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A B S T R A C T

Plastic zones (pz) ahead of crack tips are obtained by incremental elastoplastic (EP) finite element (FE) 3D
calculations for cracked components with relatively high and low transversal constraints, considering all effects
associated with their geometry and loading conditions. Contrary to what is assumed in traditional Fracture
Mechanics estimates, pz sizes and shapes do not depend only on the given crack driving force K or J. They
depend as well on usually neglected geometric and load parameters such as the component width-to-thickness
W/B, the crack size-to-component width a/W, and in particular the nominal stress-to-yield strength σn/SY ratios.
Since damage ahead of the crack front depends on the plastic work spent inside the pz, this fact can have a major
importance in practical applications, including in fatigue and in EP fracture estimates. This work proposes a
methodology for evaluating pz volumes based on a sub-modeling FE analysis that uses the influence volume
around a plastified Gauss integration point, instead of the entire plastified FE. This technique is then used to
estimate the resistance to crack tearing initiation, assuming it can be obtained from the EP work spent inside the
pz. Such estimates are validated using the ratio of experimental fracture toughness at the threshold of crack
tearing for different W/B, a/W, and σn/SY combinations.

1. Introduction

It is a truism to say that stress/strain fields around crack tips are
most important in structural integrity evaluations, since they are the
actual cause for failure mechanisms such as fatigue crack growth (FCG),
stable tearing, and unstable fracture. However, in spite of their major
practical importance, traditional plastic zone (pz) estimates and thus
structural integrity evaluations based on them, can be highly in-
accurate.

Crack driving forces usually are indirectly quantified by stress in-
tensity factors (SIFs) K or by J-integral J, their equivalent energy release
rates (J=K2/E in plane stress under linear elastic (LE) Fracture
Mechanics conditions, where E is Young’s modulus). SIFs can be used,
for instance, to predict brittle fractures in mode I by comparing applied
KI values with a plane strain fracture toughness, KIC, assumed a material
property if the pzs, that always form ahead of crack tips, are small
compared to the cracked component geometry. Indeed, it is well known
that ASTM E399 standard procedures for measuring KIC require {a, W,
(W− a), and B} > 2.5·(KIC/SY)2 [1], where a is the crack size,W is the
cracked component width, B is the its thickness, (W – a) is its residual

ligament, and SY is the yield strength of the material. However, E399
standard procedures also specify that KIC must be measured main-
taining the crack size in a small 0.45 < a/W < 0.55 range, a strange
requirement for a mechanical property, to say the least. In fact, if
fracture predictions must be valid for any crack in relatively brittle
components, how come KIC must be measured in such a limited a/W
range?

Moreover, fracture predictions become even less reliable when the
pz sizes are not so small and J should be used instead of K to quantify
the crack driving forces. Indeed, the fracture toughness of cracked
components (made of a same material) can vary a lot both with their
geometry and with their loading conditions in such cases [2]. Maybe for
this reason, there are still too many standards for toughness measure-
ments that allow pzs much larger than E399 requirements, but not even
the newer like the ASTM E1820 [3], whose purpose is to unify tough-
ness measurement procedures, solve this problem. Even though the
present standard procedures for elastoplastic (EP) toughness measure-
ments are understandably conservative, it is well-known that they do
yield too conservative fracture predictions in many design cases. In fact,
fracture toughness is not even a material property in most practical
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applications. Since it is difficult if not practically impossible to estimate
reliably how much conservative such predictions are in practice, frac-
ture predictions remain far less precise than the no-fracture ones.

K+ T-stresses, the second term of William's LE crack-tip stress
fields, can partially explain toughness variations. Likewise, Q or A2
constraint factors can be combined with J in two-parameter EP
toughness estimates. A third parameter Tz can help to better model
them [4–13]. However, K and J-based stress/strain fields are singular at
the crack tip and tend to zero far from it, not to the nominal stress/
strain values as they should. Hence, they do not properly reflect the
most important σn/SY effect on the pz sizes, as studied elsewhere [14].
Thus, it is worth to calculate directly the three-dimensional (3D) pz
volumes induced by a given K or J around the crack tip and then the
plastic work UPL dissipated inside them, instead of insisting on trying to
find a single fracture toughness parameter based on K, J, or on K-T, J-Q,
J-A2, K-T-Tz, or J-Q-Tz [15] combinations. Such calculations may re-
quire non-trivial numerical techniques, but this is not a major barrier
anymore.

Indeed, from a physical point of view, it is at least reasonable to
assume that the toughness of most metallic cracked structural compo-
nents depends primarily on the UPL spent inside the pz. Such a hy-
pothesis should be valid when they are tough enough to make the work
spent in creating new crack faces during crack tearing much smaller
than the plastic work spent in such cases. Indeed, glasses and Al alloys
have similar Young’s modulus, thus should need similar energies to
create new crack faces. However, while the toughness of glasses is on

the order of 10 J/m2, for the tougher Al alloys it is on the order of
100 kJ/m2. Since reliable UPL calculations can already be performed in
many commercial finite element (FE) codes nowadays, there is no good
reason to avoid them in practical applications anymore. Moreover,
toughness variation predictions based on the UPL calculated inside pzs
are experimentally verifiable by relatively simple crack tearing initia-
tion measurements in different components made of the same material.

However, it would be naive to assume that reliable incremental 3D
EP FE pz calculations for real cracked components are simple tasks, or
that fracture toughness is a mechanical property, for that matter. It
usually is not, so it cannot be assumed or treated as if it was. In most
practical cases, it depends on the material and on several characteristics
of the cracked component geometry too, as well as on its loading
conditions. Moreover, the saying “good predictions cannot be expected
from overly simplified models” is particularly true for the UPL estimates
inside pzs around crack tips. Good calculations must properly consider
all effects associated with the actual cracked component geometry and
loading conditions, including incremental crack tip blunting and load
redistribution at each load step. They must consider as well the actual
material properties.

There is a number of detailed 3D numerical studies to characterize
pz developed around crack fronts and to quantify their effects on the
structural integrity of cracked mechanical components, see for instance
[16–18]. However, to the authors’ knowledge, they do not correlate the
plastic work spent inside them with the component toughness, the main
goal of this work.

Nomenclature

a crack length
A2 constraint parameter
B specimen thickness
BN specimen net thickness
C(T) compact tension specimen
COD crack opening displacement
CTOD crack tip opening displacement
DIC digital image correlation
E Young’s modulus of elasticity
EP elastoplastic
Es element size
f(a/W) geometry function
FCG fatigue crack growth
FE finite element
H monotonic Ramberg-Osgood hardening coefficient or half-

height
h monotonic Ramberg-Osgood hardening exponent
I2 second invariant of the deviatoric stresses
J J-integral (energy release rate of EP materials)
JIC plane strain fracture toughness characterized by J
k yield limit in simple shear
K, KI stress intensity factor (SIF) in mode I
KIC plane strain fracture toughness
L half- length
LE linear elastic
LLD load-line displacement
mp middle position
M(T) middle tension specimen
P load
PIC critical load used to determine JIC
pl, PL plastic
pl-ε plane strain
pl-σ plane stress
Pmin, Pmaxminimum and maximum load
pz plastic zone

Q triaxial stress parameter
R load ratio (Pmax/Pmin)
rpz plastic zone radius
SE(B) single edge bend specimen
SE(T) single edge tension specimen
s1, s2, s3 deviatoric stress components
SIF stress concentration factor
sx, sy, sz normal deviatoric stresses
SY yield strength
T-stress second term of elastic crack-tip stress field
Tz triaxial stress constraint
u(x) horizontal displacement
UEP elastoplastic work
uep elastoplastic work density
UPL plastic work
v(y) vertical displacement
Va analytical PL volume
Ve volume of the element
Vn numerical PL volume
Vt total volume
W specimen width
w deflection
w(z) out-of-plane displacement
w0 central deflection
w0* central deflection when the yield stress is reached
x, y, z global Cartesian coordinates
ν Poisson’s coefficient
σn nominal stress
δIC critical crack tip opening displacement
εeq Mises equivalent strain
εY yield strain
Δa crack extension between the compliance points
α V-notch angle
ρ parameter for which the yield limit is reached or V-notch

root radius
σx, σy, σz normal stresses
τxy, τxz, τyz shear stresses
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It is not a surprise that ductile materials are tough, since they dis-
sipate more UPL while plastically deforming in tensile tests than the
brittle ones (albeitin tensile tests plastic work may involve cavitation
and void coalescence, whereas in fracture toughness tests it involves pz
formation and gradual crack tearing). Hence, the fracture resistance
depends on geometric parameters, loading conditions, and transversal
constraints, which much affect pz sizes and shapes, thus the UPL spent
inside the pz. Recent contributions in this subject can be found e.g. in
[19–22]. However, all such papers adopt the classic approach based on
K or J and/or on its combinations with constraint factors. Yet, this large
amount of work contributes to quantify and to evaluate the crack front
constraints. For instance, an explicit expression to quantify constraint
losses is proposed in [19]. Theoretical and 3D numerical studies based
on the J-A2 EP two-parameter Fracture Mechanics approach for dif-
ferent geometries and thicknesses are presented in [20]. A new equa-
tion for plastic factors that considers geometric characteristics and
material hardening is proposed in [21,22].

To validate the methodology proposed and used in this work, first
its 3D EP FE procedures are used to generate numerical predictions that
can be compared with analytical solutions for an un-cracked structural
beam. Then, the proposed 3D EP sub-modeling FE predictions are
compared with numerical analyses and experimental data recently
published for some cracked specimens. In the sequence, their numerical
predictions for pz sizes and shapes are compared with some 3D Digital
Image Correlation (DIC) measurements made on the surface of cracked
specimens.

After validating the proposed modeling techniques, they are used to
calculate pz sizes and shapes, as well as the UPL dissipated inside them.
Cracked components with various a/W and σn/SY ratios under both
high and low transversal displacement constraints around the crack
front are considered. Finally, the UPL dissipated inside the pzs under
such different conditions are calculated and compared with some
fracture toughness data measured at the crack tearing initiation
threshold. In a few graphs UEP is plotted instead of UPL to allow direct
comparisons with literature results, but the difference between them is
small in tough materials. The following sections study in details all such
steps.

2. Three-dimensional plastic zone analyses

Unlike assumed in traditional Fracture Mechanics estimates, pz
sizes, shapes, and volumes can vary a lot for a given nominal driving
force K or J [14]. Since both the material toughness and its resistance to

fatigue crack growth depend on the EP work spent inside the pz, ne-
glecting this fact can have a major importance in fracture and fatigue
assessments. To support this claim, a series of EP FE 3D calculations are
used to estimate pz sizes and shapes induced by constant SIFs KI in
various components with different loading conditions and geometric
parameters. To do so, several nominal stress-to-yield strength ratios σn/
SY are simulated at various crack length-to-specimen width a/W and
specimen width-to-specimen thicknessW/B ratios. It is well known that
a same KI can induce different pz sizes and shapes in thin or thick
components (associated with predominantly plane stress or plane strain
conditions along the crack front), because transversal displacement
constraints dependent on the cracked component thickness B can much
restrict plastic deformations. However, equally important nominal load
and crack size effects, dependent on σn/SY and a/W ratios, are simply
neglected in traditional pz estimates.

For each cracked component geometry simulated in this work, first
a 3D EP global FE model is generated and meshed using properly re-
fined elements around the crack front, gradually increasing their size in
regions away from it to limit the models’ size without compromising
their numerical accuracy. M(T), C(T), SE(T), and SE(B) specimens are
simulated in such a way in this study. A sub-model is then generated
using the global model solution as new contour conditions, to improve
the numerical predictions accuracy. The pz EP frontiers, in terms of the
equivalent Mises strain, are remapped to ensure that the total volume of
the pz is entirely within the sub-model with fine meshes of uniform
element size for the final solution, as illustrated in Fig. 1.

The properties of the materials used in all simulations are presented
in Table 1, where E is Young’s modulus, ν is Poisson’s coefficient, SY is
yielding strength, while H and h are the monotonic Ramberg-Osgood
strain hardening coefficient and exponent.

Both aluminum alloys are used to validate the model based on re-
sults taken from the literature [16–18]. The 2024-T3 Al is used to es-
timate pz sizes, shapes and UPL in highly-constrained C(T) and lightly-
constrained SE(T) specimens. There are standard KI expressions for all
specimens analyzed in this study, where KI=[P/√(B·BN·W)]·f(a/
W)Specimen, BN is the net thickness due to eventual side grooves and f(a/
W)Specimen is a geometry function that depends on the crack size-to-
specimen width a/W ratio. These functions for the M(T), C(T), SE(T),
and SE(B) specimens are given by:

= +f a
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a
W

a
W

a
W

a
W4
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1 0.025 0.06
M T( )

2 4
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Fig. 1. Some characteristics of the global models and sub-models.
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The SE(B) specimen geometry is shown in Fig. 2. The three other
geometries can be found e.g. in the ASTM standards mentioned above.

3. FE validation and verification

All validations of the 3D EP FE models and sub-models developed in
this work involve direct comparisons with numerical results or with
suitable experimental data published in the literature. First, the model
predictions are compared with a classic analytical solution for an un-
cracked simply supported EP prismatic beam, proposed by Prager and
Hodgea long time ago [23]. Then, the results of our analyses for two
standard cracked specimens are compared with similar numerical re-
sults found in the literature [16–18]. These references also present an
experimental validation for their pz sizes, performed by measuring
displacements on the surface of the specimens using Digital Image
Correlation (DIC) techniques. DIC is used as well to verify experimen-
tally some numerical results obtained in this work. For these simula-
tions, mesh convergence was tested prior to the simulations, to establish

the mesh refinement parameters needed for all of them.

3.1. Analytical EP solution for a beam loaded uniformly

The initial verification of the numerical calculations involves the
un-cracked, simply supported prismatic beam with rectangular cross
section illustrated in Fig. 3. This beam carries a uniformly distributed
load P in the y-axis direction. This problem has an analytical solution
presented by Prager and Hodge [23], which isused here to validate an
initial simple 3D EP FE model.

The Ansys software is used for these numerical experiments. The
main objective of this section is to calculate numerically the fraction of
the 3D plastic zone generated inside the EP beam by a given applied
distributed load.

Usually, the smallest unit of volume considered in EP numerical
simulations is the volume of the finite element Ve used in the modeling.
In spite of the reasonable agreement between experimental data and its
numerical predictions claimed in the literature [16], the criterion to
select the smallest unit considered in the plastic regions can be im-
proved. The Ve method adds the entire element volume to the pz vo-
lume, even when only one of its Gauss integration points is plastified
(εeq≥ εY) at the EP frontier of the pz. Hence, this calculation method
can lead to different pz volumes depending on the type of elements and
meshes.

For this reason, both element type and mesh convergence studies
were performed here based on evaluations of the total volume, Vt, of
the pz developed inside the beam when it is loaded. Linear and quad-
ratic elements are used for these 3D EP FE simulations, and only the
fractions of the volumes corresponding to their plastified Gauss in-
tegration points are counted as part of the plastified regions. Thus, the
smallest volume unit for the pz models is Ve/8 in this approach. All
numerical simulations are performed considering only 1/4 of the
modeled beam due to its symmetries, using L=300mm, L/B=10, B/
H=1, E=210GPa, SY=300MPa, ν=0.3, P0= 4BSY, and ρ=(P/P0)
(L/H)2. P is the uniformly applied load, ρ defines the percentage of the
cross section plastification and 2L, 2B and 2H are the beam length,
thickness and height, respectively. Fig. 4 shows the constraint sused in
this model. The commented Ansys Parametric Design Language (APDL)
macro used to solve this problem is presented in Appendix A.

The verification involves numerical simulations using both Ve and
Ve/8 criteria. Two types of FE are used to model the beam, 3D
SOLID185 linear elements with 8 nodes each and 3D SOLID186 quad-
ratic elements with 20 nodes each, both with 8 integration points per

Table 1
Materials and properties.

Material E (GPa) ν (–) SY (MPa) H (MPa) h (–)

2024-T3 73.1 0.33 345 – –
2024-T351 73.5 0.33 425 685 0.073

Fig. 2. SE(B) specimen geometry and side groove detail.
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element and 3 degrees of freedom per node. The classic beam theory
assumes plane stress conditions, so σz= σy= τyz= τxz=0. Therefore,
it can use simpler notations, σx= σ and τxy= τ. In addition, the de-
viatoric components of the stress tensor are sx=2σ/3, sy= –σ/3,
sz= –σ/3, τxy= τ, τxz= τyz=0. The Mises yield condition, defined by
I2–k2= 0, then becomes:

+ = k3 32 2 2 (5)

where the constant k is the yield limit in simple shear and I2 is the
second invariant of the deviatoric stresses si, I2= (s12+ s22+ s32)/
2= (sx2+ sy2+ sz2)/2+ τxy2+ τxz2+ τyz2.

Assuming that the shear stress is smaller than the bending stress, the
deflection w=w(x) of the beam is small compared to its cross-section
dimensions, and its cross sections remain planar under bending and
normal to its axis when deformed, then Eq. (5) reduces to Eq. (6) and
the axial strain in the beam is given by Eq. (7):

= k| | 3 (6)

= y d w
dxx

2

2 (7)

Using Hooke's law, the stress is calculated by Eq. (8) at all elastic
points:

= Ey d w
dx

2

2 (8)

Eq. (8) shows σ as an odd function of y. In any cross section along
the x-axis, the yield stress is reached simultaneously for y= ±H, and
the plastic domains will spread from the top and bottom of the cross
section. Within these plastic domains given by Eq. (9), the plus sign
applies to the plastic region bordering that elastic region where σ cal-
culated by Eq. (8) is positive:

= ±k 3 (9)

In the EP frontier domains, y= ± ζ(x), (0 < ζ≤H). Since σ must

be a continuous function of y, it follows from Eqs. (8) and (9) that σ can
be calculated at a cross section which is partly elastic and partly plastic:

=

=

=

k H y

y

k y H

3 for

for

3 for

ky 3

(10)

The bending moment due to a stress σ at a generic cross section
along the x-axis is given by:

=M x B x y y dy( ) 4 ( , )
H

0 (11)

Substituting Eq. (8)–(10) into (11) and integrating, then:

=

=
=

EBH

BkH
kB H

M(x) for entirely elastic cross section

M(x) 2 3 for entirely plastic cross section
M(x) 3 (3 ) for elastic - plastic cross section

d w
dx

4
3

3

2

2
3

2 2

2
2

(12)

The bending moments due to internal stresses and to the external
load must be equated to obtain y= ζ(x). For this case, the bending
moment caused by the load P is:

=M x P L x( ) 1/2 ( )2 2 (13)

Assuming P causes a plastic hinge in this beam configuration, for the
EP cross sections then Eqs. (12) and (13) must be equated to obtain:

=kB H P L x2/3 3 (3 ) 1/2 ( )2 2 2 2 (14)

Eq. (14) may be rewritten as a function of a new parameter ρ that
represents the value of P for which the yield limit is reached:

=
H

x
A

1
3

1
2 2

(15)

where ρ= (P/P0)(L/H)2 and P0= 4√3kB, which is the load for which
the yield stress is first reached in the outer fibers.

For an EP cross section, ζ and ρ must satisfy the conditions
0 < ζ < H and 2/3 < ρ < 1, respectively. The lower limit of ρ re-
presents P for which the yield limit is reached at the outer fibers of the
central cross section (x=0). The upper limit represents P for which the
plastic regions in the upper and lower portions of the beam join at the
center. Fig. 5 shows the analytical function ζ and the numerically cal-
culated EP frontiers of the plastic volumes considering a partial
(ρ=0.8) and a fully plastic (ρ=1.05) cross section. Assuming ρ in-
creases monotonically from zero, for ρ < 2/3 the beam behaves elas-
tically, so its stress and strain fields are easy to determine. For 2/
3 < ρ < 1, part of the beam behaves plastically. Finally, for ρ= 1 the
plastic regions in the upper and lower portions of the beam join at its
central cross section x=0 and the beam plastically collapses, becoming
unable to carry larger loads.

To determine the deflections w of the beam, first consider its portion
0≤ x≤L. Using σ= k√3 when y= ζ into Eq. (8) for the central

Fig. 3. Simply supported prismatic EP beam under uniform transversal load.

Fig. 4. The two constraints used in the EP beam model.
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portion, and combining Eq. (12) for an entirely elastic cross section and
Eq. (13) for the fully elastic end portions of the beam:

=

=

for the central portion

for the fully elastic portion

d w
dx

k
E

d w
dx

P L x
EBH

3

3
8

( )

2
2

2
2

2 2
3 (16)

Eq. (15) is then solved for ζ and its result replaced into Eq. (16) for
the central beam portion. Then, integrating with respect to x knowing
that dw/dx=0 for x =0 and performing some algebraic manipulation,
the central deflection w0 is given by:

= + +

+

w P L
EBH

· 1
4 3

sinh 3 2
3(1 )

1
4 3

2 1
8

3 1
12

(3 2)
3

0
0

2
1

2

(17)

Fig. 6 shows the changes in the normalized central deflection (w0/
w0*) as the normalized load ρ=(P/P0)(L/H)2 increases, where w0*

given by Eq. (18) is the deflection of the central cross section of the
beam at the instant when the yield stress is first reached in its outer
fibers. The w0/w0* ratio remains below 2 as long as ρ remains smaller
than 95% of the load that causes yielding throughout the central cross
section. Further details on this analytical solution can be found else-
where [23].

=w P L
EBH

5
480

0
2

(18)

Finally, Fig. 7 shows the variations of the relative errors between
the analytical, Va, and numerical, Vn, plastic volumes as a function of
the number of elements along B, considering a partial plastic cross
section under ρ=0.8. Numerical analyses reproduce better the analy-
tical solutions when the smallest unit of volume treated in the pz is
defined by the improved criterion Ve/8. The relative error between Va
and Vn is reduced from 35% to 6% using the new approach.

3.2. Numerical results from the literature

To validate the EP FE numerical analyses, a second comparison is
made with two recent 3D FE results taken from the literature, for M(T)
[16] and for C(T) [17] specimens. Table 2 summarizes the geometry
and loading conditions of these specimens. These references used 3D
SOLID185 and SOLID186 elements, and for a fair comparison, the same
type of elements is adopted here for the corresponding sub-models that
contain the pz. However, both global models, which require a less re-
fined mesh, use larger 3D SOLID186 elements.

As noted in the previous section, an improvement in the calculation
of pz volumes considers one eighth of the volume element (Ve/8) as the
smallest unit of volume, which corresponds to each Gauss integration
point. In all simulations of the cracked specimens, before analyzing any
of the sub-models used in this work, a mesh convergence study was
performed based on evaluations of the total volume (Vt) of the pz de-
veloped around the crack front for different mesh sizes. These studies
also involve calculations of the EP work UEP inside the pzs. Such con-
vergence tests are performed using the sub-modeling procedures de-
scribed in the previous section. For a local analysis of stress and strain
fields near the crack tip, it is necessary to apply a denser mesh at least
around the crack front, as already suggested in many studies
[17,24,25].

Fig. 8 shows the shape and volume of only 1/4 of the pz on an M(T)
specimen with 5mm thickness for KI=30MPa√m. In Ref. [16] the size
of the pz is based on the FEs that reach Mises stresses higher than SY in
one of its integration points. The same criterion to evaluate the volume
of the pz was adopted here and a similar value for Vt (19.96mm3) was
obtained.

Fig. 9 shows vertical displacement predictions at different levels
around the crack front for a C(T) specimen with crack-to-width a/
W=0.74, width-to-thicknessW/B=7.25, and B=10mm, induced by
KI=17.82MPa√m, and compares them with displacements obtained
from [17].

As explained above, SOLID185 linear and SOLID186 quadratic ele-
ments are used in these simulations. Fig. 10 shows the variation of the
total pz volume Vt as a function of the number of elements along the
modeled half-thickness B/2 for 3 different cases, where Es is the element
size. The first one reproduces the case adopted in [17], which uses
linear elements and Ve as the criterion to calculate the Vt of the pz. The
second case also uses linear elements but the Ve/8 criterion, while the
third uses quadratic elements with the improved criterion Ve/8. For the
first case, the Vt of the pz converges to 9.9mm3 after 35 elements along
B/2, while second achieves Vt=9.1mm3 after 30 elements. Finally, the
last one achieves the same volume with only 15 elements.

To evaluate the numerical efficiency of the improved criterion used
in this work, a comparison is performed between the latter two cases.
The CPU time required to evaluate in the same microcomputer the sub-
model with 79,135 nodes and 69,120 linear elements was 19min12 s;
on the other hand, the sub-model with 38,575 nodes and 8640 quad-
ratic elements demands only 8min19s. Therefore, the sub-model with
quadratic elements reaches the same result using only 43% of the CPU
time to solve the sub-model with linear elements. In addition, when the
Ve criterion is taken into account, the Vt of the pz results in conservative
predictions. The same tendency was noted when the EP work UEP was
evaluated in the convergence analysis, see Fig. 11. As a result, 15 ele-
ments along B/2 and the Ve/8 improved criterion to estimate the Vt of
the pz are used for further analyses. The numerical UEP calculations are
performed using Eq. (19), which represents the summation of the UEP

work over all Gauss integration points inside the pz:

Fig. 5. Elastoplastic frontier for a partial (ρ=0.8) and a fully plastic (ρ=1.05)
cross section.
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=U V u/8·EP e
i

n

ep

8

(19)

where n is the number of elements inside the pz, Ve is the element vo-
lume and uep is the elastoplastic work density in each Gauss integration
point.

3.3. Experimental results

The specimens used in the present work are cut from an API 5L X80
steel plate with 21.85mm thickness. Its tensile properties are measured
by ASTM E8/E8M [26] standard procedures, using three sub-sized plate
specimens cut along the thickness in both transversal and longitudinal
directions of the plate. The average properties resulting from such
tensile tests are listed in Table 3.

H and h are the Ramberg-Osgood parameters, using the engineering
notation ε= σ/E+(σ/H)1/h [2]. For the toughness measurements, two
SE(B) specimens 205mm long, with width W=44.3mm and thickness
B=20.9mm, are waterjet cut in a way that the crack would propagate
on the transversal direction of the plate. Ultra-narrow notches with
20mm depth from the surface are machined on a wire-cut electric
discharge machine (EDM) to locate the crack at the middle of the SE(B).
All the specimen dimensions are selected according to the ASTM E1820
standard [3]. The pre-crack length-to-specimen width ratio a/W=0.55
chosen for the tests is in the middle of the range allowed by the stan-
dard, so the target pre-crack size is 4.4mm. During the fatigue cracking
procedure, both specimens are subjected to three-point bending under
force control, with Pmax equal to 0.9 of the maximum allowed force and
R= Pmax/Pmin=0.1 under a frequency of 25 Hz.

After 83,523 cycles, the SE(B)-1 developed a surface crack size of
4.04mm, while the SE(B)-2 resulted in a 4.20mm crack after 92,452
cycles. Crack sizes are measured using a traveling microscope. After
fatigue pre-cracking, V-shaped side grooves with a depth of B/10 are
machined on both surfaces of the specimens (see Fig. 2). The E1820
standard recommends this operation because it avoids crack tunneling
and shear lips, besides ensuring a plane-strain state and a straighter
crack front during the test. The resulting net thickness BN and the 45° V-
notch root radius ρ of the grooved specimens are 16.72mm and 0.5mm,

respectively.
During the loading of the SE(B) specimens, their crack opening

displacement (COD) and/or load-line displacement (LLD) are con-
tinuously measured to obtain their J-R curves. The partial unloading
compliance methodisused for such J-R tests, controlled by the LLD with
a speed of 0.003mm/min. The first unloading/reloading point starts
when the force reaches the expected 0.75⋅Pmax, and like all other
measurements include three unloading/reloading sequences. The con-
secutive unloading/reloading points are chosen at COD intervals of
0.1 mm, and three unloading/reloading sequences are applied on the
first 10 points. The force range in each point is 0.25⋅Pmax, such that it
could provide enough data points after the material relaxation. It is
worth noting that the specimens suffered a relaxation of almost 1kN in
every point after the plastic deformation. Thus, waiting 30 s for the
relaxation in each point was necessary. According to the E1820 stan-
dard, the compliance must be measured at each unloading/reloading
point to estimate the crack size. The J-R curve is obtained from the
assessed J and the crack extension Δa between the compliance points.

The displacement field on the specimen surface is simultaneously
measured using a Correlated Solutions DIC (VIC-3D) system [27]. The
device includes two 5-MP Point Grey GRAS-50S5M CCD digital cameras
with a Tamron SP AF180mm F/3.5 lens attached to each camera, an
adjustable fiber-optic light source, standard calibration grids, a data
acquisition system, and suitable software to analyze the data. The di-
gital cameras are mounted on an adjustable tripod in front of the spe-
cimen. The complete experimental setup is shown in Fig. 12.

It is not possible to determine the entire fracture resistance curve of
this API 5L X80 steel by standard procedures, since it is too tough and
its J-R curve grows higher than the Jlimit defined by the E1820 stan-
dard. Thus, only the crack tearing initiation toughness JIC is evaluated
from the intersection of the start of its J-R curve with a 0.2 mm offset
line, see Fig. 13.

These initial J-R curves are also compared with those obtained in
[28], which studied a high strength pipeline steel that also obeys the
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Fig. 7. Errors between the analytical Va and numerical Vn plastic volumes
counting the entire volume of the element Ve and its fraction Ve/8 in the pz
volume for a partially yielded cross section under ρ=0.8.

Table 2
Cases published in the literature [16,17].

Specimen a/W (–) a (mm) W (mm) W/B (–) P (kN) KI (MPa√m) σn/SY (%)

M(T) [16] 0.25 20.00 80.00 16.00 92.14 30.00 33.00
40.00 36.86
16.00 61.43 20.00 22.00
40.00 24.57

C(T) [17] 0.74 54.00 72.50 12.08 1.49 25.00 80.50
24.17 0.75
7.25 1.77 17.82 57.38

Fig. 8. Shape and volume of 1/4 of the pz developed around the crack front on
an M(T) specimen for KI= 30MPa√m.
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API 5L X80 standard, alternatively named N550. All SE(B) samples are
cut froma 48×½″ pipe section. The evaluated ratios a/W are 0.24 and
0.64, which represent a shallow and a deep crack, respectively, to
characterize different constraints along the crack front. All specimens
are machined withW=23mm, B=11.5mm and B/W=2. To achieve
plane-strain conditions recommended by the standard, 20% side-
grooves are used, so BN=9.2mm. The V-notch root radius (ρ) and
angle (α) are not described in the reference. The tensile properties are
measured at room temperature using specimens oriented in the pipeline
longitudinal direction. The measured mechanical properties are

SY=570MPa, SU=675MPa, E=207GPa, and ν=0.3, elongation
εU=0.422 and reduction in area RA=0.683. From the experimental
true σ-ε curve the Ramberg-Osgood parameters are determined:
H= 892MPa and h= 0.08.

Finally, the measured horizontal and transversal x-y plane dis-
placements are compared with the results obtained from the 3D EP FE
sub-model for an applied displacement, LLD=8.55mm. Figs. 14 and
15 show that the agreement between numerical (FE) and experimental
(DIC) displacement results is quite good. For the horizontal displace-
ments shown in Fig. 14, there is a change in slope near the crack tip
region in both FE and DIC data. This gap is caused by the tunneling
effect that often occurs during fatigue pre-cracks, as also noted else-
where [17]. These discrepancies probably can be alleviated by mod-
eling the actual curvature along the crack front. Transversal displace-
ments (shown in Fig. 15) are reduced from approximately −0.36mm at
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Fig. 9. Numerical vertical displacements on a C(T) specimen on its crack plane and at 1.20mm and 2.90mm from it, induced by a SIF KI=17.82MPa√m.
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Table 3
Tensile average properties of the studied API 5L X80 steel.

Orientation E (GPa) SY (MPa) SU (MPa) H (MPa) h (–)

Transversal 210 546 627 954 0.139
Longitudinal 210 527 612 946 0.148

Fig. 12. Experimental setup used to measure the J-R curves and displacement
fields on the specimen surface using the VIC-3D system.
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Fig. 13. Measured J-R curves.
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the side groove edge to an almost null value at 9.15mm from the crack
plane slightly ahead of the crack tip. The difference between FE and DIC
results may be due to the same tunneling effect. It is also difficult to
determine a reference point due to the impossibility of measuring dis-
placements at free edges. Nevertheless, note that the differences be-
tween the FE and DIC results are relatively small.

4. Numerical results for two differently constrained specimens

For C(T) and SE(T) specimens loaded under a SIF KI=30MPa√m,
Fig. 16 shows how much the volume of the pz ahead of the crack front
can vary for a given nominal driving force. Indeed, a quite remarkable
difference in this volume can be seen through a comparison between
two cases: an SE(T) specimen with geometry and loading ratios W/
B=4, a/W=0.6, and σn/SY=0.2, and a C(T) specimen with W/
B=4, a/W=0.4, and σn/SY=0.8, both loaded by the very same KI. A
very significant and most certainly non-negligible factor of 4 is ob-
served between them! Notice that these simulations are run for speci-
mens without side grooves, i.e., with BN= B.

Overall, the same trend is noted when the EP work inside the pz is
evaluated (see Fig. 17). However, the factor decreases to 1.9, which still
is a very large difference. Hence, based on the physically appealing EP
work arguments inside the pz around the crack front, it is possible to
argue that the measured toughness values JIC should also dramatically
change in those specimens.

5. Numerical validation through experimental toughness ratios

The objective of this section – and probably the main contribution of

this work as well – is to validate the 3D EP FE calculations proposed
here to model the pz sizes and shapes, as well as the plastic work UPL

spent inside them, through suitable experimental results. For this pur-
pose, a comparison is made using the ratio of fracture toughness mea-
sured at the threshold of crack tearing for different constraint levels,
e.g. JIC,σ-pl/JIC,ε-pl [28] or δIC,σ-pl/δIC,ε-pl [29]. The comparison is made
through the ratio of the values of plastic work per pz volumes developed
around crack fronts. They are also evaluated in both σ-pl and ε-pl
conditions, e.g. (UPL/Vt),σ-pl/(UPL/Vt),ε-pl, as listed in Table 5.

There is no information about the exact loads that generated JIC for
the SE(B) specimens from Ref. [28] analyzed in Section 3.3. Hence, a
new reference study is used here for such comparison purposes [29],
which used a slightly higher strength pipeline steel API X90 to in-
vestigate thickness effects on the critical crack tip opening displacement
δIC of SE(T) specimens. All tested specimens were cut longitudinally
from a large pipe sample with nominal outer diameter 1013mm and
thickness 31mm. From all available results, two B/W ratios are chosen
for the following evaluation. The first one with B/W=0.5 and a rela-
tively low transversal constraint (σ-pl condition), whereas the second
with B/W=6 and a relatively high transversal constraint (ε-pl condi-
tion). All specimens are machined with W=18mm, H/W=10mm
and a/W=0.4. In addition, 15% side-grooves with a 0.5mm root ra-
dius and an angle 45° are used to guide the crack.

The tensile properties of the API X90 steel are measured at room
temperature (around 20 °C). Its main mechanical properties are
SY=640MPa and SU=792MPa. Young’s modulus (E) and Poisson’s
coefficient (ν) are not described in Yizhe’s paper. For both simulated
cases these parameters are assumed E=210GPa and ν=0.3. The true
stress-strain curve used in the 3D EP FE models is shown in Fig. 18.

The critical CTOD δIC is defined from the intersection point of the
resistance curve and the 0.2 mm blunting offset line, as illustrated in
Fig. 19. It was noted a factor of 2.12 between δIC,0.5 and δIC,6 when
determined by the double-clip gage method [29,30].

The measurements for the pz radius-to-specimen thickness ratio
Sr= rpz/B are in good agreement with the constraint parameter Sr
predicted for plane strain (ε-pl) at θ=90°, see Eq. (20). The critical
load PIC can be calculated from KI=[PIC/√(B·BN·W)]·f(a/W)SET, where f
(a/W)SET is given by Eq. (21) [31]. Table 4 shows the geometric
parameters and loads used in the 3D EP FE models.
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Fig. 14. Numerical (FE) and experimental (DIC) horizontal displacement (u(X))
fields at 1.2mm from the crack plane for an applied displacement
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All numerical and experimental data are listed in Table 5. The
comparison between numerical prediction (UPL/Vt),0.5/(UPL/Vt),6 ratio
and experimental data ratio δIC,0.5/δIC,6 using the double-clip gage
method indicate quite good correlations. The gap between the ratios is
caused by the tunneling effect that often occurs during fatigue pre-
cracks, as noted elsewhere [17]. Thus, these discrepancies probably can
be alleviated modeling the actual curvature along the crack front. In
addition, there is a difference in the δIC and its ratios values between the
double-clip gauge method, used here to compare, and the other
methods as well discussed in [29].

6. Conclusions

In this work three-dimensional elastoplastic finite element analyses
have been used to generate numerical predictions of plastic zone vo-
lumes in an un-cracked beam. The numerical analyses reproduced well
the analytical solutions. The relative error between numerical and
classic analytical plastic zone volumes was only 6%. Numerical analyses
reproduced better the analytical solutions when the smallest unit of
volume treated in the plastic zone was defined by the improved cri-
terion Ve/8.

Three-dimensional plastic zone estimations by using a elastoplastic
sub-modeling FE technique were presented to evaluate plastic zone
sizes and shapes in cracked specimens. The estimates obtained using
this technique were validated through numerical and experimental re-
sults found in the literature. In addition, the methodology for calcu-
lating plastic zone volumes considering the Ve/8 improved criterion
was verified by numerical simulations, where a minimum of 15 ele-
ments per modeled thickness B/2 were needed to reach convergence.
The results obtained using the numerical model were validated through
displacements measured on the surface of the specimen using 3D DIC
techniques.

The comparison between numerical plastic work calculated inside
the pz volume and experimental fracture toughness data was quite
reasonable. The discrepancy observed between them was probably due
to the simplified model that assumesstraight crack fronts. Thus, this
robust parameter based on plastic zone volumes and the plastic work
performed inside them has potential to be treated as a new engineering
approach to estimate the resistance to crack tearing initiation in any
kind of components. Although such calculations may require non-trivial
numerical techniques, they can be quite useful especially in cracked
components with low transversal constraints (e.g., in pipelines). This
approach has shown potential to be a useful tool to replace unreliable
combinations based on K or J and constraint parameters such as T-
stress, A2, Q, and Tz in most practical structural applications.
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Fig. 18. The true stress-strain curve of the studied API X90 steel.
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Table 4
Geometry and load conditions for two cases [29].

δIC (mm) a/W (–) B/W (–) Sr, ε-pl,θ= 90° (–) KI (MPa√m) PIC (kN)

1.745 0.41 0.5 0.418 108 57
0.823 0.39 6 0.040 116 787

Table 5
Numerical plastic work per pz volume (UPL/Vt) and experimental critical CTOD
δIC for each σ-pl and ε-pl conditions and their ratios.

B/W (–) Vt (mm3) UPL (mJ) UPL/Vt (mJ/ mm3) δIC (mm)

0.5 9.55 17.58 1.84 1.745
6 187.80 201.87 1.07 0.823
Ratio – – 1.75 2.12
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Appendix A

! Language: Ansys Parametric Design Language (APDL)
! This macro calculate the fraction of the 3D plastic zone generated inside the EP beam
! Implemented by Luiz Fernando Nazare Marques

RHO=0.8 ! The percentage of the cross section plastification [ ]
ELE_B= 3 ! Elements along half-thickness [ ]
L=300 ! Half-length [mm]
H=30 ! Half-height [mm]
B=30 ! Half-thickness [mm]
E_S=B/ELE_B ! Element size [mm]
E=210000 ! Young’s modulus of elasticity [MPa]
SY=300 ! Yielding strength [MPa]
NU=0.3 ! Poisson’s coefficient [ ]
P_0= 4*B*SY ! Reference load [N/mm]
P=P_0*RHO*(H/L)**2 ! Distributed load [N/mm]
/FILNAM,BENCHMARK_RHO_%RHO% ! Filename
/PREP7 ! Pre-processing
ET,1,SOLID186 ! 3D Quadratic element - Brick 20
ET,11,200,7 ! 2D element
MP,EX,1,E
MP,NUXY,1,NU
TB,BKIN,1,1 ! Material model
TBDATA,1,SY,0
BLC4,0,0,L,2*H ! 2D Geometry
AESIZE,ALL,E_S
TYPE,11
AMESH,ALL ! 3D Mesh
ALLSEL
VEXT,ALL, 0,0,B ! 3D Geometry
TYPE,1
EXTOPT,ESIZE,B/E_S,1
EXTOPT,ACLEAR,1
ALLSEL,ALL
VSWEEP,1,1,2 ! 3D Mesh
ALLSEL
NSEL,S,LOC,Z,0
D,ALL,UZ ! Symmetry about the x-y plane
ALLSEL
NSEL,S,LOC,X,0
D,ALL,UX ! Symmetry about the z-y plane
ALLSEL
NSEL,S,LOC,X,L
D,ALL,UY ! Constrained y axis displacement
ALLSEL
ASEL,S,AREA,5
SFA,ALL,PRES,P/B/2 ! Distributed load
ALLSEL
/SOLU ! Solution
ANTYPE,0
NLGEOM,1
NSUBST,500,10000,1
OUTRES,ERASE
OUTRES,ALL,ALL
LNSRCH,1
NEQIT,1000
PSTRES,1
TIME,1
ERESX,NO
SOLVE ! Solution
/CTYPE,1
/EDGE,1,1
/CVAL,SY/E
FINISH
/POST1 ! Post-processing
PLNSOL,EPTO,EQV ! Plastified cross section
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