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Elber found in the early 70s that fatigue cracks can close under tensile loads, and assumed that fatigue
crack growth (FCG) would be controlled by DKeff = Kmax � Kop, where Kmax and Kop are the maximum
and opening values of the stress intensity factor. This hypothesis can rationalize many transient effects
observed under service loads, but it cannot explain many other effects like FCG retardation or arrest after
overloads under high R = Kmin/Kmax, when Kmin > Kop; FCG at constant rates under highly variable DKeff;
cracks arrested at a given R that can reinitiate to grow at a lower R without changing their DKeff; or
the R-insensitivity of FCG in inert environments. Nevertheless, strip-yield models (SYM) based on DKeff

ideas are more used for FCG life predictions than alternative models based on any other principles. To
verify whether SYMs are indeed intrinsically better, their mechanics is used to predict FCG rates based
both on Elber’s ideas and on the alternative view that FCG is instead due to damage accumulation ahead
of the crack tip, which does not need the DKeff hypothesis or arbitrary data-fitting parameters. Despite
based on conflicting principles, both models can reproduce quite well FCG data obtained under quasi-
constant DK loading, a somewhat surprising result that deserves to be carefully analyzed.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Paris and Erdogan demonstrated in 1963 that stable fatigue
crack growth (FCG) rates da/dN can be correlated with stress inten-
sity factor (SIF) ranges DK, at least in the central region of typical
da/dN � DK curves, where their da/dN = A�DKm rule applies [1].
Since then, many other rules have been proposed to better fit the
FCG behavior, quantifying the effect of other parameters that can
affect FCG rates as well, such as the peak load Kmax or the load ratio
R = Kmin/Kmax, FCG thresholds DKth(R), and fracture toughness Kc

[2]. In particular, after discovering plasticity-induced crack closure
(PICC) under tension loads in 1970, Elber postulated that fatigue
damage can only be induced after the crack tip is completely
opened, under loads K > Kop, where Kop is the crack opening load
[3,4]. His da/dN = f(DKeff = Kmax � Kop) hypothesis can plausibly
rationalize many peculiarities of the FCG behavior, such as crack
growth delays and arrests after overloads (OL), reductions on OL-
induced delays after underloads (UL), or the trend of the R-
dependence of FCG thresholds, so important to estimate fatigue
lives under variable amplitude loads (VAL). Hence, his DKeff idea
has been used in many semi-empirical FCG models, among them
the so-called strip-yield models (SYMs) that estimate opening
loads from the residual strains that surround the crack faces and
FCG lives using a suitable da/dN � DKeff equation properly fitted
to experimental data [5–9].

Many works support the da/dN = f(DKeff) hypothesis, as exten-
sively reviewed e.g. by Kemp [10] and by Skorupa [11,12], but
many others question it. A few examples of FCG behaviors that
cannot be explained by Elber’s postulate are: FCG delays or arrests
after OLs under high R, when Kmin > Kop [13]; constant FCG rates
induced by fixed {DK,R}, but highly variable DKeff loadings [14];
cracks arrested at a given R that reinitiate to grow at a lower R
under the same DKeff [16]; or the R-insensitivity of FCG in inert
environments [17]. Still other questions about the DKeff hypothesis
are explored in [18–23]. Even though this work does not aim to
support or to refute Elber’s idea, or to review the works that sup-
port or question it, it can be claimed that without doubt this idea
still remains controversial.

In view of such doubts, the goal of this work is to first use well-
proven strip-yield mechanics [5–9] to describe some carefully
measured da/dN � DK curves at low and high R. However, instead
of simply assuming that a reasonable fit of some properly mea-
sured data is an undisputable proof that the DKeff hypothesis is
valid, the very same strip-yield mechanics is here used to verify
whether another hypothesis about the cause for the FCG process
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Nomenclature

a crack length
b fatigue strength exponent
bk dimensions for a partially loaded crack (k = 1, 2) (m)
c fatigue ductility exponent
C coefficient of the critical damage crack growth rate

equation
Cn coefficient of the NASGRO crack growth rate equation
CAL constant amplitude loading
CDM critical damage model
CTOD crack-tip opening displacement
d half length of the crack plus the monotonic plastic zone

(m)
D(i) accumulated damage at each ith element ahead of the

crack tip
da/dN fatigue crack growth rate
E Young’s modulus of elasticity (MPa)
EP elastoplastic
FCG fatigue crack growth
h Ramberg-Osgood strain-hardening exponent
hc Ramberg-Osgood cyclic strain-hardening exponent
Hc Ramberg-Osgood cyclic strain-hardening coefficient

(MPa)
HRR Hutchinson, Rice and Rosengren stress and strain fields
K stress intensity factor, SIF (MPa

p
m)

Kc fracture toughness, and its value under plane strain con-
ditions (MPa

p
m)

Kmax maximum stress intensity factor (MPa
p
m)

Kmin minimum stress intensity factor (MPa
p
m)

Kop crack opening stress intensity factor (MPa
p
m)

Kres residual stress intensity factor (MPa
p
m)

Kt stress concentration factor
LE linear elastic
Li length of the element i created by plastic deformation

(m)
n total number of bar elements
ni number of applied load cycles
Ni fatigue life under CAL conditions
npz number of elements in the plastic zone
OL overload
PICC plasticity induced crack closure
pz plastic zone
pzr reverse (or cyclic) plastic zone
r distance from crack tip, radial coordinate
rl residual ligament of the element where the crack tip

stops after each load cycle
R load ratio (rmin/rmax or Kmin/Kmax)
Rx capped load ratio (Rx = R if R > 0 and Rx = 0 if R � 0)

SF flow strength, SF = (SY + SU)/2 (MPa)
SIF stress intensity factor
SU ultimate strength (MPa)
SY yield strength (MPa)
SYc cyclic yield strength (MPa)
SY-CDM combined strip-yield critical-damage model
SYM strip-yield model
t specimen thickness (m)
UL underload
V crack surface displacement (m)
VAL variable amplitude loading
VE volume element
W specimen half-width (m)
wi half-width of bar element i (m)
x, y Cartesian coordinates
x(i) coordinate location of the element i starting from the

specimen center (m)
xct(i) coordinate location starting from the current crack tip

(m)
X displacement of the HRR strain field (m)
a constraint factor: a = 1 for plane stress; a = 3 for plane

strain
Da⁄ crack growth increment over which So is held constant

(m)
DN number of load cycles to growth the crack by an incre-

ment Dc⁄

DK stress intensity factor range (MPa
p
m)

DKeff effective stress intensity factor range (MPa
p
m)

DK0 effective threshold stress intensity factor range
(MPa

p
m)

DKth threshold stress intensity factor range (MPa
p
m)

Dc width of the volume element in the Critical Damage
Model, CDM (m)

Dey strain range in the y direction (m/m)
ec Coffin-Manson’s fatigue ductility coefficient
g material constant, g = 0 for plane stress and g = m for

plane strain
m Poisson’s ratio
q crack tip radius (m)
q⁄ elementary material block size from UniGrow’s model

(m)
rc Coffin-Manson’s fatigue strength coefficient (MPa)
rj stress at a segment of the crack surface (MPa)
rop crack opening stress (MPa)
rm mean applied stress (MPa)
rmax, rmin maximum and minimum applied stress (MPa)

558 S.E. Ferreira et al. / International Journal of Fatigue 103 (2017) 557–575
can be equally used to fit the same data. To do so, this mechanics is
used to verify the alternative view that the FCG process, instead of
controlled by DKeff, can be due to damage accumulation ahead of
the crack tip, assuming fatigue cracks advance by sequentially
breaking small volume elements (VE) adjacent to the tip after they
reach the critical damage the material can sustain. If properly
applied, this alternative hypothesis neither needs the DKeff hypoth-
esis, nor requires arbitrary data-fitting parameters [13,24–26].

Somewhat surprisingly, this exercise shows that both models,
although based on contradictory hypotheses, can reproduce quite
well the FCG data analyzed here. Therefore, it demonstrates that
conflicting views about the cause for the FCG process can be
equally used to model da/dN � DK curves using the very same
basic mechanics! Such a conclusion indicates that radical opinions
such as ‘‘all FCG problems can be modeled by DKeff concepts ‘‘or”
DKeff concepts are useless to model FCG” are at least questionable.
It also indicates that what really is a ‘‘conclusive proof criterion” in
this topic should be reevaluated. The models used to support this
claim are briefly reviewed next.
2. Critical damage models

Critical Damage Models (CDMs) assume fatigue cracks grow by
damage accumulation at the uncracked ligament ahead of their
tips due to cyclic elastoplastic (EP) stress/strains histories that
act there [13,24–30]. If this is so, most of the fatigue damage occurs
inside the reverse or cyclic plastic zones (pzr) that always follow
fatigue crack tips. This way, CDMs suppose fatigue cracks grow
by sequentially breaking small volume elements (VE) adjacent to



Fig. 1. Stress profiles behind (x < 0) and ahead of (x > 0) a fatigue crack tip at Kmax

and Kmin baseline loads, before an OL and 40 cycles after it, measured by Withers
et al. using tomography techniques [33]. Notice how the rmax and rmin stress
profiles ahead of the crack tip are both reduced by roughly the same values due to
the OL-induced residual stresses.

S.E. Ferreira et al. / International Journal of Fatigue 103 (2017) 557–575 559
their tips that reach the critical damage the material can sustain.
Such VE are analogous to tiny eN specimens that see VAL during
their lives even under constant amplitude loadings (CAL), since
both De and rmax increase as the crack tip approaches them. Some
CDMs consider the width of the VE as the distance that the crack
grows at each load cycle [24–27]. Others consider the FCG rate as
being an arbitrary VE width divided by the number of cycles that
the crack needs to cross it [29,30].

The UniGrow model is a recent CDM that uses numerical tools
to evaluate the EP stress/strain history ahead of the crack tip
[30]. It assumes that FCG is driven by DK and Kmax, not by DKeff,
and that load order effects are caused by residual stresses ahead
of the crack tip, not by crack closure behind it. It evaluates Kres,
the residual SIF in any given load event caused by the previous load
history, considering the EP material response along the uncracked
ligament. To do so, Kres values are calculated by integrating over
the entire rl the product of the residual stress field by a suitable
geometry-dependent weight function, assumed one-dimensional.
However, UniGrow supposes that at any load cycle a Kres 6 0
reduces only its Kmax. Although somewhat arbitrary and even ques-
tionable (see Fig. 1), this hypothesis allows the SIF range DK, which
Fig. 2. UniGrow’s materials blocks (left), and the assumed fatigue
is assumed to drive along with Kmax the FCG process, to become
sensitive to the residual stress field ahead of the crack tip. Indeed,
without this trick, Kres would be cancelled out from the SIF range,
as it is in the Willenborg FCG models [31,32]. Moreover, this ‘‘Kres

does not affect Kmin” hypothesis is considered valid even if the
crack surfaces do not contact each other at Kmin, so do not transfer
loads through them.

Anyway, the key issue in the UniGrow model is how to calcu-
late, at each and every load cycle, the residual stress field rres(x)
ahead of the crack tip, needed to obtain the resulting Kres value
from the weight-function integral. Having estimated Kres, UniGrow
uses Eq. (1) to estimate FCG rates, where Aug and mug are material
parameters:

da=dN ¼ Aug � ðKmax þ KresÞp � ðDK þ KresÞ1�p
h imug ð1Þ

Being a CDM, UniGrow assumes the uncracked ligament con-
sists of several VE or material blocks that behave analogously to
tiny eN test specimens ahead of the crack tip, successively breaking
them as the crack tip advances. However, instead of using a critical
damage model based on some damage accumulation rule to find
the variable width of each VE under VAL, it somewhat arbitrarily
supposes that their width is not only constant, but a material prop-
erty q⁄ as well, called the elementary material block size, see Fig. 2.
Moreover, instead of estimating the crack tip radius as a function of
the CTOD under VAL, such radius is assumed constant and equal to
the same material parameter q⁄. The stress and strain fields ahead
of the crack tip are then determined assuming the crack is a sharp
notch with a fixed small tip radius q⁄, from which damage is calcu-
lated using eN procedures to find the number of cycles N⁄ needed
to break each material block of width q⁄ [30].

TheN⁄ calculation assumes an opened crack of length a, modeled
using the stress concentration factor Kt = Kt (a, q⁄) of a notch of
length a and tip radius q⁄. A closed crack, on the other hand, is
assumed to behave as if it was a circular hole with radius q⁄,
because the crack surfaces are supposed to perfectly contact each
other under compressive loads, transmitting the applied forces
except in a small circular region just behind the crack tip. Crack sur-
face closure is assumed to happen exactly at K = 0, thus any Kmax or
Kmin < 0 is associated with a circular hole with Kt = 3, while any Kmax

or Kmin > 0 has Kt = Kt (a, q⁄) >> 3. This way, the UniGrowmodel can
consider the damage contribution of the stress and strain ranges
that happen ahead of the crack tip even while the crack is partially
closed (because the Kmin values affect the DK range).
crack configurations when it is closed and opened (right) [2].



Fig. 3. Schematics of the FCG caused by fracture of a VE at every load cycle [2].
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Notice that fatigue damage ahead of the crack tip while
Kmin < Kop is completely neglected by FCG models based on Elber’s
idea, which assume no fatigue damage can happen while the crack
is not totaly opened. UniGrow considers damage even while the
crack is partially or totally closed, but this asset may be questioned
because it neglects any possible crack closure contribution. More-
over, UniGrow estimates the stress field ahead of the crack tip
using Creager and Paris’ linear elastic (LE) solution for a blunt
notch, neglecting significant yielding effects near the crack tip. This
LE field is used with the cyclic Ramberg-Osgood curve and Neu-
ber’s strain concentration rule to calculate the EP stress and strain
fields ahead of the crack tip [30]. Damage at each VE is then calcu-
lated using the Smith-Watson-Topper (SWT) fatigue damage
parameter. But instead of using a damage profile ahead of the crack
tip to model FCG using eN procedures, damage is calculated only at
the VE adjacent to the crack (modeled as a notch) tip, to obtain its
life N⁄. Since this material block has width q⁄ (supposed constant),
the FCG rate is estimated as da/dN = q⁄/N⁄. This hypothesis is used
to calibrate the q⁄ parameter from da/dN data measured under the
same loading conditions used to calculate the material block life
N⁄. The q⁄ calibration uses a least-squares method to collapse all
da/dN curves of a given material from a set of measured da/dN data
and associated eN calculated N⁄ lives. However, the fact that q⁄ can
collapse da/dN curves does not validate the UniGrow model,
because other normalization procedures can perform the same
task as well, as clearly shown by Kujawski [34]. Such model might
be validated if a q⁄ parameter with the ability to robustly collapse
da/dN curves could be accurately predicted using some physically-
based model, but this is not the case, since q⁄ is numerically fitted
for that purpose.

After the q⁄ parameter and Eq. (1) are calibrated, fatigue dam-
age simulations under VAL conditions still require a cycle-by-
cycle calculation of the residual stress profile ahead of the crack
tip to obtain Kres after every load event. To decrease computational
costs, residual stress fields induced by each loading event are
assumed qualitatively similar, and estimated as a scaled version
calibrated from the calculated stress at the VE adjacent to the cur-
rent crack tip (treated as a sharp notch). However, since plasticity
induces memory effects, the stress field ahead of the crack tip
depends on the current load cycle and also on the residual fields
generated by previous load events. UniGrow uses relatively simple
empirical ‘‘memory rules” to combine the residual stress fields cal-
culated after each load cycle. Such rules basically state that the
residual stress at any material block is equal to the minimum stress
applied so far in the history at that block, except in the presence of
underloads, which tend to erase OL effects and require additional
memory rules. Moreover, only the compressive part of the residual
stress field is assumed to affect the FCG process.

In summary, UniGrow assumes several simplifying hypotheses,
such as: closed crack tips can be modeled as circular holes with a
constant radius q⁄; VE or material blocks that successively break
ahead of the crack tip have the same width q⁄; crack surfaces con-
tact exactly at K = 0; notch-tip strains can be estimated by Creager
and Paris and Neuber’s rule, even under plane strain conditions;
residual stresses affect Kmax but not Kmin, even when it is positive;
residual stress profiles can be assumed similar; the interaction
between them can be modeled through very simple memory rules;
and finally the residual SIF Kres can be assumed as a linear function
of the net SIF for each R-level. The use of so many phenomenolog-
ical hypotheses, although qualitatively coherent with experiments,
can quantitatively compromise the accuracy of UniGrow predic-
tions. This issue is hidden by the very high sensitivity of FCG life
predictions to q⁄. Indeed, subtle changes in q⁄ are usually enough
to fit experimental data. However, such a post-mortem fitting is
only applicable to failure analyses, undermining the robustness
of the UniGrow model to predict load interaction effects, since
small q⁄ calibration errors can result in very different FCG predic-
tions. In summary, q⁄ probably is not a material property, but
instead a highly sensitive curve-fitting parameter, used to compen-
sate for the errors caused by the many simplifications adopted in
the UniGrow model.

The CDM proposed in [24–26], on the other hand, uses only
physically-based hypotheses, see Fig. 3, so it does not need specific
data-fitting parameters. It assumes that (i) fatigue cracks grow by
successively breaking small VE located ahead of their tips; (ii) such
VE can be treated as tiny eN test specimens fixed along the crack
path; (iii) these VE accumulate fatigue damage induced by variable
strain ranges, which in the case of CAL increase as the crack tip
approaches them; and (iv) the fracture of the VE adjacent to the
crack tip occurs because it accumulated the entire damage the
material can tolerate. Since constant SIF ranges induce constant
FCG rates, the VE widths in such cases can be assumed fixed and
equal to the crack increment per cycle Da ffi da. Hence, any given
VE suffers damage in each and every load cycle, caused by the
strain loop range induced by that cycle (beyond the component
fatigue limit range), which depends on the distance x between
the VE and the fatigue crack tip. The fracture of the VE adjacent
to the crack tip occurs when its accumulated damage reaches a
critical value, estimated by the linear damage accumulation rule
Eq. (2) (or by any other suitable damage accumulation rule):X
i

ðni=NiÞ ¼ 1 ð2Þ

where Ni is the number of cycles that the VE would last if only the
ith amplitude cycle acted during its entire life, and ni is the number
of cycles that acted during that event.

The main issue in this CDM is to determine the strain range
field, since models for stress/strain fields inside the plastic zones
that assume a zero tip radius q = 0, like the HRR field [35,36], are
singular at x = 0. This physically inadmissible feature, since no
cracks under loads can sustain infinite strains at their crack tips,
was originally eliminated by shifting the HRR field origin into the
crack by a distance X, inspired by Creager and Paris’ idea [37].
For constant SIF range conditions, the sum in Eq. (2) can be
approximated by an integral along, say, the reverse or cyclic plastic
zone (pzr), neglecting in a first approximation fatigue damage
outside it:

da
dN

¼
Z pzr

0

dx
Nðxþ XÞ ð3Þ
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The HRR field origin shift X can be estimated in two ways: (i)
assuming X = q/2, as Creager and Paris did, where q is the crack
tip radius under Kmax; or (ii) by first calculating the plastic strain
range Dep(X) acting at the crack tip using a suitable strain
concentration rule and the crack LE stress concentration factor Kt,
describing it as a sharp notch with the same length a, but with a
finite tip radius q > 0. Then, to calculate the cyclic plastic strain
range Dep ahead of the crack tip, the modification of the HRR strain
field proposed by Schwalbe [28] can be used as in [25]:

Depðxþ XÞ ¼ ð2SYc=EÞ � ½pzr=ðxþ XÞ�1=ð1þhcÞ ð4Þ

where SYc is the cyclic yield strength of the material, E is its Young’s
modulus, and hc is its Ramberg-Osgood strain-hardening exponent.
Fig. 4. Flow diagram for cr
Since the elastic strain amplitude inside the cyclic plastic zone
is neglected in Eq. (4), its associated fatigue life N(x + X) can be esti-
mated from the plastic part of Coffin-Manson’s equation as

Nðr þ XÞ ¼ ð1=2Þ½Depðxþ XÞ=2ec�1=c ð5Þ

where c and ec are Coffin-Manson’s plastic exponent and coefficient,
respectively.

Using half of the crack tip radius to estimate the X displacement
of the modified HRR field, and assuming q = CTOD/2, then

X ¼ q
2
¼ CTOD

4
¼ K2

max � ð1� 2mÞ
p � E � SYc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ð1þ hcÞ

s
ð6Þ
itical damage models.
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Substituting Eq. (4) into Eq. (5) and then using Eq. (3), it is pos-
sible to estimate the FCG rate induced by any {DK, R} calculating
the constant C in a modified McEvily’s rule to simulate all 3 phases
of typical da/dN � DK curves:

da=dN ¼ C � ðDK � DKthÞ2 � ½Kc=ðKc � KmaxÞ� ð7Þ
Notice that this step is needed to properly consider the fracture

toughness Kc and the FCG threshold DKth limits in FCG rates, since
in the adopted approach no upper or lower strain bounds are set in
Fig. 5. (a) M(T) specimen with a crack of size 2(a + pz) loaded by a remote tensile stre
distributed stresses r over the two segments near the crack tips [6].

Fig. 6. Crack surface displacements and stre
Coffin-Manson’s equation to model fracture or the fatigue limit,
respectively. Another less arbitrary way to estimate the X displace-
ment is to use Creager and Paris’ Kt estimation and a suitable strain
concentration rule to evaluate the strain range Dep at the crack tip:

Kt � Drn ¼ 2DK=
ffiffiffiffiffiffiffiffiffiffi
p � qp ð8Þ

Assuming q ffi CTOD/2, for any given DK it is possible to estimate
the product Kt�Drn and then, using the chosen strain concentration
rule (Neuber, Molski-Glinka, Linear, or any other), the plastic strain
ss rn; and (b) M(T) specimen with a crack of size 2(a + pz) loaded by symmetrical

ss distribution along the crack line [6].
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range can be estimated at the crack tip. The Dep estimate by the Lin-
ear rule is obtained using Eq. (9), by Neuber using Eqs. (10) and (11),
and by Molski-Glinka using Eqs. (11) and (12):

DepðXÞ ¼ Kt � Drn

E
¼ 2 � DK

E � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p � CTOD=2p ð9Þ

DrðXÞ � DepðXÞ ¼ ðKt � DrnÞ2
E

¼ 8 � DK2

E � p � CTOD ð10Þ
Fig. 7. Flow diagram for t
DepðXÞ ¼ 2 � DrðXÞ=2Hcð Þ1=hc ð11Þ
2DK2

E � p � CTOD ¼ DrðXÞ2
4E

þ DrðXÞ
hc þ 1

� ðDrðXÞ
2Hc

Þ
1=hc

ð12Þ

After estimating Dep at the crack tip, the X displacement of the
HRR field can be found from Eq. (13) and the cyclic plastic zone, as
shown in Eq. (14):
he strip-yield model.
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X ¼ pzr � DepðXÞ � E=ð2SYcÞ
� ��ð1þhcÞ ð13Þ
pzr ¼ ð1� 2mÞ2=½4pð1þ hcÞ� � DK=SYcð Þ2 ð14Þ
Fig. 4 shows the flow diagram of the calculation process for

these critical damage models. It can be concluded that the entire
da/dN � DK curve can be estimated using only well-defined mate-
rial properties, without the need for any specific data-fitting
parameter. The presented equations apply only to constant SIF
range conditions, so they describe the simplest formulation of this
CDM, but this model can be further developed to describe FCG
under VAL as well, see [26].
3. Strip-yield models

SYMs numerically estimate the crack opening SIF Kop needed to
find DKeff using the classic Dugdale-Barenblatt’s model [38,39],
modified to leave plastically deformed material around the faces
of the advancing fatigue crack [5–9]. Newman’s original SYM [6]
is based on Elber’s PICC idea and was developed for a finite plate
with a central crack loaded by a uniform tensile stress rn. The pz
sizes and surface displacements are obtained by the superposition
of two LE problems: (i) a cracked plate loaded by a remote uniform
nominal tensile stress rn (see Fig. 5a), and (ii) by a uniform
distributed stress r applied over crack surface segments (see
Fig. 5b).

Fig. 6 shows the crack surface displacements and the stress dis-
tributions around the crack tip at the maximum rmax and mini-
mum rmin applied stresses. It is composed of three regions: (1) a
linear elastic region containing a fictitious crack of half-length a
+ pz; (2) a plastic region of length pz and (3) a residual plastic
deformation region along the crack surface. The plastic zone is dis-
cretized in a series of rigid-perfectly plastic 1D bar elements, which
are assumed to yield at the flow strength of the material, SF = (SY + -
SU)/2, to somehow account for the otherwise neglected strain-
hardening effects. These elements are either intact at the plastic
zone or broken at the crack wake, storing the residual plastic defor-
mations. If they are in contact, the broken bar elements can carry
compressive stresses, therefore they can yield in compression
when their stresses reach �SF. The elements along the crack face
that are not in contact do not affect the crack surface displace-
ments, or carry stresses.

This SYM uses a constraint factor a to increase the tensile flow
stress SF in the unbroken elements along the plastic zone during
loading. This is done to consider the effects of the actually 3D stres-
ses around the crack tip, caused by plastic restrictions when the
plate is thick and cannot be assumed to work under pl-r. So, this
constraint factor should vary from a = 1 for plane-stress to up to
a = 1/(1 � 2m) ffi 3 for plane-strain limit conditions, where m is Pois-
son’s coefficient (albeit in practice a is often used as a data fitting
parameter when using this SYM). Since there is no crack-tip singu-
Fig. 8. Schematic of the rupture of eleme
larity when the crack closes, this constraint factor is not used to
modify the compressive yield stress during unloading, assuming
the conditions around the crack tip tend to remain uniaxial.

The coordinate system shown in Fig. 6 is fixed and its origin lies
at the center of the central crack, whose length is 2a. Due to sym-
metry, only one quarter of the plate needs to be analyzed. Eq. (16)
governs the system response by requiring compatibility between
the LE part of the cracked plate and all bar elements. When the
wake elements’ length Lj is larger than their displacement Vj under
rmin, they come into contact and induce a stress rj needed to force
Vj = Lj. The influence functions f(xi) and g(xi, xj) used in Eq. (16) are
related to the plate geometry and its width correction, as
expressed in Eqs. (17)–(19).

Vi ¼ rn � f ðxiÞ �
Xn
j¼1

rj � gðxi; xjÞ ð16Þ

f ðxiÞ ¼ ½2ð1� g2Þ=E� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2 � x2i Þ secðpd=2WÞ

q
ð17Þ

gðxi; xjÞ ¼ Gðxi; xjÞ þ Gð�xi; xjÞ ð18Þ

Gðxi;xjÞ ¼ 2ð1�g2Þ
E ðb2�xiÞ �cosh�1 d2�b2xi

djb2�xi j

� �
�ðb1�xiÞ �cosh�1 d2�b1xi

djb1�xi j

� �
þ

n
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2�x2i

q
� sin�1ðb2=dÞ� sin�1ðb1=dÞ
h i

� sin�1 B2�sin�1 B1
sin�1ðb2=dÞ�sin�1ðb1=dÞ

h i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec pd

2W

� �q 	
ð19Þ

Notice that g = 0 for plane stress and g = m for plane strain, and
that B1 and B2 are calculated from Eq. (20), b1 and b2 from Eqs. (21)
and (22), and the plastic zone pz from Eq. (23) and (24).

Bk ¼ sinðpbk=2WÞ= sinðpd=2WÞ ð20Þ

b1 ¼ xj �wj ð21Þ

b2 ¼ xj þwj ð22Þ

pz ¼ a ð2W=paÞ � sin�1fsinðpa=2WÞ � sec½prmaxf=ð2aSFÞ�g � 1
n o

ð23Þ

f ¼ 1þ 0:22ða=WÞ2 ð24Þ
In Fig. 6, pz is divided into 20 bar elements with variable widths

2wi/pz = 0.005, 0.005, 0.005, 0.005, 0.01, 0.01, 0.02, 0.02, 0.03, 0.03,
0.045, 0.045, 0.06, 0.06, 0.075, 0.075, 0.1, 0.1, 0.15, 0.15. The small-
est element n = 1 is the nearest of the crack tip, at x = a. After cal-
culating the pz size induced by the current cycle peak stress
rmax, the lengths of the bar elements inside the plastic zone are
calculated from:

Li ¼ Vi ¼ rmax � f ðxiÞ �
X20
j¼1

a � SF � gðxi; xjÞ ð25Þ
nts VE1 through VE4 and part of VE5.
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When the plate is unloaded down to rmin (Fig. 5b), the bar ele-
ments inside pz unload until some of them near the crack tip start
to yield in compression, when they try to reach a stress rj �� SF.
Fig. 9. Flow diagram
The broken elements located inside the plastic wake formed along
the crack surfaces, which store residual deformations, may come
into contact and carry compressive stresses as well. Some of these
of the SY-CDM.



Table 1
Material properties [25] and C values obtained by several strain concentration rules.

Material SY (MPa) SU (MPa) Kc (MPa
p
m) DKth (MPa

p
m) C (for DK in MPa

p
m)

R = 0.1 R = 0.7 C&P Linear Neuber M&G

7075-T6 498 576 25.4 3.4 2.9 8.23 � 10�9 8.84 � 10�9 2.22 � 10�9 1.77 � 10�8

1020 285 491 277 11.6 7.5 2.73 � 10�10 2.42 � 10�10 1.38 � 10�9 1.03 � 10�9

Table 2
Properties and parameters from the NASGRO 4.02 database [41].

Material SY (MPa) SU (MPa) Kc (MPa
p
mm) DK1 (MPa

p
mm) C (for DK in MPa

p
mm) n p q Cth a

7075-T6(M7HA03AB1) 461.9 524 729.7 26.06 9.686 � 10�12 3 0.5 1 2.5 2
1015-1026(C1BB11AB1) 262 399.9 1737 116.4 1.515 � 10�14 3.7 0.5 0.5 1.5 2.5

Table 3
Constant C for modified CDMs obtained from SYM�calculated cyclic strain fields.

eN equation C (for DK in MPa
p
m)

7075-T6 1020 steel

Coffin-Manson 1.73 � 10�9 2.64 � 10�9

Morrow EP 1.45 � 10�7 1.57 � 10�8

SWT 1.66 � 10�8 5.10 � 10�9
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elements may also yield in compression, if they try to reach
rj �� SF. The stresses rj at each of the n elements in the plastic
zone and along the crack surface are calculated by

Xn
j¼1

rj � gðxi; xjÞ ¼ rmin � f ðxiÞ � Li ð26Þ

This system of equations is solved by Gauss-Seidel’s iterative
method with added constraints. The constraints are related to
the yield behavior in tension and compression for the bar elements
inside the pz, see Eqs. (27) and (28), and to element separation and
compressive yielding for the elements along the plastic wake that
envelops the crack surfaces, see Eqs. (29) and (30).

For xj > a; if rj > a � SF set rj ¼ a � SF ð27Þ

For xj > a; if rj < �SF set rj ¼ �SF ð28Þ

For xj 6 a; if rj > 0 set rj ¼ 0 ð29Þ

For xj 6 a; if rj < �SF set rj ¼ �SF ð30Þ
From the stresses in the elements at the minimum load, their

plastic residual deformations can be calculated using Eq. (31). For
the elements not in contact, it follows that ri=0 and Li<Vi.

Li ¼ Vi ¼ rmin � f ðxiÞ �
Xn

j¼1

rj � gðxi; xjÞ ð31Þ

The stress rop that completely opens the crack surfaces is calcu-
lated from Eqs. (32) and (33) with k = 1 or 2 [40]. In these equa-
tions, aw is the sum of the initial crack length and of all element
widths at the crack surface, but the width for the element n is
Table 4
Measured Coffin-Manson properties (notice that eN and da/dN coupons were machined fro

Material E (GPa) rc (MPa)

7075-T6 72 709
1020 205 815
replaced by the largest crack growth increment during the gener-
ation of Da⁄, not by the entire increment over which the opening
stress is held constant.

rop ¼ rmin �
Xn
j¼21

ð2rj=pÞ½sin�1 B2 � sin�1 B1� ð32Þ

Bk ¼ sinðpbk=2WÞ=sinðpaw=2WÞ ð33Þ
rop is kept constant during a small arbitrary crack incrementDa⁄, to
save computational cost. At the maximum load, Da⁄ is calculated
from Eq. (34), where Rx = R = rmin/rmax if R > 0 and Rx = 0 if R � 0.
In the original FASTRAN code, the crack increment is assumed to
be Da⁄ = 0.05�pz, and Eq. (34) is used to improve the opening stress
calculations for higher stress ratios [40].

Da� ¼ 0:2ðpz=4Þ � ð1� RxÞ2 ð34Þ
The number of load cycles DN needed to grow the crack by this

Da⁄ increment is calculated by the NASGRO rule, Eq. (35) [41], in
which Cn, m, p and q are data fitting parameters, Kc is the fracture
toughness, and the threshold DKth can be estimated using Eqs. (36)
and (37). DK1

⁄ is given by Eq. (38), A0 by Eq. (39),DK1 is the thresh-
old measured at high R when the crack is closure-free, Cth is still
another empirical data-fitting constant with different values for
positive or negative (superscript p or n) values of R, and a0 is an ‘‘in-
trinsic crack size” (assumed fixed, a0 = 0.0381 mm). DK1 is also
called the intrinsic threshold by DKeff supporters, or the threshold
of the maximum by the Unified Approach followers, who say that
DK and Kmax are the true fatigue crack driving forces [42].

da=dN ¼ CnðDKeff Þm � ð1� DKth=DKÞp=ð1� Kmax=KcÞq ð35Þ

DKth ¼ DK�
1 ð1� RÞ=ð1� Kop=KmaxÞ
� �ð1þR�Cp

th
Þ
=ð1� A0Þð1�RÞCp

th ; R P 0

ð36Þ

DKth ¼ DK�
1 ð1� RÞ=ð1� Kop=KmaxÞ
� �ð1þR�Cp

th
Þ
=ð1� A0ÞðC

p
th
�R�Cn

thÞ; R < 0

ð37Þ

DK�
1 ¼ DK1½a=ðaþ a0Þ�0:5 ð38Þ

A0 ¼ ð0:825� 0:34aþ 0:05a2Þ cosðprmax=2SFÞ½ �1=a ð39Þ
m the same lot of each material, to guarantee the consistency of the measured data).

b ec c

�0.056 0.12 �0.75
�0.114 0.25 �0.54
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To keep the number of elements reasonable, say less than 40, a
lumping process along the plastic wake is used to join the bar ele-
ments, combining adjacent elements i and i + 1 to form a single ele-
ment when

2ðwi þwiþ1Þ 6 a� xiþ1 þ Da� ð40Þ
It follows that the elements near the crack tip are not as likely to

be lumped together as those that are away from the tip. In the
lumping process, the width of the lumped element is the sum of
the widths of the two adjacent elements, while its length is the
weighted average of the two, namely

L ¼ ðLiwi þ Liþ1wiþ1Þ=ðwi þwiþ1Þ ð41Þ
Fig. 7 shows the flow diagram for the implemented algorithm.

The stopping criterion was defined here with the objective to find
the stabilized FCG rate at a constant SIF range simulation.

4. The combined Strip-Yield critical damage model

To compare the SYMs and CDMs performance, proper calcula-
tion procedures are implemented in a code based on the original
Newman formulation [6,40]. This inbred code includes as well
the NASGRO FCG rule [41], to use the material properties listed
in it. The SYM code validation is performed by comparing its crack
opening stress predictions for several load combinations under
plane stress and plane strain conditions with results reported by
Newman [40]. The combined strip-yield critical-damage model
(SY-CDM) proposed here estimates the crack growth increments
Fig. 10. SYM and original CDM estimates for the
in a cycle-by-cycle basis through a gradual damage accumulation
process, considering possible crack closure effects on the cyclic
strain field ahead of the crack tip. So, it combines Newman’s
strip-yield ideas [6] with the cyclic damage accumulation routines
developed by Castro et al. [26].

This SY-CDM also divides the monotonic plastic zone pz into
small bar elements, analogous to tiny eN specimens. However, as
the crack increments are directly calculated from the damage accu-
mulated by such elements as the crack tip approaches them, the
number of elements along pz must be larger than in the SYM to
improve the calculation accuracy. Under fixed {DK, R} loading con-
ditions that induce constant da/dN rates, the element width can be
assumed constant too. So, the width of the small bar elements
could be arbitrarily chosen, say 2w = 1 � 10�7 m. However, to
maintain accuracy even when pz is very small, at least 150 bar ele-
ments are used ahead of the crack tip. Moreover, to avoid too many
elements at high FCG growth rates, their number is limited to 550.
As in the original SYM, the first element inside the plastic zone is
called element one, but the total number of plastic zone elements
varies from 150 to 550.

Crack increments do not necessarily have the width of the VE as
assumed in [25], allowing the model to deal with VAL or even with
rate transient behavior at the initial simulation phase due to vari-
ations of the crack opening load. Like in the SYM, the elements bro-
ken as the crack advances are kept along the crack surfaces, and
used to consider crack opening stress effects in the cyclic strain
field ahead of the crack tip, which can affect the plastic displace-
ment of the unbroken elements inside the plastic zone. Therefore,
FCG curve of the 7075-T6 Al alloy at R = 0.1.
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although not considered in this work, which deals only with simu-
lations of da/dN � DK curves measured under constant SIF range
conditions, this CDM is versatile and can deal with VAL as well, fol-
lowing ideas outlined in [26].

The SYM procedures calculate peak and residual plastic dis-
placements at each bar element, as previously described, so it is
necessary to adapt them to generate the strain field needed by this
new SY-CDM. For that purpose, it is necessary to transform the cyc-
lic displacements of the elements inside the plastic zone into cyclic
strains. This is done by using a solution proposed by Rice [43] to
estimate the strain field based on CTOD variations, properly
modified to consider the calculated displacements of the various
elements through

Dey ¼ log½ð2LmaxðiÞ þ xctðiÞÞ=ð2LminðiÞ þ xctðiÞÞ� ð42Þ
The displacements Lmax and Lmin of the ith element inside the pz

are calculated at the maximum and minimum applied stresses. The
positions of the elements starting from the crack tip, xct(i), are
located at the center of each element. The strain rangeDey that acts
at each element center can be correlated with the number of cycles
N(i) that would be required to break that element if that range was
kept constant, calculated from the plastic part of Coffin-Manson’s
rule through Eq. (43), or from Morrow’s elastoplastic rule through
Eq. (44), or else from SWT’s rule through Eq. (45):

NðiÞ ¼ ð1=2ÞðDeyðiÞ=2ecÞ1=c ð43Þ
Fig. 11. SYM and original CDM estimates for the
NðiÞ ¼ ð1=2Þ DeyðiÞ=2ec
� �ð1� rm=rcÞ�c=b
h i1=c

ð44Þ

NðiÞ ¼ ð1=2Þ rmaxðiÞ � DeðiÞ=2rcecð Þ1=ðbþcÞ ð45Þ
Notice that only the plastic part of the strain range can be con-

sidered by this SY-CDM, because strain ranges estimated from the
SYM displacements are obtained assuming rigid-perfectly-plastic
bar elements, neglecting elastic components. The total damage
accumulated by each element can be evaluated by Palmgren-
Miner’s rule, Eq. (2), or else by any other damage accumulation
rule. The stresses rm and rmax from Eqs. (44) and (45) are calcu-
lated using the maximum (rmax = a.SF) and minimum (rmin = �SF
by Eq. (28) inside the pzr) stresses that act in each element.

Since this SY-CDM calculates fatigue damage at the central posi-
tion of each VE, it needs to find the residual ligament rl of the ele-
ment where the crack tip stops after each load cycle. Then, the
model generates a new element with width rl located at the new
crack tip (element one), and finds its central position and the fati-
gue damage associated with it. For the simplest particular case,
when the accumulated damage D(i) at the center of the partially
broken element i reaches exactly its critical value, its residual liga-
ment becomes half its width (i.e. half of the element would break
due to an accumulated damage beyond the spatial average D(i),
while the other half would become the residual ligament). To keep
the sum of the widths of all elements equal to the pz size, the dif-
ference rl is added to the last element npz located at the pz frontier.
FCG curve of the 7075-T6 Al alloy at R = 0.7.
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As a result, in this model only two bar elements have variable
width, the first and the last one. The central position of the new
first element is then in the middle of the residual ligament of the
partially broken one, and the accumulated damage associated with
it is calculated by linear interpolation.

Fig. 8 illustrates the VE distribution and a partially broken bar
element after a load cycle, which started with the crack tip located
at the VE1 frontier, and ended with the crack tip located inside
(say) VE5. The estimated crack increment causes the residual liga-
ment of that partially broken VE to become either (i) rl =wi if D(5)
= 1, (ii) rl > wi if D(5) < 1, or (iii) rl < wi if D(5) > 1, assuming 1 as the
critical value according to Miner’s rule. This way, for any {DK, R}
loading condition, this CDM calculates the corresponding crack
growth rate through the fatigue damage accumulated by the cyclic
plastic strain history ahead of the crack tip, considering possible
crack closure effects on the cyclic strain field. Moreover, notice that
it is relatively easy to extend this simple calculation scheme to deal
with VAL, since the last (and first) element can have a variable
width in time. The calculation procedure of this combined SY-
CDM is described in Fig. 9.

Since Eq. (7) reproduces the sigmoidal shape of da/dN � DK
curves, and since its only adjustable constant C can be directly cal-
culated for any {DK, R} combination from the eN properties of the
material, the CDM used here in fact does not have any data-fitting
parameter (whereas NASGRO’s FCG rule used by the SYM needs 4
of them). Besides, even though McEvily’s FCG rule used by the
CDM, namely da/dN = C�(DK � DKth)m�[Kc/(Kc � Kmax)], uses a fixed
Fig. 12. SYM and SY-CDM FCG estimates
exponent m = 2 to model the DK effect on da/dN, assuming it is
material-independent, it could be modified using a variable m
easily calculated as well from the eN properties of the material,
by finding several FCG rates associated with various {DK, R} load-
ing combinations. This can be done using either Eq. (3) to displace
the HRR field according to some strain concentration rule as in the
original CDMs [24–26], or the non-singular strain fields generated
by SYM procedures as discussed above. Finally, a major benefit of
all CDMs used in this work must be emphasized: if they can rea-
sonably estimate FCG rates of a given material, they do so using
only its eN, FCG threshold, and fracture toughness properties, with-
out needing any adjustable FCG data-fitting parameters. Therefore,
these simple and sound models can indeed be called predictive,
since they do not need or use actual FCG data points to estimate
da/dN rates. The results presented next support this claim.

5. Results and discussions

The SYM, the CDM and the new combined SY-CDM approaches
described above are used to simulate da/dN � DK data measured at
R = 0.1 and R = 0.7 for two materials, a 7075-T6 aluminum alloy
and a 1020 low carbon steel, using C(T) specimens with width
50mm and thickness 10mm and following standard ASTM E647
procedures, as described elsewhere [25]. Table 1 lists these mate-
rial properties and the C values used by the CDMs to simulate
the measured da/dN � DK curves by Eq. (7). Recall that these C val-
ues are calculated from the eN-computed damage accumulated by
for the 7075-T6 Al alloy at R = 0.1.
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the cyclic strain fields ahead of the crack tip by the HRR field, dis-
placed according to a chosen strain concentration rule to eliminate
the crack tip singularity. So, they are not obtained by fitting the
measured da/dN � DK data points.

Table 2 gives the parameters and the constraint factor from
NASGRO’s database for materials similar to the ones tested here.
These parameters were used in the SYM calculations to simulate
the measured da/dN � DK curves. Table 3 lists the constants C from
Eq. (7), calculated for the two materials by the SY-CDMs using the
cyclic strain field generated by SYM bar elements and several eN
rules. Table 4 lists the eN properties of the tested materials.

Figs. 10 and 11 depict the da/dN � DK data points measured in
standard tests, as well as the FCG curves predicted by the CDMs
[13,25] and by the SYMs for the 7075-T6 Al alloy tested under
R = 0.1 and R = 0.7, respectively. To evaluate possible effects of
the tested specimen thickness, the SYM estimates for the FCG
curves are obtained using two constraint factors, a = 2 and a = 3.
Moreover, since the Al 7075-T6 properties extracted from the NAS-
GRO database are not identical to those measured in [25], to be fair
the SYM simulations are numerically generated under two differ-
ent conditions, called A and B. SYM�A uses Eq. (35), parameters
from Table 2, and measured FCG rate thresholds DKth(R) and
toughness KC listed in Table 1, since these values are also used by
the CDM estimates. SYM�B simulations, on the other hand, use
only NASGRO recommended parameters listed in Table 2, and
apply them in Eqs. (36), (38), and (39) to estimate the correspond-
ing DKth(R) value from Eq. (35). This sensible exercise indicates
Fig. 13. SYM and SY-CDM FCG estimates
that SYM estimations are quite sensitive to the FCG threshold
and the fracture toughness values used in the simulations. This is
not a surprise, since the use of estimated fatigue properties is a
risky procedure, to say the least [44].

Recall that the da/dN � DK curves estimated by the original
CDMs are based on the progressive accumulation of eN damage
on VEs distributed ahead of the crack tip, which is assumed caused
by cyclic HRR fields properly displaced into the crack to eliminate
their (non-physical) singularity. As shown in Figs. 10 and 11, the
FCG curves generated by the original CDMs that shift the HRR field
origin using Creager and Paris (C&P) or the Linear strain concentra-
tion rule are similar, and they yield better results than the FCG
curves estimated using the Neuber or the Molski-Glinka (M&G)
strain concentration rules. Indeed, Neuber and M&G estimate too
conservative FCG rates, with the latter being less conservative than
the former, as expected. In fact, the better performance obtained
from the CDM + Linear rule predictions could be expected as well
from fatigue cracks that grow under predominantly plane strain
(pl-e) conditions [2]. The CDM + C&P predictions with R = 0.1,
which are essentially identical to the CDM + Linear ones, are
slightly higher than the da/dN data trend along almost the entire
DK range, and do reproduce quite well the measured da/dN � DK
data points, which covered all three phases of the FCG process.

On the other hand, CDM procedures estimated lower da/dN
rates at low DK and higher rates at high DK ranges than the mea-
sured data at R = 0.7, but the differences were relatively small. This
quite reasonable performance certainly is not a coincidence, since
for the 7075-T6 Al alloy at R = 0.7.
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these predictions are based only on measured eN properties and use
no additional adjustable data-fitting parameters. In fact, when
compared to equally reasonable SYM estimates based on DKeff con-
cepts, but that need a FCG rule with 4 adjustable parameters, not to
mention a constraint factor a that in practice is frequently used as
a 5th data-fitting parameter, the CDM performance could be even
qualified as quite impressive.

The SYM�A FCG rate estimates for the 7075-T6 Al alloy, made
using its measured threshold DKth(R) and fracture toughness Kc

values, are much better than the SYM�B ones, made using NASGRO
recommended values. This seems to indicate that NASGRO’s
DKth(R) estimates are not so good for the tested Al alloy. Its recom-
mended toughness value Kc ffi 730 MPa

p
mm ffi 23 MPa

p
m is

about 10% lower than the measured one, Kc = 25.4 MPa
p
m, a small

difference that does not affect phase I FCG rates and has little effect
on phase II FCG as well. The effect of the two constraint factors
numerically tested in the simulations, a = 2 or a = 3, is relatively
low at R = 0.1 and negligible at R = 0.7, when the crack closure
effect is expected to be low or even negligible anyway. Finally,
even though NASGRO recommends a constraint factor a = 2 for this
Al alloy, the best SYM estimates are obtained using a higher value
a = 3, the value expected from the a = 1/(1 � 2m) theoretically pre-
dicted for pl-e FCG conditions, since Al alloys have m ffi 1/3.

Figs. 12 and 13 show the da/dN � DK data points and the curves
predicted by the SY-CDMs for the 7075-T6 Al alloy tested under
R = 0.1 and R = 0.7 using the eN damage induced by the cyclic strain
fields generated by SYM’s displacement fields, and Coffin-Manson,
Fig. 14. SYM and original CDM estimates for t
Morrow EP, or SWT eN rules. Recall that the SY-CDMs use only the
plastic part of those eN rules. This simplification is necessary, since
the SYM numerical procedures discretize the pz ahead of the crack
tip using rigid-perfectly-plastic VE elements. Recall as well that
C&M does not recognize mean or peak stress effects, whereas Mor-
row EP and SWT do. These figures also show the original CDM
+ C&P and the SYM�A FCG curves with a = 3, which yield the better
predictions in Figs. 10 and 11. The FCG rates estimated by the mod-
ified CDM + C&M are essentially equal to the ones generated from
the original CDM + C&P, yielding FCG curves that are quite reason-
able for R = 0.1, albeit not as good for R = 0.7. This coincidence
could not be anticipated, since original CDMs calculate damage
accumulated by displaced HRR cyclic fields, whereas the modified
CDMs use the cyclic strain field estimated from SYM’s displace-
ments along the pz, considering possible crack closure effects.

Although this coincidence certainly cannot be generalized, it
may be seen as an indication that both procedures are at least
coherent, a reassuring evidence. Finally, the SY-CDM based on
Morrow EP resulted in too conservative predictions for both R
levels, except for very low DK values near the FCG threshold, asso-
ciated with low phase I FCG rates. The SY-CDM based on SWT, on
the other hand, yielded intermediate FCG predictions

Figs. 14 and 15 depict the measured da/dN � DK points and the
FCG curves predicted by the original CDMs and by the SYMs for the
1020 steel tested under R = 0.1 and R = 0.7, respectively. Due to the
high toughness of this steel, such data points cover only its phase I
and II FCG behavior. The FCG curves estimated from the strip-yield
he FCG curve of the 1020 steel at R = 0.1.



Fig. 15. SYM and original CDM estimates for the FCG curve of the 1020 steel at R = 0.7.
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models are once again obtained using two constraint factors, a = 2
and a = 3, even though NASGRO recommends a = 2.5 for this steel
(assuming it has m = 0.29, the ideal value for pl-e FCG conditions is,
in theory, a = 1/(1 � 2m) ffi 2.38).

The SYM�A uses measured DKth and Kc values listed in Table 1,
while SYM�B uses DKth from Table 2. SYM�B yielded too conser-
vative FCG curves particularly at R = 0.7, and for both R-ratios it
did not even reproduce the shape of the measured data points. This
performance may be an indication that NASGRO’s DKth(R) esti-
mates are not so good for the tested steel either. The a-factor
had the same effect as observed for the 7075 Al with a = 2, yielding
less conservative results than a = 3. The condition A with a = 2 pro-
duced good results for R = 0.1, deviating from the measured data at
phase I. For R = 0.7 its estimates are probably too conservative for
any practical use.

As expected for fatigue cracks that grow under pl-e conditions,
the C&P and the Linear CDMs estimate better FCG curves (as com-
pared with the experimentally measured data) than the Neuber
and the M&G models, but they are slightly non-conservative at
R = 0.1. However, their predictions are quite good for R = 0.7. Neu-
ber and M&G predicted conservative FCG rates for both R, with the
latter being less conservative than the former, as expected.

Figs. 16 and 17 show the measured da/dN � DK data points and
the curves predicted by the SY-CDMs for the 1020 steel tested
under R = 0.1 and R = 0.7, respectively. Recall that these FCG curves
are generated by damage accumulation along cyclic strain fields
numerically estimated by SYM procedures based on strains gener-
ated by the Dugdale-Baremblat strip-yield model but, which con-
sider but do not use Elber’s PICC ideas. Instead they calculate
damage ahead of the crack tip, using Coffin-Manson, Morrow EP,
or SWT eN rules, without adjustable da/dN constants.

Whereas the original CDM + C&P reproduced relatively well the
data trend but yielded slightly non-conservative FCG estimates at
R = 0.1, the SYM had a similar performance but generated slightly
conservative predictions. The SY-CDMs predicted too conservative
FCG rates at phase II. For R = 0.7, the SY-CDMs and also the SYM
were too conservative, contrasting with the quite reasonable per-
formance of the original CDM + C&P curve. Once again, the reason-
able performance of pl-e CDMs FCG rate estimations for this steel,
which are based only on eN properties without any data-fitting
parameter, certainly is no coincidence. One of the reasons for the
conservative values for the SY-CDMs (Figs. 12, 13, 16 and 17) prob-
ably is the simplification of the strip-yield material behavior,
assumed as rigid-perfectly-plastic. The strain hardening exponent
(h) for the tested 7075 aluminum is 0.09 and for the 1020 steel
0.18, as shown in [25]. The SYM uses the flow stress in order to
consider some material strain hardening, but it seems that this
approach does not work well for materials with high strain harden-
ing exponents like the 1020 steel. Damage predicted by Morrow
and by SWT have other error sources, namely the average and
the maximum element stresses. The SYM uses a constraint factor
to deal with plane strain conditions, elevating the element tensile
stress by a value of up to 3. But this hypothesis, which affects the
plastic zone size, cannot be used to estimate the actual element



Fig. 16. SYM and SY-CDM estimates for the FCG curve of the 1020 steel at R = 0.1.
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stress. The maximum stress (a.SF) is 1611 MPa for the 7075 Al and
776 MPa for the 1020 steel, and both stresses are almost twice the
ultimate material strength (see Table 1). Therefore, the range of
displacements estimated by the strip-yield and the strain range
used by the SY-CDMs could be reduced if a more realistic material
model was used to consider its strain hardening behavior. This
work is in progress and will be reported soon.

In summary, in this work the very same SYMmechanics used to
estimate crack opening loads in traditional strip-yield FCG models,
which is based on non-singular Dugdale-Baremblat’s displacement
fields, is used as well to describe the EP cyclic strain fields ahead of
the crack tip. This mechanics is then used to estimate FCG curves
using two completely different hypotheses: (i) assuming FCG is
controlled by Elber’s DKeff concepts, and (ii) supposing instead that
the FCG behavior is caused by damage accumulation ahead of the
crack tip, due to the cyclic stress and strain fields that act there.
When properly applied, as discussed above, the better estimates
generated by these very different ideas reproduced reasonably well
FCG data measured under two very different R = 0.1 and R = 0.7
conditions for two materials: a low-strength 1020 steel and a
high-strength 7075-T6 Al alloy. However, an important difference
between the SYM and the CDM techniques must be emphasized:
while the CDM requires only measurable eN properties and needs
no additional data-fitting parameters to estimate the FCG behavior,
the SYM estimates use at least four data-fitting parameters to
achieve similar results. Notice that the SYMs estimates for the
FCG behavior described in this work use listed parameters (Table 2)
instead of parameters properly fitted to the measured da/dN � DK
curves, to guarantee a fair comparison with similar CDMs esti-
mates. In fact, otherwise the SYM calculations could not be called
estimates. However, under the same fairness principles, two sets
of SYM estimates have been performed, SYM�A made using mea-
sured DKth(R) and Kc values, since CDMs estimates use them as
well, and SYM�B estimates made using only listed properties. It
is no surprise that the former had a better performance.

The CDM procedures used here are relatively simple, since they
use a reasonable FCG rule to describe the entire sigmoidal shape of
typical FCG curves. In this sense, this model cannot be called
entirely crack initiation-based, since it would be better to avoid
such a trick. However, since the SYM procedures use the same
trick, only changing the chosen FCG rule, the comparison among
their predictions certainly is a fair game. It would be better to avoid
such a trick altogether, but this would require a CDM based not
only on an eN rule that recognizes a fatigue limit, since otherwise
it would not be possible to predict a FCG threshold. It would also
require a very good description of the residual stress/strain fields
ahead of the crack tip. However, these points are considered
beyond the scope of this article, and are left to be properly dis-
cussed in future works, which will deal with the modeling of FCG
under VAL conditions.

Finally, an additional point must be emphasized: the results
presented here also indicate that a good description of some exper-
imental data is not a conclusive proof of any model suitability,
let alone of its prevalence. What is really important when dis-



Fig. 17. SYM and SY-CDM estimates for the FCG curve of the 1020 steel at R = 0.7.
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cussing such points is to clearly identify which set of properly mea-
sured experimental data any given FCG model cannot describe
well. Since after so many years there is still no consensus about
such questions, not even about which are the true fatigue crack
driving forces, the authors hope this relatively straightforward
modeling exercise can contribute at least to avoid the radical opin-
ions that are still too common in this field.
6. Conclusions

Critical damage models (CDMs) and strip-yield models (SYMs)
are used here to estimate da/dN � DK curves of two materials
tested under two very different R-ratios. These models are based
on very different hypotheses about the cause for the FCG behavior.
Whereas SYMs assume FCG is driven by DKeff, so it depends on the
interference of the plastic wakes left behind the crack tip along the
crack surfaces, CDMs suppose fatigue cracks propagate by sequen-
tially breaking volume elements ahead of the crack tip, because
they accumulate all the fatigue damage they could sustain. To
compare the predictions of such so different models, both types
were applied to describe the properly measured FCG behavior of
a 7075-T6 Al alloy and a 1020 AISI steel, whose da/dN � DK curves
were experimentally obtained following standard ASTM E647 pro-
cedures. Moreover, the eN properties of such materials were also
measured by standard ASTM E606 procedures. The FCG and the
crack initiation properties were measured in coupons machined
from the same material lot, to avoid any inconsistency in the data.
Both the original CDM and SYM FCG estimates predict reasonably
well the measured data. Notice that the word prediction can be
used with these models, since they do not need to fit the measured
data. However, to properly compare them, the CDM was modified
to use SYM�predicted strain fields ahead of the crack tip, which
consider possible Kop effects but do not need them or even to adopt
Elber’s PICC DKeff hypothesis to estimate FCG rates. The SY-CDM
estimates proposed here also describe reasonably well the mea-
sured da/dN � DK data. This indicates that, although apparently
contradictory, such models are not incompatible. Moreover, the
quite good performance of their predictions, especially for the
7075 aluminum, also indicates that the good fitting of some prop-
erly obtained data set is not enough to prove which one is the best.
Hence, both should be considered as viable options to model the
FCG behavior.
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