
Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Use of the stress gradient factor to estimate fatigue stress
concentration factors Kf
Antonio Carlos de Oliveira Mirandaa,⁎, Marcelo Avelar Antunesa,
Marco Vinicio Guamán Alarcónb, Marco Antonio Meggiolaroc,
Jaime Tupiassú Pinho de Castroc
aDepartment of Civil and Environmental Engineering, University of Brasília, SG-12 Building, Darcy Ribeiro Campus, DF 70.910-900, Brazil
bDepartment of Mechanical Engineering, Escuela Politécnica Nacional, 170525 Quito, Ecuador
cMechanical Engineering Department, Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225 – Gávea, Rio de Janeiro, RJ
22451-900, Brazil

A R T I C L E I N F O

Keywords:
Fracture mechanics
Stress concentration factor
Stress gradient factor
Notch factor

A B S T R A C T

Stress concentration effects in unavoidable notches reduce fatigue strengths and lives of most
structural components, so they must be properly quantified when designing and analyzing them.
The Stress Gradient Method (SGM), based on classic Fracture Mechanics concepts and on short
crack ideas, can be used to calculate Stress Gradient Factors (SGF) and to properly estimate
fatigue stress concentration factors Kf. The procedures proposed here to calculate them are
general and only require the normal stress distribution ahead of the notch tip and material
properties. The SGF concept is defined to differentiate it from the geometric stress concentration
factor Kt, also present in stress intensity factor equations for cracks. Using short crack, SGM
concepts, and SGF, a general equation is proposed to compute Kf, which is discretized to be used
with any numerical methods (a short C++ algorithm is presented to solve it). Experimental Kf
data are used to validate the proposed method, showing good agreement with its predictions,
especially for sharp notches.

1. Introduction

It is well known that fatigue damage depends on two driving forces. Fatigue crack initiation is driven by the history of stress or
strain ranges Δσ or Δε and by their stress peaks σmax acting at the critical point of structural components, usually a notch tip, so both
are much affected by the stress concentration factor (SCF) Kt induced by the notch. Fatigue crack growth (FCG), on the other hand, is
driven by the history of the stress intensity factor (SIF) ranges and peaks ΔK and Kmax of the crack that departs from the notch tip,
which are affected by the stress concentration field induced by the notch. Likewise, the mechanical driving forces for environmentally
assisted cracking (EAC) problems are the peak of the critical stress to start a crack at a notch tip, and the peak of that crack SIF to
propagate it. Therefore, the damage induced by such mechanisms can (and usually should) be modeled as a local problem, where
stress concentration effects induced by sharp geometric variations (caused by holes, slots, grooves, keyways, shoulders, corners,
threads, weld fillets, reinforcements, etc., generically called notches) play a very significant role.

Due to their major practical importance, many methodologies have been proposed to include short crack effects in fatigue life

https://doi.org/10.1016/j.engfracmech.2018.11.049
Received 30 August 2018; Received in revised form 21 November 2018; Accepted 26 November 2018

⁎ Corresponding author.
E-mail addresses: acmiranda@unb.br (A.C. de Oliveira Miranda), marco.guaman@epn.edu.ec (M.V. Guamán Alarcón),

meggi@puc-rio.br (M.A. Meggiolaro), jtcastro@puc-rio.br (J.T. Pinho de Castro).

Engineering Fracture Mechanics 206 (2019) 250–266

Available online 05 December 2018
0013-7944/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00137944
https://www.elsevier.com/locate/engfracmech
https://doi.org/10.1016/j.engfracmech.2018.11.049
https://doi.org/10.1016/j.engfracmech.2018.11.049
mailto:acmiranda@unb.br
mailto:marco.guaman@epn.edu.ec
mailto:meggi@puc-rio.br
mailto:jtcastro@puc-rio.br
https://doi.org/10.1016/j.engfracmech.2018.11.049
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2018.11.049&domain=pdf


prediction models, such as the theory of critical distance (TCD) [1], the stress gradient formulation for fatigue analysis of notched
components [2], and the cohesive zone model (CZM) [3]. The methodology proposed in this paper, which with minor adjustments
can be extended to EAC problems, uses classic fatigue and fracture mechanics concepts to model the behavior of mechanically short
cracks, larger than the grain size but not much larger than the short crack characteristic size a0 [4–9]. In fatigue, a0= (1/π)⋅
[ΔKth(R)/SL(R)]2, where ΔKth(R) and SL(R) are the FCG threshold and the fatigue limit of the material, both at a given R=Kmin/Kmax
ratio. In EAC, a0= (1/π)⋅[KEAC/SEAC]2, where KEAC and SEAC are the crack propagation and initiation thresholds of the material in the
given environment.

Fatigue stress concentration factors, ideally defined by the ratio between the fatigue strengths of smooth (un-notched) and
notched specimens, Kf= SLun/SLnt, are much used in fatigue designs and analyses of notched components to consider the actual effect
of the notches on fatigue crack initiation problems, usually smaller than Kt. As described by Ciavarella and Meneghetti [10], the
original Kf formulae proposed a long time ago by Neuber [11], Peterson [12], and Heywood [13], despite empirical, have many
practical applications and are still recommended in fatigue design textbooks [14–18]. However, no universal Kf expression is ac-
cepted for general loading conditions, since experimental data indicate it depends on many factors, among them material properties,
shape and size of inherent defects, size and geometry of the notched component, stress gradient ahead of the notch tip, loading type,
and number of cycles [19]. Instead of quantifying such effects, a notch sensitivity factor is widely used to compute Kf values in
practical applications, defined by

=q
K
K

1
1

f

t (1)

Similar expressions may be found in [19], which provides more detailed information on each formulation. However, this simple
approach has some issues, since empirical Kf equations require extensive experimental calibration [10,18]. In particular, such
equations are not adequate for sharp notches, and they have limitations for blunt notches [10].

Unlike the intrinsically empirical nature of classic approaches based on fatigue limit ratios, fracture mechanics-based approaches
to model Kf assume that fatigue is actually a crack growth process, which depends on driving forces based on stress intensity
parameters [4–9,19,20].

Navarro et al. [21] e.g. used 2D multiaxial fatigue models to deal with stress concentration effects in fatigue, combining crack
initiation and propagation phases in many stress gradient scenarios without a crack length a priori. Zhuang and Molent [22] used 3D
elastoplastic finite elements (FE) with a non-linear isotropic/kinematic hardening constitutive model to determine notch tip stresses,
obtaining reasonable agreement with experimental results. Götz and Eulitz [23] examined empirical and semi-empirical Kf-prediction
concepts and statistically evaluated steel-based powder metallurgical materials, finding better results using the TCD point method

Nomenclature

Abbreviations and Nomenclatures

CNBT Circumferential V-shaped notch in a round bar
under remote tension

CNP Center-notched plate
CNPT Center-notched plate under remote tension
DNPT Double edge-notched plate under remote tension
DSGM Direct stress gradient method
ENP Edge-notched plate
ESCF Elastic stress concentration factor
FCG Fatigue crack growth
FE Finite elements
LEFM Linear Elastic Fracture Mechanics
LM Liu and Mahadevan's methodology
MSCF Modified stress concentration factor
SBFM Strain-based fracture mechanics
SGF Stress Gradient Factor
SGM Stress Gradient Method
SIF Stress intensity factor
TCD Theory of critical distance
a Crack length
a0 Short crack characteristic size for R= 0
ai ith discretized crack length
aR Short crack characteristic size at a given R

amax Crack size that limits propagation/non-propaga-
tion of short cracks

di ith discretized distance
f(a/w) Geometry factor
Kf Fatigue stress concentration factor
Kgr(a/w) Stress gradient factor
Kgr i, ith discretized stress gradient factor
KI Stress intensity factor, mode I
KI(ref) Reference stress intensity factor
Kmax Maximum stress intensity factor
Kt Stress concentration factor
Pi ith discretized force
q Notch sensitivity factor
ρ Notch radius
R Load radio
w Width
γ Bazant’s adjustable parameter
ΔK Stress intensity factor range

K0 Fatigue crack growth threshold for R= 0
Kth Fatigue crack threshold
SL0 Fatigue crack initiation limit for R=0
SL R, Fatigue crack initiation limit at a given R

n Nominal stress range
σ Stress

max Maximum nominal stress
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(PM) method than a fracture mechanics-based approach [24], which yielded higher scatter and non-conservative results, with
overestimated endurance limits. However, in a more recent study, Götz et al. [25] re-explored this problem and proposed an en-
hanced methodology using 3D models and the Support Factor Concept to overcome the weaknesses of their previous fracture me-
chanics-based model, ultimately obtaining better results with a fracture mechanics-based approach. Yang and Vormwald [26] re-
cently used a linear elastic fracture mechanics-based approach in their 3D fracture analyses. They were able to obtain satisfactory
results for notched components under lower loading levels, but their methodology overestimates fatigue lives for higher loading
levels. Musraty et al. [27] used 3D finite element models (FEM) based on an implementation of Gurson’s model [28] to assess the
effectiveness of a new pipe ring notched bend specimen for determining the fracture resistance of tough pipes. Dong et al. [29] used
3D FE models and a two-phase approach to predict the total fatigue lives of notched plates.

From this brief review, it seems that while some approaches may yield satisfactory predictions for some conditions, they may fail
to predict fatigue lives of notched components under others. Proper validation of fracture mechanics-based Kf models for various
combinations of materials and notch geometries is still limited. While their main weakness seems to be their 3D models, Liu and
Mahadevan [20] point out that it seems that fracture mechanics-based approaches have not been fully explored even for 2D
methodologies.

The aim of this paper is to properly use the stress gradient factor for fatigue analyses of notched components. This idea has been
successfully applied to situations where significant stress gradients were present, e.g. in welded components [30] and fretting fatigue
[31–32], and it can be a sound way to compute Kf as well. Hence, this work presents a mechanically-based general methodology for
fatigue analysis applicable to a wide variety of materials and notch types, which can be extended to EAC problems too. This approach
considers the whole fatigue process as a crack growth problem, using only well-defined material properties and sound fracture
mechanics parameters. The main ideas of this methodology are explored in Section 2, and its numerical implementation is detailed in
Section 3. The proposed methodology is then validated comparing its predictions with experimental results, some of which original,
in Section 4.

2. Theoretical aspects

2.1. The stress gradient factor

Fig. 1 can be used to explain the Stress Gradient Factor (SGF) concept:
Fig. 1(a) shows a Griffith plate and its SIF =K aI , where σ is the remote nominal stress applied to the plate and 2a is its crack

length. Fig. 1(b) shows a crack on the surface of a semi-infinite plate, whose SIF solution includes a free face factor η= 1.1215.
Fig. 1(c) shows a finite strip of width w associated with a geometry factor f(a/w) that accounts for its geometry and loading con-
ditions. This f(a/w)=1 when there is no crack present, that is, when a 0. Fig. 1(d) shows a plate with a notch where the crack
initiates, which induces a stress concentration zone, thus a stress gradient around its tip. SIFs for cracks that depart from notch tips
must account for this stress gradient, e.g. by multiplying the former solution by a SGF Kgr(a/w), which is a function of the geometry
and of the load applied to the specimen. Hence, the SGF is just a correction for a reference SIF solution that properly considers the
stress gradient effects induced by the notch.

The Stress Gradient Factor (SGF) concept is based on the Elastic Stress Concentration Factor (ESCF) proposed by El Haddad and
Topper [33]. First used to account for the increase in crack SIFs due to a notch or a flaw, it was then used for fatigue analyses of
structural components [34,35]. El Haddad, Smith and Topper introduced Strain-based Fracture Mechanics (SBFM) concepts to extend

Fig. 1. The Stress Gradient Factor (SGF) concept.
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it to elastoplastic conditions [36]. Ghahremani, Walbridge and Topper [30] used SBFM in fatigue analyses of weld toes under variable
amplitude loads (VAL), but called the ESCF “Modified Stress Concentration Factor” (MSCF) and changed its nomenclature to Kp.
Antunes et al. [31,32] proposed to unify the terms ESCF, SCF, and MSCF using the clearer notation Stress Gradient Factor Kgr because
it modifies a reference SIF to consider the effects of stress gradients induced by notch tips, working much like a geometry factor f(a/
w). This is the nomenclature adopted in this article.

Generally speaking, the mode I SIF can be computed as:

=K a fI i (2)

where fi quantify effects that affect the SIF (for instance, the free surface effect η= 1.1215 or the effects of bifurcated cracks [37,38]).
Hence, for Fig. 1(d), the SIF can be calculated as:

=K a f a w K a w· · ( / )· ( / )I
K

gr

I ref( ) (3)

where KI ref( ) is the SIF of a reference geometry, a semi-infinite strip loaded in mode I in this case, see Fig. 1(c). In other words, Kgr(a/
w) is defined by:

=K a w K K( / ) /gr I I ref( ) (4)

where KI is computed using the approach described by Antunes et al. in [31].
Fig. 2 schematizes the effect of each fi in Eq. (3). While the free surface factor maintains a constant value, the geometry factor f(a/

w) starts with a unit value and grows as the crack size grows. The SGF behaves in an opposite manner, having a high initial value that
tends to unit as the crack size grows. Indeed, the SGF corrects the SIF to consider notch-induced stress gradient effects that decrease as
the crack tip moves away from the notch tip (or from any other features that induce stress gradients, like concentrated loads, residual
stresses induced by welding or by plasticity, temperature gradients, etc.)

The differences among KI, Kt, Kf, and Kgr are listed in Table 1.

2.2. Kf calculation using (mechanically) short fatigue crack and SGF concepts

El Haddad, Topper, and Smith [39,40] proposed the so-called ETS model to make FCG of short and long cracks compatible by
adding a short crack characteristic size a0 to the physical crack size of a Griffith’s plate:

= + =K a a a K
S

( ) , where 1
I

L
0 0

0

0

2

(5)

This clever trick reproduces the two correct asymptotic behaviors of both the fatigue limits and the fatigue crack growth (FCG)
thresholds in a Kitagawa-Takahashi (K-T) Δσ× a diagram [41]. Indeed, Δσ(a= a0)= ΔS0 for short cracks and ΔK0 (a≫ a0)= ΔK0 for
long ones (where ΔK0 is the FCG threshold of long cracks and SL0 is the traditional fatigue crack initiation limit, well-defined
material properties measured at R= σmin/σmax=0).

However, from conceptual as well as from operational point of views, instead of using a0 to modify the SIFs (which should be
material-independent) it is much more convenient to consider that the FCG threshold is a function of the crack size when studying the
behavior of short fatigue cracks [4], using

= +K a K a a( ) ·[1 ( / ) ]th 0 0
/2 1/ (6)

where is a data-fitting parameter proposed by Bazant [42]. Most data for short crack FCG thresholds available in the literature can
be fitted by 1.5 < γ < 8 [6], as exemplified in Fig. 3.

Most K-T diagrams have been measured for pulsating loads (R=0). However, FCG depends on two driving forces, ΔK and Kmax,

Fig. 2. Free surface η, geometry f(a/w), and stress gradient Kgr(a/w) factors.
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thus Eq. (5) should be generalized to include the effect of Kmax on the behavior of short cracks, as proposed by Yu, DuQuesnay and
Topper [43]. This second driving force effect can be indirectly quantified by the stress ratio R, resulting in\&&&

= +

= ( )( )
K a a K a a

a

( , ) ·[1 ( / ) ]th R R th R R

R
K

S

, ,
/2 1/

1 2th R
L R

,
, (7)

where the free surface factor is included in the aR equation (the characteristic short crack size at a given R) [6]. Therefore, a short
crack departing from a surface notch should propagate when its (material-independent) SIF is greater than K a( )th R,

= >K a f a w K a
w

K a a· · ( / )· ( , )I
K

gr th R R,

I ref( ) (8)

For short cracks =f a w( / 0) 1, only the surface free factor remains in the reference SIF. The propagation criterion can be
rewritten in terms of the stress gradient factor K a w( / )gr and a dimensionless function g. Considering =K S a·th R L R R, , , then:

>
+

K a w
S a

a a a
g

S a
a

( / ) 1
[1 ( / ) ]

, ,gr
L R

K

R

R

L R R,
/2 1/

,

f (9)

The main idea behind Eqs. (8) and (9) was also used by Yates and Brown [44] and by Tanaka and Nakai [45]. Nonetheless, the
equations presented herein are more complete, with the addition of terms such as . Furthermore, they allow the direct extraction of
the Kf expression, whose usefulness will be later discussed in this article.

Following Castro et al. reasoning [6], a maximum crack size amax limits the propagation/non-propagation condition of short
fatigue cracks, satisfying Eq. (9) for any given material/stress pair. The smallest nominal stress range σn that can cause crack
initiation and growth without arrest is associated with the fatigue limit of the pair. Hence, the ratio SL R, / σn associated with amax is
equal to the fatigue SCF Kf. Therefore, Kf and amax can be estimated from the smooth specimen fatigue limit SL R, , the long crack FCG
threshold Kth R, , and the geometry of a component, by solving the system of equations:

=

=

=

=( )
K a w g K a a

K a w g K a a

1

0

( / ) ( , / , )

[ ( / )] [ ( , / , )]

K
g

a
K

g

gr max f R max

a gr max a f R max

gr

gr

(10)

Table 1
Main characteristics of KI, Kt, Kf, and Kgr.

Definition Equation Applicability

KI Stress Intensity Factor (Mode I) a f· i da/dN, crack propagation
Kt Stress Concentration Factor /max εN, SN, crack initiation
Kf Fatigue Notch Factor unnotched fatigue strength

notched fatigue strength
SN, crack initiation

K a w( / )gr Stress Gradient Factor notched KI
unnotched KI ref

( )
( ) ( )

Short crack initiation and propagation

Fig. 3. Short-crack to long-crack FCG thresholds ratio as a function of a a/0 [4].
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Furthermore, it is possible to obtain Kf and amax by first deriving g K a a( , / , )f R max

= = +
+K a w

a
g
a

K a
a a a

a a
( / )

2 /
[1 ( / ) ]gr max

f
R

max R max
R max2

/2
1

(11)

and then by expressing Kf in terms of the derivate ∂ Kgr/∂a from Eq. (11):

= +
+

K
K a w

a
a a a

a
a a

( / ) 2 /
[1 ( / ) ]f

gr max max R max

R
R max

2
/2

1

(12)

Substituting Eq. (12) into Eq. (10), amax can be computed solving a simple non-linear equation (instead of a non-linear system of
equations)

+ + =K a w a a a
K a w

a
( / ) 2 [1 ( / ) ]

( / )
0gr max max R max

gr max/2
(13)

After obtaining the value of amax , Kf is finally computed using Eq. (9):

= +K K a w a a
a a

( / ) [1 ( / ) ]
/f gr max

R max

R max
short crack factor

/2 1/

(14)

It is noteworthy that the stress concentration factor under fatigue condition is a Kgr function obtained at amax in terms of an
a a/R max ratio for a given γ exponent. Fig. 4 illustrates such factor, for expected a a/R max ratios between 0.5 and 3 and γ exponents 1.5,
2, 4, 6, and 8.

3. Numerical implementation

Eqs. (13) and (14) proposed to compute Kf consider the SGF and its derivative. Although it may be possible to obtain Kf ana-
lytically or empirically, most practical calculations need to use some numerical method, so this section presents an efficient com-
putational approach to do so. It uses the weight functions concept, calculating SIFs using the stress distribution on the crack faces.
Nonetheless, SIFs may also be calculated in a simpler way by summing up all the forces applied to the crack faces, as shown in Fig. 5
[46].

In a more general way, consider a notched component submitted to an axial force F and a moment M, according to Fig. 6(a). To
obtain the SIF of a crack that departs from the notch tip in this situation, the stress distribution ahead of the notch tip should be
transformed into discretized forces applied to the crack face, to use the equation listed in Fig. 5 by summing the SIFs of all discretized
forces. The reference geometry of Fig. 6 considers also the same axial force and moment, producing a linear stress distribution, as
shown in Fig. 6(b), to compute as well the reference SIF. If the first figure gives the SIF for a notched geometry and the second gives
the reference SIF, then Eq. (4) gives the SGF. In fact, to compute the SGF, it is necessary only to use the stress distributions of Fig. 6.

Discretized stresses induced by the stress concentration distribution ahead of the notch tip, see Fig. 6(a), as well as the nominal
stress distribution in the un-notched strip, see Fig. 6(b), must be known. These sets of stresses and positions x( , )i i for both geometries
may be obtained analytically or numerically. If the crack is considered to be parallel to the x-axis, then its length discretized seg-
ments, ai, the mean force in a discretized face, Pi, and the mean distance between the mean force and the free surface, di, can be
computed by:

Fig. 4. Effect of the γ factor in Eq. (12) for Kf, as a function of the a a/R max ratio.
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For each crack size ai, the SIF is computed by summing up all contributions of forces Pi applied to the face of the crack:

= =
=

=

K K P t w d a for i n( , , , , ) 0 1I i
j

j i

I j j i,
0 (16)

The SGF can then be obtained from the ratio of the SIFs computed for both geometries by:

= =K
K stress concentration

K reference
for i n

( )
( )

0 1gr i
I i

I i
,

,

, (17)

Fig. 5. Mode I SIF for a strip with a crack loaded by concentrated forces on its face [46].

Fig. 6. Schematic stress distributions for finite strips loaded by an axial force and by a moment: (a) notched strip and (b) un-notched used as a
reference geometry.
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If finite differences are used to approximate K a/gr , then

=
K
a

K K
a a

for i n1 1gr gr i gr i

i i

, , 1

1 (18)

and Eq. (11) gives a value for each crack size expressed as

= + + =f K a a a
K K

a a
for i n2 [1 ( / ) ] 1 1i gr i i R i

gr i gr i

i i
,

/2 , , 1

1 (19)

Finally, when f f· 0i i 1 , values of amax and Kf are computed by:

Fig. 7. (a) Example of a FE mesh and axial stress results, and (b) difference between the axial stress and stress gradient factor distributions (notice
that it is not possible to assume they are equal or even similar.).

Fig. 8. Procedure to compare numerical and experimental Kf results.
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K K a a
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i i
f gr i

R max

R max

1

1
,

/2 1/

(20)

Eqs. (19) and (20) can be implemented in any computer language. Appendix A presents a simple C++ code that returns Kf values
from the stress distribution, nominal stress, component geometry, and exponent. For example, Fig. 7(a) shows a plate with a hole
submitted to a remote axial stress in the horizontal direction. Fig. 7(b) shows the horizontal axial stress in the depth (y) direction from
the notch face and the SGF distribution obtained using Eq. (17).

4. Validation

Fig. 8 shows the procedure used in this study to compare numerical and experimental Kf values. It starts with the creation of
numerical FE models shown in Fig. 8(a), based on the component geometries and loads shown in Fig. 8(d), to obtain the stress fields
depicted in Fig. 8(b). The fatigue parameters must be obtained from experiments, as schematized in Fig. 8(e). The stress fields and the
fatigue parameters are then used as inputs for the C++ code mentioned in Fig. 8(c), which computes Kf to compare it with
experimental ones in Fig. 8(f). For practical applications, this procedure is repeated for each geometry, material, and load config-
uration.

4.1. CNBT, CNPT, and DNPT specimens

The experimental results used in this subsection were reported by Atzori et al. [47] and also used by Liu and Mahadevan [20] to
validate their methodology against experimental Kf . Some of these data were also used by Sadananda et al. [48] in order to determine
whether a crack propagates or not. The obtained results are contrasted with two other approaches, one reported by Liu and Ma-
hadevan [20], and the second as the Direct Stress Gradient Method (DSGM), which is, in fact, a simplification of Eq. (14), eliminating
the factor γ and assuming =a amax R. The specimen geometries are: circumferential V-shaped notch in a round bar under remote
tension (CNBT); center-notched plate under remote tension (CNPT); and double edge notched plate under remote tension (DNPT).
Fig. 9 shows the geometry and loads of these three specimens. Table 2 lists the description of materials and its fatigue properties.

Tables 3–6 show Kfś predicted by different methods for the CNPT, CNBT and DNPT specimens evaluated in this work according to
their respective R load ratios. They list the difference between experimental Kfś against the Liu and Mahadevan, the SGM, and the
DSGM predictions. All results are summarized in Table 7, showing the average and standard deviation of the various predictions
when compared to experimentally measured Kf values. Fig. 10 plots the results for each method evaluated here. It is possible to see a
very small difference between the SGM and the DSGM results.

All predictions for the CNPT specimens in Table 7 are very conservative for R=0, with the SGM yielding the most conservative
results. For R=−1, the SGM-predicted results are closer to the experimental data, but with a scatter larger than the other two

Fig. 9. The so-called CNPT, CNBT, and DNPT specimens analyzed in this work.
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methods. Results reported by Liu and Mahadevan [20] are slightly closer to the experimental ones as well as more conservative and
less scattered. In the case of CNBT specimens, the SGM outperformed the others on average, with similar scatter in comparison to
LM’s and the SGF. Furthermore, all methodologies were non-conservative for such specimens. Finally, for the DNPT results, the DSGM
presented the best average and the second smallest scatter. Although the SGM provided higher average (in modulus) and deviation
than LM, the latter was the only non-conservative methodology for such specimens.

When the experiments are analyzed separately for each R ratio, it becomes clear from Tables 4–7 that the worst prediction
scenario occurred for R=0; the same is observed from the model proposed by Liu and Mahadevan [20]. For a given maximum

Table 2
Material properties of CNPT, CNBT and DNPT specimens.

Material Yield strength (MPa) Fatigue Limit (MPa) Fatigue threshold SIF (MPa m ) Stress ratio R

SAE 1045 steel 466 448 6.9 0
SAE 1045 steel 466 606 9 −1
2024- T351 Al alloy 360 172 4 0
2024- T351 Al alloy 360 248 4.4 −1
G40.11 Steel 376 540 11.5 −1
SM41B Steel 194 326 12.36 −1
SM41B Steel 194 274 8.36 0
Mild steel (0.15% C) 340 420 12.8 −1
NiCr steel 845 1000 12.8 −1
2.25 Cr-1Mo steel 380 440 12 −1
304 stainless steel 222 720 12 −1

Table 3
Comparison of results for CNPT specimens, R=0.

Material Geometry (mm) Kf Difference to Experiments (%) amax (mm) Eq. (13)

d ρ W Exp. LM SGM DSGM LM SGM DSGM

1045 steel 0.120 0.120 44.450 1.379 1.630 1.958 1.793 18.208 42.065 30.044 0.076
1045 steel 0.250 0.250 44.450 1.455 2.022 2.361 2.162 38.989 62.315 48.670 0.071
1045 steel 0.500 0.500 44.450 1.659 2.322 2.640 2.446 39.939 59.083 47.414 0.058
1045 steel 1.500 1.500 44.450 2.113 2.637 2.739 2.630 24.763 29.598 24.448 0.039
1045 steel 2.500 2.500 44.450 2.144 2.746 2.667 2.594 28.094 24.431 21.021 0.033
2024-T351 0.120 0.120 44.450 1.000 1.196 1.804 1.653 19.610 80.402 65.295 0.109
2024-T351 0.250 0.250 44.450 1.522 1.579 2.206 2.016 3.738 44.918 32.451 0.104
2024-T351 0.500 0.500 44.450 1.608 1.960 2.537 2.330 21.935 57.828 44.962 0.076
2024-T351 1.500 1.500 44.450 2.005 2.424 2.707 2.576 20.891 35.024 28.517 0.058

Table 4
Comparison of results for CNPT specimens, R=−1.

Material Geometry (mm) Kf Difference to Experiments (%) amax (mm) Eq. (13)

d ρ W Exp. LM SGM DSGM LM SGM DSGM

1045 steel 0.120 0.120 44.450 1.698 1.670 2.000 1.832 −1.62 17.81 7.92 0.074
1045 steel 0.250 0.250 44.450 1.980 2.057 2.402 2.201 3.84 21.29 11.13 0.065
1045 steel 0.500 0.500 44.450 2.220 2.340 2.640 2.446 5.41 18.91 10.19 0.058
1045 steel 1.500 1.500 44.450 2.623 2.650 2.745 2.642 1.01 4.62 0.72 0.036
1045 steel 2.500 2.500 44.450 2.612 2.750 2.671 2.602 5.28 2.24 −0.39 0.030
2024-T351 0.120 0.120 44.450 1.560 1.472 1.561 1.431 −5.65 0.08 −8.27 0.173
2024-T351 0.250 0.250 44.450 2.016 1.878 1.894 1.740 −6.87 −6.06 −13.69 0.176
2024-T351 0.500 0.500 44.450 2.050 2.207 2.263 2.076 7.66 10.42 1.30 0.172
2024-T351 1.500 1.500 44.450 2.959 2.559 2.604 2.439 −13.54 −12.01 −17.57 0.121
G40.11 steel 0.200 0.200 70.000 1.607 1.552 0.939 0.862 −3.40 −41.57 −46.35 0.159
G40.11 steel 0.480 0.480 70.000 2.259 2.024 2.357 2.161 −10.43 4.33 −4.37 0.139
G40.11 steel 4.800 4.800 70.000 2.634 2.713 2.612 2.542 2.98 −0.84 −3.51 0.064
SM41B steel 3.000 0.160 45.000 3.421 3.615 3.033 2.890 5.67 −11.32 −15.52 0.712
SM41B steel 3.000 0.390 45.000 3.135 3.479 2.996 2.812 10.99 −4.42 −10.30 0.658
SM41B steel 3.000 0.830 45.000 3.421 3.144 2.884 2.667 −8.09 −15.71 −22.03 0.553
SM41B steel 3.000 3.000 45.000 2.547 2.320 2.384 2.216 −8.90 −6.38 −13.00 0.352
SM41B steel 3.000 0.160 45.000 4.329 4.503 3.674 3.460 4.04 −15.12 −20.07 0.379
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nominal stress, R=0 results in shorter fatigue lives than R=−1 [49]. A large part of this phenomenon can be attributed to the
plasticity induced by the notch and the crack tip, which is considerably more significant for the former ratio. Furthermore, as stated
by Tanaka and Nakai [45], it can be expected that notch plasticity contributes to increase the growth rate of a very short crack,
especially under higher stress levels.

4.2. Non-propagating crack specimens

To validate the largest non-propagating crack size anon-prop, which limits the propagation/non-propagation condition of short
fatigue cracks that satisfies Eq. (9) for a given material/stress pair, 23 numerical models were created using Eq. (20) with γ=8 for
data found in the literature. The comparison of these results to the ones reported experimentally is displayed in Table 8.

Notice that some data seem to be inconsistent or too scattered due to the statistical nature of fatigue. The non-propagating crack
size reported by Frost [50] for the mild steel ENP geometry at Δσ= 77.8MPa is surprisingly larger than at Δσ=84.7MPa and much

Table 5
Comparison of results for CNBT specimens, R=−1.

Material Geometry (mm) Kf Difference to Experiments (%) amax (mm) Eq. (13)

d ρ W Exp. LM SGM DSGM LM SGM DSGM

Mild steel (0.15% C) 5.080 0.050 43.000 6.105 5.437 6.019 5.723 −10.94 −1.41 −6.26 0.337
Mild steel 5.080 0.100 43.000 6.000 5.437 5.947 5.636 −9.39 −0.89 −6.07 0.380
Mild steel 5.080 0.130 43.000 6.204 5.436 5.969 5.653 −12.37 −3.79 −8.88 0.380
Mild steel 5.080 0.250 43.000 6.105 5.407 5.756 5.403 −11.43 −5.71 −11.50 0,380
Mild steel 5.080 0.640 43.000 6.105 5.060 5.273 4.834 −17.11 −13.62 −20.82 0.379
Mild steel 5.080 1.270 43.000 5.455 4.476 4.599 4.230 −17.93 −15.68 −22.46 0.259
Mild steel 5.080 5.080 43.000 3.471 3.041 3.129 2.991 −12.40 −9.85 −13.83 0.164
NiCr steel 0.510 0.130 22.600 4.237 3.444 3.883 3.563 −18.72 −8.37 −15.91 0.054
NiCr steel 5.080 0.050 43.000 11.287 12.435 13.372 12.546 10.17 18.47 11.16 0.074
NiCr steel 5.080 0.130 31.800 10.352 12.319 9.438 8.663 19.00 −8.83 −16.32 0.054
2.25Cr-1Mo 0.030 0.030 5.000 1.026 1.106 1.154 1.085 7.83 12.51 5.76 0.171
2.25Cr-1Mo 0.050 0.050 5.000 1.092 1.159 1.232 1.140 6.17 12.81 4.42 0.176
2.25Cr-1Mo 0.070 0.070 5.000 1.371 1.211 1.305 1.194 −11.64 −4.82 −12.93 0.177
2.25Cr-1Mo 0.200 0.200 5.000 1.857 1.526 1.630 1.495 −17.79 −12.20 −19.45 0.248
2.25Cr-1Mo 0.400 0.400 5.000 2.105 1.979 2.020 1.857 −5.99 −4.06 −11.82 0.260
2.25Cr-1Mo 0.760 0.760 5.000 2.839 2.817 2.671 2.453 −0.77 −5.92 −13.57 0.259
304 stainless 5.080 0.050 43.000 9.959 9.705 12.873 12.332 −2.55 29.27 23.83 0.126

Table 6
Comparison of results for DNPT specimens, R=−1.

Material Geometry (mm) Kf Difference to Experiments (%) amax (mm) Eq. (13)

d ρ W Exp. LM SGM DSGM LM SGM DSGM

Mild steel (0.15% C) 5.080 0.100 64.000 4.994 4.780 5.777 5.502 −4.29 15.67 10.16 0.380
Mild steel 5.080 0.250 64.000 4.621 4.750 5.623 5.299 2.80 21.69 14.68 0.379
Mild steel 5.080 0.500 64.000 4.994 4.560 5.225 4.858 −8.69 4.62 −2.73 0.375
Mild steel 5.080 1.270 64.000 4.039 3.830 4.415 4.064 −5.16 9.32 0.63 0.262
Mild steel 5.080 7.620 64.000 2.692 2.380 2.613 2.528 −11.60 −2.94 −6.11 0.146

Table 7
Comparison of Kf results for CNPT, CNBT and DNPT specimens.

Difference to experiments (%)

Specimen Statistical Parameter LM SGM DSGM

CNPT R=0 Average 24.02 48.41 38.09
Standard Deviation 11.03 17.96 14.37

CNPT R=−1 Average −0.68 −1.98 −8.46
Standard Deviation 7.21 15.39 14.20

CNBT R=−1 Average −6.23 −1.30 −7.92
Standard Deviation 11.21 12.35 12.46

DNPT R=−1 Average −5.39 9.67 3.33
Standard Deviation 5.43 9.55 8.78
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larger than at Δσ=64.9MPa. The same inconsistency can be observed in the later reports made by Frost [51], also for mild steel ENP
geometry specimens in fully reversed load, for Δσ= 30.6 and Δσ=57.8MPa. In the work of Tanaka [45], this only occurred in a
single case, in which the non-propagating crack size for the CNP specimen submitted to 88.4MPa was very different from other
similar experiments.

Overall, the proposed methodology reasonably predicted non-propagating crack lengths, except when compared to the results
reported by Frost [50,51]. In these cases, although some predicted values were very close to the ones observed experimentally, the
proposed method was usually overconservative or predicted a too small non-propagating crack length. However, most of the failed
predictions occurred for the aforementioned scattered or inconsistent data. Moreover, these studies did not include threshold stress
intensity factors for the material used and they were taken as twice the maximum stress intensity factor, as assumed by Yates and
Brown [44].

4.3. CT-like specimens

Additionally, CT-like specimens with an elongated notch machined from a 76.2mm×12.7mm flat bar of SAE 1020 low carbon
steel were tested to verify their fatigue limit predictions. The mechanical properties of this material, measured in a 100 kN Instron
electromechanical testing machine at a crosshead speed of 0.9mm/min according ASTM E8M-13a standard procedures, are: yield
strength SY=313MPa, ultimate strength SU=490MPa and Young Modulus E=197 GPa. Its % chemical composition is: 0.36 Mn,

Fig. 10. Comparison between experimental Kf reported by Atzori et al. [47] and (a) Liu & Mahadevan, (b) Stress Gradient Method, and (c) Direct
Stress Gradient Method predictions.
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0.24 Si, 0.20 C, 0.19 Cr, 0.10 Cu, and 0.04 Ni. The grain size for this steel, determined according to ASTM-E112 standard, is G 7.0,
which corresponds to an average diameter of about 32 μm.

The fatigue limit predictions were made using the characteristic crack size a0.1, which is estimated from the smooth specimen
fatigue limit, ΔS0.1=357MPa, and the long crack propagation threshold, ΔK0.1=10MPa√m, both of them at R=0.1. The former
was measured by the infrared thermography method based on the approach proposed by Risitano and Risitano [52]. Seven specimens
machined according to the ASTM E606M-12 standard were tested. ΔK0.1 was measured according to ASTM E647 procedures by
testing standard CT specimens under K-decreasing and K-increasing methods. From the measured ΔS0.1 and ΔK0.1 values, the
characteristic crack size is calculated from Eq. (7) as a0.1=199 μm.

The width and thickness of the C(T)-like specimens, W=60mm and B=9mm, respectively, are shown in Fig. 11. The depth

Table 8
Comparison of estimated non-propagating crack lengths to experimental data.

Material Geometry* R Notch depth (mm) Δσ (MPa) anon-p** (mm) anon-p-estimate (mm)

Mild Steel [50] ENP −1 5.08 64.9 0.330 0.275
ENP −1 5.08 77.8 2.400 Propagates
ENP −1 5.08 84.7 0.500 Propagates

Mild Steel [51] ENP −1 20.32 27.8 0.575*** 0. 220
ENP −1 20.32 30.6 0.350*** 0.405
ENP −1 20.32 38.9 0.675*** Propagates
ENP −1 10.16 42 0.500*** 0.175
ENP −1 10.16 57.8 0.125*** Propagates
ENP −1 15 30.9 0.050*** 0.203

JIS SM 41B Steel [45] CNP −1 3 52 0.000 0.096
CNP −1 3 60.7 0.099 0.146
CNP −1 3 69.3 0.280 0.208
CNP −1 3 86.7 0.500 0.408
CNP −1 3 88.4 1.410 0.442
CNP 0 3 42.5 0.000 0.087
CNP 0 3 52 0.039 0.156
CNP 0 3 60.7 0.250 0.258
CNP 0.4 3 33.8 0.000 0.058
CNP 0.4 3 32.3 0.029 0.133
CNP 0.4 3 52 0.125 0.325
CNP 0.4 3 60 0.370 Propagates

G80.11 Steel [39] CNP −1 0.2 241 0.066 0.102
CNP −1 0.2 310 0.201 Propagates

* ENP= edge notched plate, CNP= center notched plate.
** Non-propagating crack length.
*** The mean values for the four reported crack sizes were considered.

Fig. 11. Geometry and notch detail of CT specimen.
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b=15mm was kept constant and five different tip radii were chosen for the elongated notch, ρ={0.15; 0.20; 0.35; 0.60; 1.25} mm.
Their Kt values were calculated by FE models using the Quebra2D software [53,54] considering mesh adaptability [55], namely
Kt={14.59; 12.70; 9.64; 7.38; 5.15}, respectively for each notch.

The notched CT-specimens were tested under fixed force ranges at a frequency of 40 Hz in a computer-controlled servo-hydraulic
testing machine. Typical fatigue limits are specified at lives of 106–107 cycles for steels, and in this work a life of 3 · 106 cycles was
assumed for the fatigue limit of the notched specimens. An accelerated fatigue test involving step loading was carried out following
procedures proposed by Nicholas [56]. The initial load level was chosen to cause a local notch root stress slightly higher than ΔS0.1
and it was increased by a small step between 5% and 12%, depending on the initial stress level. After subjecting a specimen to a
specific load level during a block of 3 · 106 cycles, the notch tip surfaces were thoroughly examined using a ZEISS Axioplan 2
microscope. If no surface cracks were detected, the load was increased by one step. When a surface crack was detected, the criterion
to consider it as a propagating one is that its length should be higher than amax, parameter determined by the SG model. Otherwise, it
was considered as a surface non-propagating crack. From Fig. 12, it is clear that for sharper notches, i.e. ρ=150 and 200 μm, the
SGM presents results closer to the ones obtained experimentally than its direct counterpart. However, the smoother the notches are,
the SGM seems to lose accuracy in relation to the DSGM. The results are summarized in Table 9.

The crack detection was carried out only in SAE 1020C(T)-like specimens with a notch root radius ρ=0.15mm and thickness
t=9mm. The optical micrographs of the detected non-propagating short cracks on the face of three C(T)-like specimens are shown in
Fig. 13. It can be seen that the lengths of these cracks are, on average, smaller than the predicted amax and slightly higher than the
grain size, so the macroscopic assumptions of the model are fulfilled. However, the length values are not constant, revealing the
random nature of the fatigue short cracks especially at the initial stage of nucleation and propagation.

5. Summary and conclusions

This paper presents a general methodology to obtain fatigue stress concentration factors Kf. An alternative approach, DSGM, using
an in-built, simpler concept is introduced as well. 2D numerical FE models are used to compute stress fields of uncracked notched

Fig. 12. Frost diagram for CT specimen tests.

Table 9
Kf measured for the CT-like notched specimens and their Kt .

Notch ratio (mm) FEM Kt amax (mm) Eq. (13) Kf ΔS0.1

SGM DSGM SGM DSGM

0.150 14.59 0.224 7.51 6.97 47.54 51.22
0.200 12.7 0.221 7.34 6.78 48.64 52.65
0.350 9.64 0.241 6.81 6.28 52.42 56.85
0.600 7.38 0.164 6.11 5.57 58.43 64.09
1.250 5.15 0.134 4.75 4.42 75.16 80.77
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pieces. To model SIFs of cracks that depart from the notch tips, weight functions are used to calculate their stress gradient factors.
Such SGF are then used to compute Kf . The numerical predictions are then compared to other approaches and to experimental data.
Original data is also presented and compared with the proposed methodology. A few conclusions may be drawn based on the results
obtained here:

(1) There is a good agreement between the proposed methodology (and of its more direct application, the DSGM) predictions and the
experimental data.

(2) The obtained predictions were, on average, closer to experimental data than the Liu & Mahadevan predictions [20], but with
more scatter. However, they were more conservative than the latter approach.

(3) The presented methodology is thus a safe tool for engineers for fatigue analyses of notched components.
(4) The fatigue notch factor can be satisfactorily determined by the proposed methodology, ultimately increasing its applicability,

e.g. it can be implemented in notch-analogue approaches and even incorporated into the TCD.
(5) The best predictions using the SGM occurred for sharp notches with Kf . For smoother notches or smaller Kf values, the DSGM

counterpart was more accurate.

As previously stated, this study was based on 2D FE analyses using mode I SIF. Further improvements can be performed to
incorporate this into 3D analyses and to consider more complex real cracks. The effects of such simplifications and how to correct
them for fatigue analysis has already been reported before [31,32]. At last, the materials used in this paper are assumed elastic.
Plastic effects caused by notch-induced stress gradients can be considered using, for instance, strain-based fracture mechanics
concepts [30,33,37].

Appendix A. C++ code to compute Kf

Fig. 13. Optical micrographs for the three surface NPSCs detected.
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