazing potential feature.

In the eN real-time rainflow algorithm, for a given uniaxial stress
history composed by a series of discrete events {ri}, i = 0, 1, 2, . . ., n,
Fig. 4. Real-time rainflow algorithm flowcharts, app
each element ri (e.g. the peaks and valleys of the load history) is
sequentially inserted at the bottom of a memory stack, leaving
the ei value blank. The maximum absolute value of the stress ri

so far (from the event zero until the current event i) is then stored
at |r|max, whose initial value is null. After the insertion of each stress
ri, all stack rows that need to be eliminated according to the rules
from Fig. 4 must be removed from the list, while the events counted
in this process are stored and their associated damage is computed.
The state shown on the upper right of Fig. 4 (top) happens every
time the critical point stresses (or strains) stored in the stack vari-
able sk are such that sk–1 < sk–2 6 sk, with a number of lines k > 3 in
the stack. As shown in the figure, one load cycle can be counted
between the states sk–1 and sk–2, which are then eliminated from
their stack position between states sk–3 and sk. The other condition
sk–1 > sk–2 P sk with k > 3 is simply the symmetric case, when the
lied to the SN (top) and eN (bottom) methods.
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load is decreasing (sk–3 > sk) instead of increasing. All cycles counted
in this way are the ones that a traditional rainflow algorithmwould
have identified, namely stop an ongoing count when a previously
started counting sequence is found. Further details, including
numerical examples, can be found in [2].

The algorithm goes on until the end of the VAL stress history.
Then, the remaining stack rows that were not eliminated from
these two criteria have to be rainflow-counted. As shown in
Fig. 4, a half-cycle is counted for every remaining consecutive pair
of states sk–1 and sk, as long as there are still kP 2 lines remaining
in the stack. Such counted half-cycles are equivalent to the last cri-
terion from the traditional rainflow algorithm, namely a count
should be stopped when reaching the end of the load history. In
the end, all cycles and half-cycles will have been identified, with-
out repetition and without missing any of them.

This real time rainflow algorithm is so powerful that it is able to
calculate all the EP hysteresis loops under uniaxial VAL considering
the switching from cyclic to loop curves and vice versa, closing the
(as assumed by classic eN procedures) symmetric Masing loops and
returning the strain amplitudes from rainflow-counted half-cycles
automatically. Notice that unlike the sequential rainflow method
[2], this algorithm is not sequentially ordered by the last counting
point. However, to reproduce the same output of a sequential rain-
flow algorithm, it is enough to reorder from 1 to n the output half-
cycles by their final counting point. Curiously, such a Last-In-First-
Out (LIFO) listing adopted for the memory stack exactly reproduces
but predates the rainflowmethod – it has long been applied to rail-
way yard shunting and many other queuing problems.

For a given strain history {ei} instead of stress, the strain-based
real-time rainflow algorithm is almost identical, except that the
corresponding stress components ri are calculated from each
strain event ei, instead of the opposite, with the choice between
using the cyclic re or the loop DrDe curves depending on the val-
ues of the current |ei| and of the maximum absolute strain |e|max

stored so far, instead of on the |ri| and |r|max values, as in the
stress-based algorithm. The algorithm essentially remains the
same, except that its memory stack will store in each row, instead
of the pairs {ri, ei}, the triplets {rni, ri, ei} for a given nominal stress
history {rni}, or {eni, ri, ei} for a given nominal strain history {eni}.
The notch-tip strain ei continues to be the variable stored in each
stack variable sk from Fig. 4.

For a given nominal stress history {rni}, i = 0, 1, 2, . . ., n, each
nominal stress event rni is sequentially inserted at the bottom of
the memory stack, leaving blank the unknown notch-tip stress ri

and strain ei. The maximum absolute value of the nominal stress
rni so far is stored at the |rn|max stack, whose initial value is zero.
After the insertion of each nominal stress rni, all stack rows that
need to be eliminated according to the eN-based algorithm
described in Fig. 4 (bottom) must be removed from the list, while
the eventually counted cycles or half-cycles in this process are
stored and their associated damage computed. After (and only
after) the removal of these stack rows, the missing notch-tip stres-
ses and strains ri and ei from the bottom row of the stack can be
calculated:

� if the current |rni|P |rn|max, then ri and ei must be calculated
using the cyclic re curve, the current nominal rni, and the cho-
sen EP stress/strain concentration rule (Neuber, Molski-Glinka,
Linear, or any other), while |rn|max is updated to the new max-
imum nominal value |rni|; or else

� if the current |rni| < |rn|max, then the EP loop follows the loop
DrDe curve that departed from the point from the stack row
right above it, whose nominal range Drn is described by the dif-
ference between their nominal stresses, solving for the notch
Dri and Dei using the chosen concentration rule.
If a VAL nominal strain history {eni} instead of nominal stress is
given, the algorithm is almost identical, except that the notch-tip
stresses and strains ri and ei are calculated from each eni (instead
of rni), depending on the values of the current |eni| and the maxi-
mum absolute nominal strain |en|max so far, instead of |rni| and |rn|-
max. Notice that both the peak and the range values of each load
event are properly quantified in this process, a necessary feature
to account for mean or peak effects in fatigue damage calculations.

In principle, the conditions sk–1 < sk–2 6 sk and sk–1 > sk–2 P sk
from Fig. 4 should always be evaluated from the stack variables
sk containing the notch-tip strains ei. However, the ei from the bot-
tom row of the stack may still be unknown, since it can only be cal-
culated after the removal of all closed loops and their associated
stack rows. Indeed, notch-tip strains monotonically increase (or
decrease) under uniaxial loading altogether with not only their
notch-tip stresses, but also with their associated nominal stresses
and strains. All simply connected structures made of Masing mate-
rials have load-deformation behaviors related by a Masing model
[17]. Therefore, the topology of the Masing nominal stress vs. nom-
inal strain EP loops and of the notch stress vs. notch strain loops
are equal, including all its curve changes, loops that close, and their
relative order along the history. This equivalence of Masing loops is
valid even for mixed plots such as nominal stress vs. notch-tip
strain, or force vs. deflection, as long as they are caused by the
same uniaxial load history. So, the inequalities sk–1 < sk–2 6 sk and
sk–1 > sk–2 P sk from the algorithm can also be evaluated with the
given nominal rni or eni (instead of the notch-tip strain ei) histories
without altering the results. In this way, these inequalities can be
evaluated even before the notch strains ei induced by them are cal-
culated. Once again, Ref. [2] can be consulted for further details and
numerical examples.
2. Multiaxial loading issues

The problem of calculating EP stresses and strains at notch tips
induced by a given nominal multiaxial stress or strain history is in
general much more complicated than the uniaxial problem, even
when modeling well behaved Masing materials. To deal with such
problems it is usually necessary to adopt an incremental plasticity
formulation, thus a calculation scheme that sequentially integrates
non-linear differential equations to obtain the required stress-
strain behavior [18–21]. In general this is a far from an elementary
task, in particular when dealing with local EP concentration effects
at notch tips. However, a much simpler approach can be used in
some simpler cases to generalize the idea behind the uniaxial con-
centration rules: to perform a single global linear elastic (LE) Finite
Element (FE) calculation on the entire piece for a static unit value
of each applied loading. The resulting values at the notch roots can
be called pseudo-stresses and pseudo-strains, fictitious quantities
calculated using the theory of elasticity at the critical point of
the piece assuming the material follows Hooke’s law [22,23]. These
pseudo-values, which are represented here with a ‘‘�” symbol on
top of each variable, consider the multiaxial LE stress/strain con-
centration effects induced by the notch, but not the local yielding
effects induced by higher loads.

In the case of in-phase proportional multiaxial loadings, a par-
ticular but nevertheless important problem in many practical
applications, approximate models to estimate suitable EP stress
and strain concentration factors Kr and Ke can then be used to
avoid the need for computationally-intensive incremental plastic-
ity calculations. They provide notch-tip corrections that try to cor-
relate pseudo and EP stresses and strains using a scalar parameter
such as the von Mises equivalent stress. The main EP models to
estimate notch-tip concentration effects induced by in-phase
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proportional histories are the constant ratio [1], Hoffmann-Seeger’s
[24,25], and Dowling’s [26] models, defined using the following
notation:

� ~ri and ~ei: pseudo principal stresses and strains at the notch tip,
where i = 1, 2, 3.

� ri and ei: actual EP principal stresses and strains at the notch
tip.

� k2 and k3: biaxiality ratios between principal stresses, k2 � r2/r1

and k3 � r3/r1, both assumed between �1 and 1.
� /2 and /3: biaxiality ratios between principal strains, where
/2 � e2/e1 and /3 � e3/e1, also assumed between �1 and 1; and

� �m: effective Poisson ratio, with m < �m 6 0:5 in the EP case.

It must be pointed out that the traditional Hoffmann-Seeger’s
model is also widely used in practice. Moreover, some other recent
notch stress-strain models have been proposed by Salemi and
Kujawski [27], by Ince [28], and by Marangon, Campagnolo and
Berto [29]. However, this paper will detail only Dowling’s model,
since the proposed UNR can be seen as a generalization of its pro-
cedures. Dowling’s model assumes that the principal stresses r1

and r2 act on the free surface of the critical point (where r3 = 0),
but it considers that both k2 and /2 remain constant, thus can be
estimated from the pseudo-stresses and pseudo-strains:

k2 ¼ r2

r1
ffi ~r2

~r1
ffi /2 þ m

1þ /2m
; /2 ¼ e2

e1
ffi ~e2

~e1
ffi k2 � m

1� k2m
ð7Þ

So, Dowling’s model can then directly correlate r1 and e1, using
effective Ramberg-Osgood parameters E⁄ and Hc

⁄ to describe the
strain-hardening behavior of the material:

e1 ¼ r1

E	 þ
r1

H	
c

� �1=hc
ð8Þ

E	 ¼ E � 1þ /2m
1� m2

� �
; H	

c ¼ Hc � ð1� k2 þ k22Þ
ðhc�1Þ=2

ð1� k2=2Þhc
ð9Þ

In notched components, assuming that the principal directions
of the EP stresses and pseudo-stresses are equal, a variation of Neu-
ber’s rule [4] can then be used to estimate the EP notch-tip princi-
pal stress r1 (and then the consequent strain e1) from the pseudo-
stress ~r1:

~r1 �
~r1

E	

� �
¼ ~r1 � ~e1 ¼ r1 � e1 ¼ r1 � r1

E	 þ r1

H	
c

� �1=hc
" #

ðDowlingÞ

ð10Þ
The above equation does not require a plastic term on the left

hand side, because the pseudo-stresses and pseudo-strains are,
by definition, LE. Finally, the other notch-tip EP principal stresses
and strains are then obtained from r1 and e1:

r2 ¼ k2r1; r3 ¼ 0
e2 ¼ /2e1; e3 ¼ ��me1 1þk2

1�k2�m
; �m ¼ 0:5� ð0:5� mÞ r1

E	e1

(
ð11Þ
3. The Uniaxial Unified Notch Rule (UNR)

Noting that often Molski-Glinka’s rule [8] tends to underesti-
mate while Neuber’s rule [4] tends to overestimate notch-tip EP
stresses and strains, when compared to experimental results and
to FE analyses, Ye, Hertel, and Vormwald proposed a unified
stress/strain incremental concentration rule that returns values
in-between them [30]. For a monotonic uniaxial loading in the x
direction, their rule states that

rxdex � ð1þ aEDÞ þ exdrx � ð1� aEDÞ ¼ ~rxd~ex þ ~exd~rx ð12Þ
where 0 6 aED 6 1 was called the energy dissipation coefficient,
assumed in [30] as a material parameter, estimated from aED -
ffi (1 � 2hc)/(1 � hc) based on an energy argument, where hc is the
cyclic strain-hardening exponent of Ramberg-Osgood’s equation.

However, aED might depend not only on the material but also on
the notch geometry and on its plasticity constraint factor, a param-
eter that quantifies thickness-induced restrictions on the plastic
flow around its tip. This coefficient aED can also be regarded as a fit-
ting parameter, if experimental data or reliable EP FE analyses are
available for its calibration. Based on these ideas, a deviatoric ver-
sion of Eq. (12) is proposed in this work:

sxdex � ðaUÞ þ exdsx � ð2� aUÞ ¼ ~sxd~ex þ ~exd~sx ð13Þ
where sx � ð2rx � ry � rzÞ=3 and ex � ð2ex � ey � ezÞ=3 are devia-
toric stresses and strains in the x direction, while aU � (1 + aED) is
called the notch constraint factor, with values 1 6 aU 6 2 to interpo-
late between the Incremental Neuber rule [31–33] (for which
aU = 1) and the similarly defined Incremental Molski-Glinka rule
(for which aU = 2).

As the deviatoric stresses sx, sy and sz are linearly dependent,
since sx + sy + sz = 0, it is possible to reduce the deviatoric stress
and strain space dimensions using:

s1 � rx � ry þ rz

2
¼ 3

2
sx; s2 � ry � rz

2

ffiffiffi
3

p
¼ sy � sz

2

ffiffiffi
3

p
ð14Þ

e1 � ex � ey þ ez
2

¼ 3
2
ex; e2 � ey � ez

2

ffiffiffi
3

p
¼ ey � ez

2

ffiffiffi
3

p
ð15Þ

Assuming that Eq. (13) can be applied to the deviatoric stresses
and strains described in Eqs. (14) and (15), then it is possible to
write that

ðaUÞ � s1de1 þ ð2� aUÞ � e1ds1 ¼ ~s1d~e1 þ ~e1d~s1
ðaUÞ � s2de2 þ ð2� aUÞ � e2ds2 ¼ ~s2d~e2 þ ~e2d~s2

�
ð16Þ

where, as explained before, the symbol ‘‘�” is used for the pseudo
stress/strain values calculated from LE analyses, which consider
multiaxial LE stress/strain concentration effects induced by the
notch, but not the local yielding effects induced by higher loads.

Finally, the Unified Notch Rule (UNR) proposed in this work can
then be obtained from the integration of Eq. (16), which can be
used for both uniaxial and in-phase proportional histories. For uni-
axial histories, this integration results in the scalar UNR:

~e2 ¼ r
E
� r

E
þ �aU � ð r

Hc
Þ
1=hc

� �
; �aU � aU þ hcð2� aUÞ

1þ hc
ðUNRÞ ð17Þ

where �aU is the effective notch constraint factor.
Eq. (17) can reproduce Neuber for aU = 1 (and thus �aU ¼ 1), and

Glinka’s rule for aU = 2 (and thus �aU ¼ 2=ð1þ hcÞ). Moreover, it is
interesting to note that, although conceptually different, the
parameter aU shares some similarities with Newman’s constraint
factor a in his DKeff-based strip-yield model for FCG [34], which
vary from 1.0 under plane stress (where Neuber’s rule is recom-
mended) up to 3.0 or even more under plane strain conditions at
the notch tip: both aU and Newman’s a reflect the effect of
increased transversal constraint induced by the stress state and
somehow account for the associated plasticity decrease at the crit-
ical point, although clearly aU must be used for notch and New-
man’s a for crack tips.

4. The multiaxial unified notch rule

The multiaxial version of the UNR proposed here assumes in-
phase proportional loading under free-surface conditions and
sxz = syz = 0, but allows the presence of a surface normal rz – 0,
where the z axis is assumed perpendicular to the surface, and the



Fig. 5. Mróz infinite-surface hardening model for a monotonic proportional
loading.
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x and y axes are aligned with the remaining principal directions,
with x in the direction of the maximum absolute principal stress.
Therefore, the principal stresses rx � r1, ry � r2, and rz � r3 are
assumed to satisfy |rx|P |ry| and |rx|P |rz| during the entire load
history. The involved variables are the same as the ones defined
before, in addition to an elastic and plastic separation of the strain
biaxiality ratios, through:

� /2el � e2el/e1el and /3el � e3el/e1el: biaxiality ratios between prin-
cipal elastic strains, both assumed between �1 and 1; and

� /2pl � e2pl/e1pl and /3pl � e3pl/e1pl: same definition, biaxiality
ratios between principal elastic strains (note that for pressure-
insensitive materials, where e1pl + e2pl + e3pl = 0, such as in most
metallic alloys, it follows that 1 + /2pl + /3pl = 0 and thus
/2pl + /3pl = �1).

Since the multiaxial loading history is assumed here to be pro-
portional, the deviatoric stress increment is always parallel to the
plastic straining direction, so the Prandtl-Reuss plastic flow rule
[1,2] gives, for the normal deviatoric strain components,

de1
de2

� �
¼ dexpl � ðdeypl þ dezplÞ=2

ðdeypl � dezplÞ �
ffiffiffi
3

p
=2

" #
¼ 1

P
� drx � ðdry þ drzÞ=2

ðdry � drzÞ �
ffiffiffi
3

p
=2

" #

ð18Þ
where P is called the generalized plastic modulus (proportional to
the slope of the stress vs. plastic strain curve at the current stress
state), and all shear increments are zero since x, y, and z are defined
in the principal directions. Integrating this equation using the plas-
tic biaxiality ratio definitions, then

Z expl

0
dexpl �

1� ð/2pl þ /3plÞ=2
ð/2pl � /3plÞ �

ffiffiffi
3

p
=2

" #
¼
Z rx

0

1
P
� drx �

1� ðk2 þ k3Þ=2
ðk2 � k3Þ �

ffiffiffi
3

p
=2

" #

ð19Þ

Hencky-Ilyushin’s total strain history could have been used
instead to obtain the plastic strains from the stress history, since
it is applicable to in-phase proportional loading histories (but not
to non-proportional loadings). Nevertheless, Prandtl-Reuss’ flow
theory was adopted above to better describe the material kine-
matic hardening under cyclic loads, using e.g. a multi-surface
model. Hence, neglecting isotropic hardening transients, assuming
that the material follows Ramberg-Osgood with cyclic coefficient
and exponent Hc and hc, and that this proportional loading is bal-
anced, i.e. it does not cause ratcheting or mean stress relaxation,
then a Mróz multi-surface hardening model can be adopted
instead of the more general non-linear kinematic hardening mod-
els [1,2]. To improve the calculation accuracy, let’s adopt an infinite
number of hardening surfaces, as discussed by Chu in [35], see
Fig. 5. From the calibration of the Mróz model, the generalized
plastic modulus P = Pi for the hardening surface with radius ri
becomes

Pi ¼ ð2=3Þ � hcHcðri=HcÞ1�1=hc ð20Þ

Consider a monotonic proportional loading departing from the
origin of the deviatoric stress space, as shown in Fig. 5, assuming
x, y and z as principal directions. In this case, the radius ri of the
current active surface from the Mróz model is equal to the norm
(and thus the von Mises equivalent value) of the current stress
state. Replacing the values of P = Pi and ri into Eq. (20), and using
the plastic strain incompressibility condition /2pl + /3pl = �1, it fol-
lows that

~r1 �
~r1

E	

� �
¼ r1 � r1

E	 þ �aU � r1

H	
c

� �1=hc
" #

ð21Þ
E	 � E=½1� m � ðk2 þ k3Þ
; H	
c

� Hc � ½1� ðk2 þ k3Þ þ ðk22 þ k23Þ � k2k3
ðhc�1Þ=2

½1� ðk2 þ k3Þ=2
hc
ð22Þ
e1el ¼ r1=E
	; e1pl ¼ ðr1=H

	
cÞ1=hc ; e1 ¼ e1el þ e1pl

r2 ¼ k2r1;r3 ¼ k3r1

e2 ¼ /2el � e1el þ /2pl � e1pl; e3 ¼ /3el � e1el þ /3pl � e1pl

8><
>: ð23Þ
/2pl ¼
k2 � 0:5 � ð1þ k3Þ
1� 0:5 � ðk2 þ k3Þ ; /3pl ¼

k3 � 0:5 � ð1þ k2Þ
1� 0:5 � ðk2 þ k3Þ ð24Þ
/2el ¼
k2 � m � ð1þ k3Þ
1� m � ðk2 þ k3Þ ; /3el ¼

k3 � m � ð1þ k2Þ
1� m � ðk2 þ k3Þ ð25Þ

Hence, Dowling’s model for in-phase proportional loadings is a
particular case of this more general in-phase proportional UNR,
setting �aU ¼ 1 (to reproduce Neuber’s rule) and also k3 = 0 (free-
surface with r3 = 0), assuming as well that /2pl = /2el based on m,
and that /3pl = /3el based on an effective Poisson ratio �m.

Both Dowling’s and UNR multiaxial stress/strain concentration
models assume the nominal section away from the notch remains
LE. In other words, they are valid even under general yielding of the
net cross section, but they do not account for gross yielding of the
nominal cross section. To perform this correction, the pseudo prin-
cipal stress ~r1 is represented as the product of a LE stress concen-
tration factor Kt multiplied by a nominal stress rn1, i.e. rn1 � ~r1=Kt ,
where rn1 is assumed to follow Ramberg-Osgood, giving

K2
t � rn1 � rn1

E	 þ �aU � rn1

H	
c

� �1=hc
" #

¼ r1 � r1

E	 þ �aU � r1

H	
c

� �1=hc
" #

ð26Þ

where the material parameters E⁄ and Hc
⁄ defined by Eq. (22) con-

sider the load multiaxiality, while the parameter �aU considers local
triaxial or rather transversal plasticity restrictions induced by the
sharpness of the notch tip.
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5. Verification of UNR predictions with elastoplastic finite
elements

The proposed UNR and Dowling’s classic notch rules are
checked against elastoplastic (EP) Finite Element (FE) calculations,
for multiaxial in-phase proportional tension-torsion problems. The
comparison is based on the calculation of the peak EP stresses and
strains at the tip of a notch in a solid shaft with largest diameter
50.8 mm and semi-circular U-notches with various tip radii. The
shaft is assumed made of a heat-treated 1070 steel with Young
modulus E = 210 GPa, Poisson ratio m = 0.3, and Ramberg-Osgood
parameters Hc = 1736 MPa and hc = 0.199, as reported in [23].

The quality of numerical results in FE models usually depends
on the refinement of their mesh, whereas their computational cost
is directly associated with the size of the numerical model. An
excessively refined model may require too much memory or too
long processing time. An efficient procedure to avoid these prob-
lems is to use submodeling techniques, which consist on adopting
a very refined mesh only in a small part of the much less refined
global model needed to describe the overall behavior of the com-
ponent in question. This procedure is particularly useful when a
denser refinement is necessary only in a specific region to be ana-
lyzed, such as near notch or crack tips. The submodeling technique
involves two calculation steps: (a) solving the global model shown
in Fig. 6, without considering a denser refinement in the region to
be analyzed; and (b) solving the submodel with a much more
refined mesh, which is loaded by prescribed displacements on its
boundary obtained from the displacement field solution of the glo-
bal model [36].

The goal of the submodels used in this work was to reduce the
computational cost without compromising the accuracy of the EP
Fig. 7. Global model and sub

Fig. 6. Global model.
stress and strain distributions calculated around the notch tip.
So, first a 3D non-linear finite element global model was generated
in the ANSYS software, using 3D SOLID186 elements with 20 nodes
each and 3 degrees of freedom per node. The loads were applied at
one end of the specimen, with appropriate support conditions
specified at the opposite end. The applied loads include pure ten-
sion, pure torsion, and multiaxial combinations of tension and tor-
sion with three different proportionality stress ratios Rsr, as
described in detail in the following sections. After the solution of
the global model, the submodel was generated using the same type
of element. The small submodel boundary was placed far enough
from the stress concentration region near the notch tip, and the
load applied in its boundary was simulated by the displacement
fields obtained from the solution of the global model, as illustrated
in the scheme shown in Fig. 7.

The non-linearity of the material (1070 steel) was modeled by a
Ramberg-Osgood stress-strain curve, considering a multilinear iso-
tropic hardening model. Fig. 8 shows the stress-strain curve of this
steel simulated by 97 equally distributed points. This figure also
shows the adopted values of modulus of elasticity (E), Poisson’s
ratio (m), and Ramberg-Osgood parameters (Hc and hc), which
describe the strain-hardening behavior of the material.
5.1. Convergence tests

Before analyzing the submodels used in this work, a mesh con-
vergence study was performed to establish the mesh refinement
parameters needed for the simulations. Such convergence tests
were performed using the submodeling procedure described in
the previous section in a LE model with a notch tip radius
model used in this work.

Fig. 8. Stress-strain curve of the 1070 steel.
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q = 12.7 mm subjected to a multiaxial load with proportionality
stress ratio (torsion over tension) Rsr = 1.133, in order to compare
the calculations with available literature results [22]. Fig. 9 shows
the submodel in the global model used for the convergence tests,
indicating the location of its boundary surfaces. The minimum dis-
tance between the notch surface and the submodel boundary sur-
faces is set equal to the notch radius q.

In this 3D analysis, the submodel is a sector of the global model
cylinder. So, the convergence tests need to verify as well an ade-
quate value for the cylinder sector cutting angle h, see Fig. 10. To
verify the mesh size needed, the convergence study adopted a uni-
form mesh refinement, varying the number of elements along the
notch surface from 4 up to 60 elements, and the submodel sector
cutting angle from 10� to 90�. Some of the submodel meshes used
this study are shown in Table 1.

Figs. 11 and 12 show typical results obtained from the mesh
refinement convergence tests, plotting the stress values at points
1, 2, and 3 from Fig. 9 versus the ratio between the notch tip radius
and the element size q/FES, for submodel sector angles h = 10�
(Fig. 11) and h = 70� (Fig. 12). These results indicate that the normal
ry and shear sxy stresses converge for q/FES > 8, independently of
the submodel sector angle. However, the mean relative error
between the normal stress observed at the submodel boundary
and their corresponding region on the global model is 7.5% for a
submodel sector angle h = 10� (Fig. 11), a value that drops to
approximately 2.5% when the simulations are carried out using
Fig. 9. Global model and

Fig. 10. The submodel as a sector
h = 70� (Fig. 11). These results indicate that an adequate submodel
sector angle h should be verified for each notch geometry studied, a
procedure used for the models analyzed in this work.

The normal ry and shear sxy stresses at the critical notch point
converged for the h = 70� model to 416.4 MPa and 222.6 MPa,
respectively, as shown in Table 2. These results confirmed the
stress concentration factors for tension Ktr = 1.41 and torsion
Kts = 1.15 reported by Köettgen et al. in [22], which are slightly dif-
ferent from those reported by Peterson [37], Ktr = 1.45 and
Kts = 1.18.

5.2. Multiaxial non-linear FE analysis results

The following non-linear elastoplastic numerical simulations
consider 3 models with different notch sizes, as listed in Table 3,
which includes their LE stress concentration factors according to
Peterson [37]. For each model, five proportional loadings are con-
sidered, varying the proportionality torsion/tension stress ratio:
pure tension (Rsr = 0), multiaxial loadings with 3 proportionality
stress ratios (Rsr =

p
3/3,

p
3, and 3

p
3), and pure torsion

(Rsr ?1), as shown in Fig. 13.
The mesh refinement convergence study indicated that the ratio

between the notch tip radius and the finite element size should
be > 8, and to obey this limit the mesh chosen for the models
has q/FES = 8.913. A LE convergence study on the value of the
submodel sector angle h was performed as well for each notch
submodel details.

of the global model cylinder.



Table 1
Mesh refinement of convergence tests.

# nh 10� 30� 50� 70�

4

28

60

Fig. 11. Mesh refinement convergence results for h = 10�.

Fig. 12. Mesh refinement convergence results for h = 70�.

Table 2
Stress concentration factors obtained from the convergence tests.

h r [MPa] Ktr s [MPa] Kts

10� 438.7 1.49 229.0 1.19
30� 423.5 1.44 223.4 1.16
50� 418.6 1.42 222.9 1.15
70� 416.4 1.41 222.6 1.15
90� 415.3 1.41 222.2 1.15

Table 3
Modeled notches and their LE stress concentration factors according to Peterson [37].

q [mm] Peterson

Ktr Kts

2.54 2.65 1.57
0.762 4.10 2.30
0.254 6.70 3.75
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geometry studied, maintaining fixed the q/FES ratio. Based on it,
h = 30�, 5� and 2.5� were chosen to simulate notch tip radii
q = 2.54, 0.762 and 0.254 mm, respectively.
The pseudo-stresses, which are the input data for the proposed
UNR model, were calculated using the Ramberg-Osgood model for
the material stress/strain behavior, which does not recognize a
purely elastic response. However, using a low vonMises equivalent
stress approximately equal to 100 MPa, the modeled steel has an
essentially LE behavior at this stress level, see again its stress-
strain curve shown in Fig. 8. So, these pseudo stresses ~ry, ~rx, and
~sxy satisfied the LE hypothesis of the problem as expected, due to
the linear behavior of the material under this low initial load. This
is confirmed by comparing in Table 4 the calculated Ktr and Kts
with the values reported by Peterson in [37]. However, it may be
observed in Table 4 that the differences between stress concentra-
tion factors calculated by Peterson and by the present FE analysis
are smaller for lower stress concentration factors. This could be
caused by the non-linearity of the material at the notch root, which
must have been triggered in the non-linear FE model, even for the
lower initial load level.

The proposed UNR model depends on an adjustable parameter
(aU, see Eqs. (16) and (17)), which was calculated by minimizing
the root mean square error (RMSe) between the normalized strains
calculated by the UNR model ðeMises=~eMisesÞUNR and the correspond-
ing non-linear strains obtained from the FE model for each one
of the n loads studied ðeMises=~eMisesÞFE, using



Fig. 13. Loading paths with different proportionality torsion/tension stress ratios Rsr.

Table 4
Stress concentration factors calculated by Peterson and by the FE models.

q [mm] Peterson FEM

Ktr Kts Ktr Kts

2.54 2.65 1.57 2.43 1.53
0.762 4.10 2.30 4.27 2.32
0.254 6.70 3.75 7.55 3.66
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RMSeð%Þ¼100 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
½ðeMises=~eMisesÞUNR�ðeMises=~eMisesÞFE
2=n

q
ð27Þ

Table 5 shows values of aU calculated minimizing the RMSe of
the normalized strains for the three notch tip radii and for the devi-
atoric version of the UNR model. It indicates that there is no clear
trend on how the notch constraint factor aU changes from pure
tension (Rsr = 0) to pure torsion (Rsr =1), including the 3 different
proportionality stress ratios (Rsr =

p
3/3,

p
3, and 3

p
3), when

adjusting it for each load type and notch geometry. For the two
sharper notches, the model yielded smaller RMSe values
minimized for both the normalized strain ðeMises=~eMisesÞ and stress
Table 5
aU and their respective RMSe (%) minimized for each load ratio Rsr.

Ktr Kts q [mm] Rsr aU Deviatoric UNR

eMises=~eMises rMises=~rMises

2.43 1.53 2.54 0 1.476 1.56 1.03p
3/3 1.451 1.81 1.01p
3 1.127 4.20 1.05

3
p
3 0.717 7.52 1.43

1 0.515 10.31 1.72

4.27 2.32 0.762 0 1.692 0.47 1.13p
3/3 1.719 0.52 1.11p
3 1.708 1.03 1.06

3
p
3 1.452 2.29 0.98

1 1.233 3.29 0.99

7.55 3.66 0.254 0 1.707 0.18 1.17p
3/3 1.773 0.14 1.18p
3 1.979 0.17 1.21

3
p
3 2.060 0.12 1.20

1 1.904 0.34 1.17
ðrMises=~rMisesÞ curves calculated by the deviatoric UNR model. So,
it can be argued that the proposed parameter aU is almost indepen-
dent of the applied load.

For the deviatoric UNR model, there is a range of aU values that
decreases when the notch becomes sharper for all load types,
namely aU = 0.515–1.476, 1.233–1.719 and 1.707–2.060 for the
three notch geometries. Assuming a constant aU value for a given
notch, achieved by minimizing the RMSe (%) for all 5 types of loads,
the results of this overall aU calculation are summarized in Table 6,
which resumes all the calculated values. Considering the UNR
model in its deviatoric version, these constant aU values are
0.989, 1.549, and 1.874 for the notches with Ktr = 2.43, 4.27, and
7.55, respectively, while for the UNR non-deviatoric model the cor-
responding aU values are 1.218, 1.864, and 2.239. As shown in
Fig. 14, it was also observed that, like Newman’s constraint factor
a for crack tips [34], aU changes monotonically for the different
notch geometries. After fitting aU for each notch geometry, the
RMSe values are calculated for each load type described by its
Rsr between the normalized strain ðeMises=~eMisesÞ and stress
ðrMises=~rMisesÞ curves proposed by the UNR model, as indicated in
Table 7.

The proposed UNR model was compared with the traditional
Neuber [4] and Molski-Glinka [8] models, using both their devia-
toric and non-deviatoric versions, as also shown in Tables 6 and
7. It may be observed that Neuber’s model (aU = 1) yielded better
results in its deviatoric version, when compared to its much more
commonly used non-deviatoric formulation. On the other hand,
Molski-Glinka’s (aU = 2) non-deviatoric version showed better
results for the blunt notch when compared to its deviatoric ver-
sion, but its predictions worsen as the notch becomes sharper.
However, in its deviatoric version, the sharper notch geometries
present smaller errors. Thus, these results justify the use of Neuber
and/or Molski-Glinka models in their deviatoric versions. This
observation confirms the opinion expressed by Kujawski in [33],
who stated that Neuber’s rule in terms of deviatoric energy has a
coherent formulation for multiaxial loading conditions, including
uniaxial tension and pure shear. However, the correlation for gen-
eral multiaxial stress states needs to be further investigated.

Figs. 15–17 illustrate the main results obtained for each notch
type by plotting the deviatoric UNR and the classic non-
deviatoric Neuber and Molski-Glinka predictions, as well as the
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results obtained from the non-linear FE model calculations, for
Rsr =

p
3. For the blunter notch shown in Fig. 15, the overall

aU = 0.989 fitting for all load types generated a minimized
RMSe = 12.73% between its strain predictions and the FE calcula-
tions, and a RMSe = 1.81% between its stress predictions and the
FE results. Likewise, the equivalent errors for Neuber are 13.95%
and 1.79%, whereas for Molski-Glinka they are 18.90% and 3.47%,
see Table 6. The same trend was observed as the notch becomes
sharper, see Figs. 16 and 17.

Furthermore, it was also observed that the UNR model has the
versatility to interpolate between the classic Neuber and Molski-
Glinka models depending on the notch severity, as observed for
the notches with Ktr = 2.43 and 4.27, see Figs. 15 and 16, or even
to extrapolate them for very sharp notches, such as the one with
Ktr = 7.55, see Fig. 17.

Note in Figs. 16 and 17 that, even though the errors in the pre-
dicted notch-root stresses are not high for the several studied mod-
els, the errors in strain can be very significant, in special when the
strain-life non-linearity is also considered in fatigue life calcula-
tions. For instance, Glinka’s original (non-deviatoric) rule predicts
reasonably well both notch-root stresses and strains in Fig. 16,
but it significantly overestimates strains for the higher constraint
case from Fig. 17, which could result in fatigue life errors of an
order of magnitude. The main advantage of the proposed UNR is
to allow the calibration of the constraint effect through aU to
reduce such errors.

Note also that the submodeling technique would not be appro-
priate under very high elastoplastic nominal stresses, since geo-
metric non-linearities would have impacts on the finite element
results. To evaluate the influence of geometric nonlinearities
induced by the loads used to simulate high elastoplastic nominal
stresses at the notch root, the final radius of the plastically
deformed notch was computed. For the multiaxial case with Rsr = -p
3, q = 0.254 mm and under the highest simulated loading, the

notch radius q only increased by 0.059% (to q = 0.2555 mm) in
the elastoplastic simulations. This deformed geometry was then
simulated again using a linear elastic FE analysis to evaluate the
shift in the linear elastic stress concentration factors Ktr and Kts
due to geometric distortions, resulting in 7.53 and 3.65, respec-
tively, corresponding to a reduction of less than 0.3% of both fac-
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tors. From this analysis, performed for the most critical case among
the studied ones, it is possible to conclude that this small change
observed in the notch radius due to plasticity-induced geometric
non-linearities did not significantly impact the proposed model
predictions.

In summary, the multiaxial EP FE calculations confirm that
Neuber’s stress/strain concentration rule should be applied to
geometries that have low stress concentration factors, which are
subject to smaller transversal constraints at the notch tip.
Molski-Glinka’s model is somewhat more suitable for sharper
notches, but the UNR is a more precise and versatile model in
any case. The smaller prediction errors and the versatility of the
UNR model may justify its use in practical applications. Moreover,
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even in cases where it is not possible or desirable to make
simplified EP stress/strain concentration predictions using the
UNR model, the FE calculations indicate that it is highly recom-
mended to use the Neuber and Molski-Glinka models in their devi-
atoric versions, instead of using them in their more
common/classic non-deviatoric versions.

6. Conclusions

In this work, a Unified Notch Rule (UNR) is proposed and
extended to multiaxial proportional loading histories. Moreover,
it is validated by comparing its predictions with elastoplastic Finite
Element calculations on notched shafts, both for uniaxial and for
in-phase proportional multiaxial loading histories. The UNR can
reproduce Neuber’s or Molski-Glinka’s rules, and interpolate their
notch-tip behaviors through an adjustable parameter aU, an way
to consider increasing plasticity restrictions cause by transversal
constraints at the notch tip as their stress concentration factor
increases, such as proposed by Newman for crack tips. It was found
that the UNR model can better estimate strains and stresses at
notch tips than the traditional Neuber and Molski-Glinka models,
as studied for the pure tension, pure torsion and combined
tension-torsion loadings. Moreover, it is found that if for any rea-
son it is not possible or desirable to estimate multiaxial elastoplas-
tic stress/strain concentration effects using the UNR model instead
of traditional Neuber and Molski-Glinka models, it is then recom-
mendable to use such models in their deviatoric versions.
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