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A B S T R A C T

Elber’s assumed long ago that the effective stress intensity factor (SIF) range ΔKeff = Kmax− Kop is the actual
driving force for fatigue crack growth (FCG), where Kop is the SIF that fully opens the crack, and his idea still is
widely used to predict residual lives of cracked components. However, although crack closure can affect the FCG
process, the ΔKeff idea cannot explain many of its peculiarities. To try to understand why this happens, the actual
Kop role in FCG is questioned comparing ΔKeff–based predictions with similar predictions obtained using an
alternate model that estimates crack increments assuming they are caused instead by the accumulated damage
ahead of the crack tip. To be fair, this damage is calculated by the very same strip-yield mechanics used to
calculate Kop and ΔKeff, i.e. the deformations predicted by the strip-yield model are used to describe the cyclic
strain field ahead of the crack tip as well. Hence, the main goal of this exercise is to compare two different
hypotheses for the actual FCG driving force using the same formulation basis. Both models are tested for dif-
ferent materials, constraint factors, and stress to yield strength ratios combinations, considering and neglecting
the effect of crack closure. This exercise indicates that the effects of crack closure predicted by the critical
damage model can be significantly lower than those predicted by the ΔKeff model.

1. Introduction

Elber identified plasticity induced crack closure (PICC) after ex-
perimentally verifying through compliance measurements that fatigue
cracks can remain partially closed even under tensile loads [1]. He
defined the stress intensity factor (SIF) needed to completely open the
crack Kop and then supposed that only the part of the load cycle larger
than the opening load (when K > Kop and the crack tip is fully exposed
to the load) could contribute for fatigue crack growth (FCG) [2]. Based
on this hypothesis, Elber defined an “effective stress intensity range”
ΔKeff (ΔKeff=Kmax− Kop if Kop > Kmin, or ΔKeff= ΔK if not) and as-
sumed it would be the actual driving force for FCG, instead of SIF ranges
and peaks {ΔK, Kmax} (or their equivalent {ΔK, R}) pairs, where
ΔK= Kmax−Kmin and R=Kmin/Kmax.

Based on these ideas, there are two basically different approaches to
model the FCG process, which even seem to be contradictory. The first
assumes ΔKeff is the FCG driving force, and the other supposes fatigue
cracks are instead driven by {ΔK, Kmax} combinations. Defenders of the
latter usually say that FCG must have two driving forces, the SIF range
ΔK and the SIF peak Kmax, because the incremental FCG process is
caused by the superposition of ΔK-induced cyclic (pure fatigue) and

Kmax-induced static failure mechanisms (which can affect pure fatigue,
like fracture and environmentally assisted cracking, EAC). Moreover,
both ΔK and Kmax have two well-defined thresholds ΔKth and Kmax,th,
which confirm their driving force status. On the other hand, the
opening load Kop cannot be a driving force, since it is not associated
with any failure mechanism and does not have a threshold. Hence, ΔKeff

could not be a FCG driving force either, since it depends on Kop.
However, although Kmax can be a driving force for static brittle

failure mechanisms, ΔK cannot be a true FCG driving force either.
Indeed, ΔK is a linear elastic (LE) parameter that cannot be directly
associated with the cyclic fatigue damage induced ahead of crack tips.
Physically speaking, the actual damage that causes FCG must be in-
duced by elastoplastic (EP) strain ranges Δε and by stress peaks σmax

associated with them, since by definition the SIF-induced LE strains are
reversible, hence cannot cause damage. Hence, the actual FCG driving
forces should be the EP strain/stress fields that cause the distribution of
{Δε, σmax} pairs at each point inside the plastic zones (pz) ahead of the
crack tips. Anyway, from a practical point of view, most structures
spend the major part of their FCG lives at relatively low loads, where ΔK
and Kmax control the pz sizes and shapes. Therefore, in such cases it can
be safely said that, albeit indirectly, {ΔK, Kmax} pairs can act as
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practical FCG driving forces.
Many empirical and semi-empirical models can consider load se-

quence effects in FCG, some based on the FCG phenomenology and
others on idealized mechanisms proposed to explain them [3–20]. In
particular, PICC arguments can explain many important load-sequence
effects in FCG, such as FCG delays or arrests after an overload (OL),
attenuation of OL-induced delays after a subsequent underload (UL),
and FCG threshold sensibility to R (at least in non-inert environments).
Since such effects are most important to estimate fatigue lives under
variable amplitude loads (VAL), it is not a surprise that FCG models
based on ΔKeff concepts are still very popular in practice. The most used
[6–14] are based on Dugdale-Barenblatt’s strip-yield pz estimates
[21,22], so such models are called SYMs or strip-yield models here. All
SYMs need to estimate Kop for calculating FCG rates using a suitable da/
dN= f(ΔKeff) rule properly fit to experimental data. Most f(ΔKeff) rules
need many data-fitting parameters to reproduce FCG data, but the
major difficulty when using ΔKeff-based models for VAL is to calculate
precisely the variable Kop values.

However, even though PICC can justify and even quantify many
important load-order effects [1,2,23,24], its actual significance to FCG
is still highly controversial. Indeed, ΔKeff concepts cannot explain many
other FCG peculiarities that are as important for FCG predictions, such
as:

(i) delays or arrests after OLs under high R (when fatigue cracks re-
main always open, since for such loads Kmin > Kop);

(ii) constant FCG rates induced by constant {ΔK, R} but highly variable
ΔKeff loadings;

(iii) cracks arrested at a given R that restart to grow at a lower R under
the same ΔKeff; or else

(iv) FCG threshold insensitivity to R in inert environments.

For further details in such and other ΔKeff limitations, see for in-
stance [25–30]. This fact alone justifies the study of alternative FCG
models, like the critical damage models (CDMs) used in this work. Such
models assume that fatigue cracks grow by sequentially cutting small
volume elements (VE) ahead of their tips, which behave like tiny εN
specimens and break when they reach the fatigue damage they can
tolerate [14–20,25]. This is an attempt to directly use the pair {Δε,
σmax}, which can be considered the two true FCG driving forces, as
explained above.

However, notice that although critical damage ideas are at least as
reasonable as the ΔKeff hypothesis, both are just idealized simplifica-
tions of the physical reality that do not consider the entire complexity
of the FCG process. Thus, ideally they both always should be verified by
suitable tests before being used in practical predictions. Such tests
should be experimental whenever possible, but numerical tests can be
useful as well. This is the main aim of this work: to evaluate numeri-
cally how the opening load Kop affects the damage induced ahead of
fatigue crack tips according to CDM and ΔKeff concepts.

The major problem in this exercise is how to compare apparently
conflicting SYM and CDM concepts in a fair way. To do so, the CDMs
studied here use the very same formulation employed in SYMs (ori-
ginally developed to estimate Kop) to estimate the plastic strain ranges
inside the pzs that always form ahead of fatigue crack tips. EP dis-
placements ahead of the crack tip predicted by SYM procedures are first
transformed into strain ranges and then used to estimate fatigue da-
mage through classic εN rules, see [31–33] for details. Such procedures
allow the evaluation of crack increments at each load cycle under VAL
from the length of the region ahead of the crack tip that reaches the
maximum accumulated damage the material can tolerate. Moreover,
unlike CDMs based on shifted HRR fields or other assumed EP strain
distributions, this approach can explicitly recognize crack closure ef-
fects on FCG. It can directly evaluate Kop effects on the strain ranges

Nomenclature

a half crack length
b fatigue strength exponent
bk dimensions for a partially loaded crack (k= 1, 2) (m)
c fatigue ductility exponent
CDM critical damage model
d half length of the crack plus the monotonic plastic zone

(m)
dcr half length of the crack plus the monotonic plastic zone of

critical SIF (m)
D damage at each ith element ahead of the crack tip
da/dN fatigue crack growth rate
E Young’s modulus of elasticity (MPa)
EP elastoplastic
FCG fatigue crack growth
K stress intensity factor, SIF (MPa√m)
KC fracture toughness (MPa√m)
Kmax, Kminmaximum and minimum stress intensity factors (MPa√m)
Kop crack opening stress intensity factor (MPa√m)
LE linear elastic
Li length of the element i created by plastic deformation (m)
Lcr element plastic deformation related to critical SIF (m)
n total number of bar elements
N fatigue life for a specific load amplitude range
OL overload
PICC plasticity induced crack closure
pz, pzr monotonic and reverse (or cyclic) plastic zones
R load ratio (σmin/σmax or Kmin/Kmax)
SFL flow strength, SF= (SY+ SU)/2 (MPa)
SIF stress intensity factor

SU ultimate strength (MPa)
SY yield strength (MPa)
SY-CDM combined strip-yield critical-damage model
SYM strip-yield model
UL underload
V crack surface displacement (m)
VAL variable amplitude loading
W M(T) specimen half-width (m)
wi half-width of bar element i (m)
x, y Cartesian coordinates
xi coordinate location of the element i starting from the

specimen center (m)
xct coordinate location starting from the current crack tip (m)
α constraint factor: α=1 for plane stress; α= 1/

(1− 2ν) ≅ 3 for plane strain
Δa half crack growth increment (m)
ΔK stress intensity factor range (MPa√m)
ΔKeff effective stress intensity factor range (MPa√m)
ΔKth threshold stress intensity factor range (MPa√m)
Δεy strain range in the y direction (m/m)
Δεy,eff effective strain range (m/m)
Δεy,th strain range related to a load equivalent to the ΔKth (m/m)
εc Coffin-Manson’s fatigue ductility coefficient
εy,cr critical strain (m/m)
η material constant, η=0 for plane stress and η= ν for

plane strain
ν Poisson’s ratio
σc Coffin-Manson’s fatigue strength coefficient (MPa)
σcr stress related to the critical SIF (MPa)
σj stress at a segment of the crack surface (MPa)
σmax, σmin maximum and minimum applied stress (MPa)
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ahead of the crack tip because both Kop and Δε are obtained from the
same mechanics. As a result, the CDM used here can predict FCG
without neglecting Kop effects, but also without having to use Elber’s
questionable “cracks that are not fully open cannot sustain further da-
mage” hypothesis. Notice that ΔKeff concepts assume loads K < Kop

cannot induce fatigue damage albeit Elber’s original work shows evi-
dence against this idea [2], since his own data indicate strain changes
ahead of the crack tip below Kop, as previously discussed in [33].

Since the actual effect of crack closure is a most important issue for
practical FCG predictions, the idea here is to quantify how much Kop

affects the strain range field inside the plastic zones that always follow
fatigue crack tips. To do so, first the very same SYM mechanics is used
to quantify both the opening load and the EP strain range distribution
ahead of the crack tip. Then, the damage field associated with the EP
strain field is calculated. Finally, predictions based on ΔKeff and on CDM
concepts are compared either considering or neglecting the previously
calculated Kop effects.

2. The combined strip-yield critical damage model, SY-CDM

The SY-CDM uses the strip-yield displacement field to obtain the
cyclic plastic strains needed to estimate the associated damage field
ahead of the crack tip. Then, it calculates crack increments from the
region adjacent to the crack tip, where the accumulated damage
reaches its critical value at each load cycle. This model uses only well-
defined cyclic material properties to calculate damage through classical
εN rules like Coffin-Manson, SWT, or Morrow (the latter two to re-
cognize Kmax or R effects). The calculated strain field, and thus the
consequent damage field as well, are non-singular, since they recognize
crack tip blunting for loads K > Kop.

The first CDM version uses calculated crack increments to fit the
single constant of a McEvily-like FCG rule, which can model all three
phases of typical FCG curves recognizing proper threshold and tough-
ness limits, namely ΔKth(R) and KC, see [31] for details. The cyclic

damage distribution ahead of the crack tip, which depends on the dis-
tance of each VE (or tiny εN specimen) from the crack tip blunted by the
load, can be accumulated by the Palmgren-Miner linear damage or by
any other suitable rule, defining the critical damage as 1.0 or any other
value, see Fig. 1.

The second CDM version eliminates the need for an arbitrary (albeit
reasonable) McEvily-like FCG rule, introducing two new (equally rea-
sonable) hypotheses [32,33]. The first assumes that if a fatigue limit
exists, then there is a limit strain range related to the SIF threshold
range ΔKth below which the crack does not grow. In other words, the
FCG threshold ΔKth should induce a maximum strain range (in the y-
direction perpendicular to the crack plane) Δεy,th that does not cause
damage, thus does not contribute to the FCG process. The second hy-
pothesis assumes the crack becomes unstable at a maximum plastic
strain related to the material (or rather to the component) toughness
KC. This critical plastic strain εy,cr is the maximum strain the cracked
body can sustain before fracturing.

Both CDMs can estimate FCG without needing any data-fitting
parameters measured in actual da/dN× ΔK tests, a feature that qua-
lifies them as true prediction tools. The third CDM version, the one used
here, introduces several modifications in the second version to improve
the algorithm numerical performance and to better deal with VAL, as is
described along this text.

Combined SY-CDMs use the very same strip-yield mechanics de-
veloped by Newman to estimate ΔKeff from Dugdale-Barenblatt dis-
placement fields [7–10]. However, instead of using ΔKeff into the
Forman-Newman’s FCG rule [34], they transform those fields into their
associated strain fields to calculate crack increments by εN damage
accumulation procedures, as detailed described in [31–33,35]. Notice
that, even though SY-CDMs do not use directly crack opening loads to
calculate damage, the Kop value (intrinsically generated by SYM pro-
cedures) does affect their predictions for the EP strain fields ahead of
the crack tips. In other words, crack closure effects on the cyclic damage
field ahead of the crack tip are indeed accounted for by SY-CDMs.

Fig. 1. Schematics of the FCG caused by fracture of a VE at every load cycle [31].
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Moreover, the Kop importance can be evaluated simply by artificially
forcing it to be null both in SY-CDMs and in SYMs. Finally, notice as
well that since SYMs and SY-CDMs FCG use the same basic mechanics,
their predictions can be fairly and directly compared, in spite of being
based on different FCG driving forces.

SYMs and SY-CDMs contain three regions: (i) broken elements along
the crack face that keep residual deformations, (ii) unbroken EP ele-
ments inside plastic zone, and (iii) the LE part of the residual ligament
ahead of the crack tip. The original SYM proposed by Newman, see
Fig. 2, leaves residual plastically deformed material around the faces of
an advancing fatigue crack. The pz size and residual displacements are
obtained by the superposition of two LE solutions for a central cracked
plate loaded by (i) a remote uniform nominal tensile stress and (ii) a
uniform distributed stress applied over crack surface segments. The
plastic zone is discretized in a series of rigid-perfectly plastic 1D bar
elements, which are assumed to yield at the flow strength of the ma-
terial, SFL=(SY+ SU)/2, to somehow account for the otherwise ne-
glected strain-hardening effects. These elements are either intact at the
plastic zone or broken at the crack wake, in this case storing residual
plastic deformations. The broken bar elements can carry compressive
stresses during unloading and therefore they can yield in compression
when their stresses reach –SFL. The elements along the crack face that
are not in contact do not affect the crack surface displacements, neither
carry stresses. These same basic ideas are maintained in the SY-CDMs to
allow the fair comparison between theirs and SYMs predictions. Indeed,
although it is not too difficult to improve some of the maybe too sim-
plified SYM assumptions (like 1D bar elements and perfectly plastic
material), it would not be possible to properly collate SY-CDM and SYM
predictions otherwise.

The SYM simulates the effects of the actually 3D stresses around the
crack tip, caused by plastic restrictions when the plate is thick (and
cannot be assumed to work under plane stress), by using a constraint
factor α that increases the tensile flow stress SFL in the unbroken pz
elements during the loading. Thus, this constraint factor should vary
from α= 1 for plane stress up to α= 1/(1− 2ν) ≅ 3 for plane strain
limit conditions, where ν is Poisson’s coefficient. As there is no crack-tip
singularity when the crack closes, in Newman’s original model this
constraint factor is not applied to unbroken elements inside the pz
ahead of the crack tip during unloading, neither to broken elements at
the crack wake along the crack faces, a feature kept by the SY-CDM

used here.
Fig. 2 schematizes the stress distributions in the bar elements at

maximum σmax and minimum σmin applied stresses. Displacement and
stress fields are obtained from Eq. (1) requiring compatibility between
the LE part of the cracked plate and all the bar elements. The influence
functions f(xi) and g(xi, xj) are related to the plate geometry and its
width correction, as is expressed in Eqs. (2)–(4).
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Fig. 2. Crack surface displacements and stress distribution along the crack line [7].

Fig. 3. Ratio between element width and plastic zone size.
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Notice that η= 0 for plane stress and η= ν for plane strain, that B1

and B2 are calculated from Eq. (5), and that b1 and b2 are edge elements
calculated from Eqs. (6) and (7). The width of all elements is 2w= b2 −
b1. The monotonic plastic zone is calculated from Eq. (8) for a central
cracked plate (called M(T) in ASTM standards) and from Eq. (9) for
others geometries [9–10]:

=B πb W πd Wsin( /2 )/sin( /2 )k k (5)

= −b x wj j1 (6)

= +b x wj j2 (7)

= −−pz a W πa πa W πσ αS{(2 / )·sin [sin( /2 )·sec( /2 )] 1}FL
1

max (8)

=pz π K αS( /8)·( / )FLmax
2 (9)

The SYM can deal with input loads given by stresses or by SIFs.
Albeit the original formulation is for a cracked plate, it can be adapted
for other geometries using the similitude concept, since a similar FCG
rate is expected when it is induced by the same SIF in different spe-
cimen geometries. Notice that this argument is somehow inconsistent,
since the SYM assumes that the actual FCG driving force is ΔKeff, not ΔK,
and there is no guarantee that Kop is geometry-independent, but SYM
users usually neglect this fact. By computing the SIF of an M(T) spe-
cimen through Eq. (10), the input stress can be estimated as proposed in
[9]:

=K σ πa πd Wsec( /2 ) (10)

The third version of the SY-CDM presented here discretizes the pz
into 30 variable width bar elements, as in the original SYM. Fig. 3
shows the ratio between the element width (2w) and the plastic zone
size for the SYM and the combined SY-CDM versions 2 and 3. The SY-
CDM version 2 (v2) divides the plastic zone into 400 elements with
width equivalent to 0.0025⋅pz. In the SY-CDM version 3 (v3) the
number of elements is reduced to 30 but, instead of a constant, they
have variable widths. The thinnest element has width 0.001⋅pz, ten
times smaller than the original SYM (0.01⋅pz). The introduction of
variable width elements in the SY-CDM v3 did not cause relevant nu-
merical differences in a preliminary evaluation presented in [33]. The
element configuration of the SY-CDM v3 from Fig. 3 has been tested
under several material and load conditions (including VAL) with sa-
tisfactory results. However, the change in the number of elements from
400 to 30 has reduced the required computer time by a factor of about
25.

After discretizing the plastic zone and defining the position of the
bar elements, the SY-CDM calculates the elements’ deformation (Lmax)
under maximum applied stress by Eq. (11), a simple modification of Eq.
(1). The results of this equation for the elements at the crack surface
represent the displacements at the maximum stress (Vmax):

∑= = −
=

L V σ f x α S g x x· ( ) · · ( , )max max max i j FL i j1

30

(11)

A similar calculation is performed for a hypothetical load related to
the material toughness. As explained above, to avoid the need to use
FCG threshold and toughness properties, ΔKth(R) and KC, to reproduce
the three phases of typical da/dN× ΔK curves, two new hypotheses
based only on εN principles and on the physics of the FCG process were
introduced into the SY-CDM [32,33]. Before estimating the critical
plastic strain, it is necessary to calculate the deformations related to the
critical SIF as in Eq. (12). The critical deformation is calculated for the
same elements used in Eq. (11), i.e. the deformations are calculated at
the same position. The functions f(xi) and g(xi, xj) are calculated as
described in Eqs. (2)–(4), replacing the variable d by dcr; the stress σcr is
defined using Kc in the FIT solution of the M(T) specimen, see Eq. (10):

∑= −
=

L σ f x α S g x x· ( ) · · ( , )cr cr i j FL i j1

30

(12)

Under the minimum stress σmin, the elements inside the pz discharge

Fig. 4. Effect of removing most of the plastic wake around the crack faces [37].

Table 1
Simulation conditions.

Material R α ΔKmin (MPa√m) ΔKmax (MPa√m)

6351-T6 0.1 1 4.09 23.80
2 38.31
3

0.4 1 3.46 15.87
2 24.00
3

7075-T6 0.1 1 3.47 22.63
2
3

0.4 1 3.21 15.09
2
3

1020 0.1 1 11.83 30.72
2 40.00
3

0.4 1 9.74 20.43
2 40.00
3

Table 2
Material properties used for the SY-CDM simulations.

Material SY(MPa) SU(MPa) εc c KIC (MPa√m) ΔKth (MPa√m)

R=0.1 R=0.4

6351-T6 285 318 0.92 −0.53 43 4.01 3.39
7075-T6 498 576 0.12 −0.75 25.4 3.4 3.15
1020 285 491 0.25 −0.54 277 11.6 9.55
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until some of them near the crack tip yield in compression when they
reach -SFL (during unloading, the constraint factor is α=−1 for all
elements inside the plastic zone), forming the reverse plastic zone. The
broken elements along the crack faces can contact each other during
unloading carrying compressive stresses as well. Some of these elements
can also yield in compression when their stress reaches -SFL. The stress
σj acting at each element must be identified before calculating their
residual plastic deformation. Eq. (1) can be rearranged into Eq. (13),
where Li are the elements deformation from Eq. (11) for xi > a, or the
residual plastic deformations for the elements located at the crack
wake.

∑ = −
=

σ g x x σ f x L( , ) ( )
j

n
j i j min i i1 (13)

This system of equations is solved by using the Gauss-Seidel method
with restraints added, like first proposed in [7]. For the elements inside
the plastic zone (xj > a) these restrictions are related to their idealized
yield behavior in tension and in compression, as described by Eqs. (14)
and (15). For the broken elements located at the crack wake along the
crack faces, the restrictions are related to their separation and to

yielding in compression, as expressed by Eqs. (16) and (17).

> =ifσ αS soσ αSj FL j FL (14)

< − = −ifσ S soσ Sj FL j FL (15)

> =ifσ soσ0 0j j (16)

< − = −ifσ S soσ Sj FL j FL (17)

The solution of Eq. (13) for the stresses σi acting in the elements
results in Eq. (18), employed by the iterative method, where the index I
is the current number of the iteration step. The matrix gij defined by Eq.
(3) has as diagonal the vector gii and the description of the iterative
process can be found in [7]. The iterative process is repeated until the
maximum error in the stress vector reaches values below 0.01∙SFL. This
method converges quickly within 3 to 20 iteration steps for the number
of elements normally used by the model.

∑ ∑= ⎡
⎣

− − − ⎤
⎦=

−

= + −σ σ f L σ g σ g g( ) · ( ) ( ) /i I min i max j

i
j I ij j i

n
j I ij ii1

1

1 1 (18)

After finding the stress field, it is possible to calculate the residual

Fig. 5. Fatigue crack closure effect predicted for the 6351-T6 Al alloy at R=0.1.

Fig. 6. Fatigue crack closure effect predicted for the 6351-T6 Al alloy at R=0.4.
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plastic deformations at each element that yielded in compression using
Eq. (19):

∑= = −
=

L V σ f x σ g x x· ( ) · ( , )min min min i j

n
j i j1 (19)

Another step required in the SY-CDM formulation is the calculation
of the plastic deformation due to a stress range related to ΔKth(R). As
fatigue cracks do not propagate when ΔK(R)≤ ΔKth(R), the plastic
deformations related to ΔKth(R) cannot induce damage in the material
ahead of the crack tip. The first step of the SY-CDM algorithm then
defines the load condition due to the FCG threshold as Kmin,th= Kmin

and Kmax,th=Kmin,th+ ΔKth. This notation is convenient for the mod-
eling, because it avoids the calculation of plastic deformations under
Kmin,th, i.e. Lmin,th= Lmin.

The computation of plastic deformations ahead of the crack tip due
to an applied load equivalent to Kmax,th is performed with the same
elements created for the current load cycle. As Kmax (or σmax) is always
higher than Kmax,th (or σmax,th), before computing the plastic deforma-
tions it is necessary to find the stress field acting ahead of the crack tip

under an applied σmax,th (the stress equivalent to Kmax,th). This is done
through Eq. (18), but replacing σmin by σmax,th and Lmax by Lmin. After
getting the stress profile, the next step is to calculate Lmax,th ahead of the
crack tip using Eq. (11), replacing σmax by σmax,th and α⋅SFL by the stress
vector σi.

Plastic strain ranges ahead of the crack tip are calculated by Eq.
(20), derived from the solution proposed by Rice [36] to estimate the
plastic strain field of tensile cracks based on their crack tip opening
displacements. In Eq. (20), xct locates the element starting from the
current crack tip. Plastic strains related to the critical SIF εy,cr and to
maximum applied stress σmax are calculated by Eqs. (21) and (22). In a
similar way, the plastic strain range due to the threshold is obtained
from Eq. (23).

= + +ε log L x L xΔ [( )/( )]y ct min ctmax (20)

= +ε log L x(1 / )y cr cr ct, (21)

= +ε log L x(1 / )y max max ct, (22)

Fig. 7. Fatigue crack closure effect predicted for the 7075-T6 Al alloy at R=0.1.

Fig. 8. Fatigue crack closure effect predicted for the 7075-T6 Al alloy at R=0.4.
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= + +ε log L x L xΔ [( )/( )]y th ct min th ct, max,th , (23)

Effective plastic strain ranges that act at the center of each bar
element ahead of the crack tip are calculated at each load cycle by Eq.
(24). These strain ranges can be correlated with the number of cycles N
that would be required to break each element if they were kept constant
during its entire life using the plastic part of Coffin-Manson’s rule Eq.
(25), or of the SWT rule using Eq. (26). Damage at each element D is
calculated using Palmgren-Miner’s rule, Eq. (27), and the crack incre-
ment at each load cycle is defined at the position where the accumu-
lated damage reaches the value of 1.0.

= − −ε ε ε ε ε εΔ [Δ Δ ]·[ /( )]y eff y y th y cr y cr y max, , , , , (24)

=N ε ε(1/2)·(Δ /2 )y eff c
c

,
1/ (25)

= +N σ ε σ ε(1/2)·( ·Δ /2 )max i y eff c c
b c

, ,
1/( ) (26)

=D N1/ (27)

As the crack propagates, an interpolation process is required to
correctly define the accumulated damage value for the unbroken

elements inside the new plastic zone. At each load cycle a new element
is created at the crack surface with the width equivalent to the crack
increment and, to avoid a large number of elements, the model uses a
lumping process for elements along the crack surface.

All elements located along the crack surface, except for the element
n just behind the crack tip, are tested using the criterion presented in
Eq. (28). When this criterion is satisfied, two adjacent elements are
lumped forming an element of width equal to the sum of the widths of
both elements. The residual plastic deformation of the lumped element
is calculated using a weighted average, expressed by Eq. (29):

+ ≤ − −+ +w w a x a2( ) 2·Δi i i1 1 (28)

= + ++ + +L L w L w w w( )/( )i i i i i i1 1 1 (29)

Notice that all such CDM procedures are coherent with the hy-
pothesis the bar elements ahead of the crack tip behave as tiny εN
specimens, and their predictions for FCG rates can be easily verified by
simply measuring them. Their main advantage is that they use only
well-defined Coffin-Manson material properties, i.e. they do not need or
use any data-fitting parameter of previous crack growth tests to predict

Fig. 9. Fatigue crack closure effect predicted for the 1020 low carbon steel at R=0.1.

Fig. 10. Fatigue crack closure effect predicted for the 1020 low carbon steel at R=0.4.
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FCG rates. In this sense, knowing the εN properties of the material the
CDM can really make FCG predictions using only sound mechanical
tools.

3. Numerical simulations

James and Knott [37] investigated the intrinsic threshold SIF range
of a quenched and tempered Q1N steel, measuring crack-opening loads
and FCG rates in four-point bending specimens. They used an electro-
discharge machine (EDM) to remove part of the plastic wake around the
crack faces, to find the effect of crack closure on the FCG rate. After
reaching the threshold in an R=0.35 test, they identified 1.2mm of

wake-induced closure. Part of this wake was removed by EDM, leaving
only 0.5mm of wake behind the crack tip. Upon restarting the test at
the same load, they found that the growth rate was higher and the
closure lower than during the previous cycling, see Fig. 4.

The increase in FCG rates after the plastic wake removal is a clear
evidence of how crack closure can affect them, but those authors un-
fortunately did not show whether such rates quantitatively increased as
was predicted by ΔKeff. This is a most important point, because even
when crack closure exists and can affect FCG rates, the significant
question for practical applications is whether its effect can be well
predicted when using the ΔKeff approach to model it. That is why the
claim “crack opening loads can affect FCG rates” is not disputed here.
The point in question is if there is an alternative explanation for Kop

effects that can be used even when they cannot be quantified by ΔKeff

principles.
Previous works have shown that da/dN× ΔK FCG curves can be

quite well predicted for several materials both by ΔKeff-based SYMs and
by CDMs. New data for the 6351-T6 Al alloy presented latter on in this
work support this claim. SYMs assume the material follows a Forman-
Newman FCG curve with 4 data-fitting parameters, and frequently use a
constraint factor as still another data-fitting parameter. CDMs, on the
other hand, assume FCG can modeled by εN-based crack initiation and
fatigue damage accumulation principles using only the Coffin-Manson
properties of the material [31–33]. Those experimental results clearly
show there is no need to introduce artificial corrections in basic εN tools
(like ill-defined size effects or any other data-fitting parameter, for that
matter) to achieve or even to improve CDMs predictions.

In particular the SY-CDMs predictions, based on damage accumu-
lated by plastic strain ranges ahead of crack tips calculated by the very
same mechanics used by SYMs to estimate Kop and ΔKeff, intrinsically
include Kop effects on their estimated FCG curves. Hence, they can be
fairly compared to SYMs predictions. Moreover, it makes sense to es-
timate FCG rates under fixed {ΔK, R} conditions by SY-CDMs con-
sidering and neglecting crack closure to evaluate its effect on such rates
(according to CDM principles). It makes sense as well to repeat this
exercise with the SYMs predictions. In this way, quantitative estimates
for crack closure effects on FCG rates according to critical damage and
to ΔKeff principles can be coherently compared. Besides the purely
academic appeal, this exercise can provide a quantitative tool to those
interested in identifying which are the true FCG driving forces, a must
for improving the reliability of residual life prediction models. Indeed,
even if such models can be properly fitted to sets of FCG data under
VAL, it is at least questionable to use them as prediction tools for dif-
ferent conditions if they are based in wrong driving forces hypothesis.

The effect of crack closure in FCG is evaluated here using the SY-
CDM for three materials, 6351-T6 and 7075-T6 Al alloys and 1020
steel, under R=0.1 and R=0.4. Moreover, each material and R cal-
culation uses three different constraint factors (α=1, 2, and 3), to si-
mulate plane stress, plane strain, and intermediate conditions for a wide
range of ΔK, as it is listed in Table 1. FCG rates are calculated using
Coffin-Manson’s parameters (Eq. (25)) for thirty ΔK points between the
limits listed in Table 1, either considering or neglecting crack closure
effects for each condition. 360 simulations are performed for each
material. FCG rates are also calculated using Newman’s original SYM
[7–10] as is described in [34]. Material properties used for FCG rate
predictions with the combined SY-CDM are listed in Table 2.

4. Results and discussion

The percent increments of the FCG rate predicted by the SYM and by
the SY-CDM for a given R due to the elimination of crack closure effects
are presented in Figs. 5 to 10, as a function of the applied SIF range ΔK.
The closure effect is evaluated by first calculating the predicted da/
dN× ΔK rate considering the calculated Kop value, and then by artifi-
cially forcing it to be null. The results for 6351-T6 Al alloy are shown in
Fig. 5 for R=0.1 and in Fig. 6 for R=0.4. Likewise, Figs. 7 and 8

Table 3
Average FCG rate increments.

Material R α Average FCG rate increment (%) Ratio SYM/SY-CDM

SY-CDM SYM

6351-T6 0.1 1 129.80 375.78 2.9
2 47.30 124.51 2.6
3 30.71 66.41 2.2

0.4 1 94.56 159.41 1.7
2 14.33 37.42 2.6
3 3.64 14.29 3.9

7075-T6 0.1 1 111.15 693.23 6.2
2 50.82 206.56 4.1
3 29.50 115.58 3.9

0.4 1 71.73 259.11 3.6
2 14.32 64.33 4.5
3 5.41 35.31 6.5

1020 0.1 1 284.44 1132.53 4.0
2 66.49 257.56 3.9
3 31.59 120.91 3.8

0.4 1 98.20 360.30 3.7
2 22.40 65.03 2.9
3 4.04 20.20 5.0

Fig. 11. SY-CDM and SYM predictions for the da/dN× ΔK curve of the 6351-
T6 alloy at R=0.1, compared with the experimental data measured according
to ASTM E647 procedures.
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present the predictions for 7075-T6 Al alloy, and Figs. 9 and 10 for
1020 low carbon steel.

The elimination of crack closure (by artificially forcing Kop=0)
results in significant FCG rate increments for almost all simulation
conditions. This of course indicates that Kop effects should not be ne-
glected in practical applications. Crack closure effects on FCG rates
follow the same tendency for the three materials, i.e. they are higher for
plane stress conditions (where α=1) and for R=0.1. However, the
FCG modelling approach based on the ΔKeff hypothesis is much more
sensitive to the Kop value than the critical damage approach. This is not
a surprise, due to the direct dependence of ΔKeff on Kop. Table 3 presents
the average FCG rate increment for each simulated condition listed in
Table 1. It lists as well the ratio between the rates predicted by the SYM
(using its ΔKeff-based approach) and by the SY-CDM (considering Kop

effects on the strain ranges ahead of the crack tip). For α=1 and for
R=0.1 e.g. this ratio is 2.9 for the 6351-T6 and 6.2 for the 7075-T6 Al
alloys, and 4.0 for the 1020 steel. Notice how much more sensitive the
predictions based on ΔKeff are to Kop than the CDM predictions, a point
that can help identifying the actual FCG driving forces in practical
problems.

Indeed, Table 3 shows that the increases in FCG rates predicted by
the SYM assuming ΔKeff is the FCG driving force are always much

higher than the εN-based SY-CDM predictions when Kop is neglected.
The SYM assumes there is no damage ahead of the crack tip while it is
closed under loads K < Kop. Therefore, when Kop is forced to be null, it
predicts large ΔKeff changes and thus large FCG rate increases. The SY-
CDM, on the other hand, uses the cyclic plastic strains ahead of the
crack tip induced by the whole range of applied load as the FCG driving
force, considering as well the effect of crack closure by keeping residual
plastic deformations at the crack wake.

Hence, Table 3 shows that SYM ΔKeff–based predictions over-
estimate the effect of crack closure in comparison to the Δε-based SY-
CDM predictions. This is once again not a surprise, since there is plenty
of evidence collected by ΔKeff supporters indicating that ΔKeff-based
FCG rate predictions can overestimate crack closure effects. For in-
stance, Donald and Paris [38], testing 6061-T6 and 2024-T3 Al alloy
specimens, concluded that the method used to calculate ΔKeff proposed
by Elber [2] was not appropriate to describe their results, since it
overestimated the crack closure effect measured in their tests.

Similar evidence about the actual effect of crack closure came from
the work of Hertzberg et al. [39]. They tested 7mm thick Al-Cu-0.7Si Al
alloy and 9mm thick 4340 steel specimens, and studied the effect of
artificially increasing Kop by using 50, 75, and 100 μm thick shims be-
tween the crack faces. For Al alloy, e.g., Kop increased from 13% to
30%, 50%, and 93% of Kmax, while FCG rates reduced by a factor of 1.2,
2.7, and 4.7. However, if really caused by ΔKeff, FCG rates should have
reduced by much larger factors (16, 27, and 800, respectively), not by
the values reported by the authors. It is interesting to note that those
authors did not question the basic “ΔKeff is the FCG driving force” idea
in view of their own results, an evidence that the overestimation of the
FCG rates they measured in their tests was not biased in any way.

It is important to emphasize that even though SYMs and SY-CDMs
use completely different philosophies to estimate FCG rates, both can
reproduce quite well da/dN× ΔK curves of several materials, as pre-
viously studied in [31–33]. These works compare their predictions for
the 7075-T6 Al alloy and for the 1020 steel with experimental data.
Similar new data presented in Figs. 11 and 12 for the da/dN× ΔK
curves of the 6351-T6 Al alloy at R=0.1 and R=0.4 support this
claim.

However, besides the difference between the crack driving forces
assumed by each model, it is important to emphasize as well that SY-
CDMs calculate FCG rates directly from the accumulated damage using
εN procedures that do not need or use any data-fitting parameter to
describe the experimental da/dN× ΔK results. This is certainly a major
asset of such models.

The SYM, on the other hand, uses a pre-chosen Forman-Newman
FCG rule to predict its da/dN rates, which has four data-fitting para-
meters (not to mention that the transversal constraint α is frequently
used as a 5th data-fitting parameter in most practical applications).
These parameters must be found by adjusting the rule to a suitable set
of experimental FCG data. Hence, even though Elber’s hypothesis
overestimates the effect of crack closure, the numerous SYM data-fitting
parameters allow it to reproduce da/dN× ΔK curves quite reasonably
(if α is properly chosen), as well as to perform acceptable residual life
predictions in many practical cases. Nevertheless, reasonable

Fig. 12. SY-CDM and SYM predictions for the da/dN× ΔK curve of the 6351-
T6 alloy at R=0.4, compared with the experimental data measured according
to ASTM E647 procedures.

Fig. 13. Bar elements for plane stress [40] to represent 2D continuous solid.
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predictions resulting from the five properly calibrated data-fitting
parameters do not prove that ΔKeff is the actual FCG driving force. In
fact, if the SY-CDM can match the SYM predictions using no data-fitting
parameters, from Occam’s razor principle it at least deserves to be
considered as a viable option for practical applications, not to mention
as a promising tool for basic fatigue research.

These analyses indicate that further experimental verifications of
the actual FCG driving force should always be supported by suitable Kop

measurements. In fact, Kemp pointed out this need a long time ago
[40]. In other words, if ΔKeff has indeed a tendency to overestimate
fatigue crack closure effects, it should be properly measured in all
evaluations based on SYM predictions, even if it can be properly fitted
to the experimental data.

Finally, although the above approximation presents satisfactory
results, it is possible to improve the model to better characterize the
actual material behavior. Three improvements can be suggested here:
(i) to improve the description of the material behavior by its cyclic
fatigue properties using better constitutive models; (ii) to add bar ele-
ments to represent strain constraints in the continuum solid; and (ii) to
improve displacement equations for the crack faces.

The first improvement is obvious, because the cyclic constitutive
model used here assumes the material is perfectly plastic, a rudimen-
tary approximation. The second can be to use, for example, the pattern
of bars proposed by Nagarajan et al. [41] that exhibits the same de-
formation behavior of the continuum solid (assuming ν=1/3 and
plane stress), as illustrated in Fig. 13. The strip-yield model assumes the
bar elements are independent of each other, so they do not represent
the transverse deformations resulting from the Poisson effect, neither
the plastic deformation constraints induced by them. The third im-
provement can solve the problem of the crack face displacement given
by Eq. (2) being limited to a specific situation of geometry and
boundary conditions. For instance, Fig. 14 shows differences of crack
face displacements for three different geometries and boundary condi-
tions with the same FIT for a crack size to width ratio a/w=0.2. Notice
how that the crack opening can have significant differences for different
geometries, which could be accounted for if better modeled in the SYMs
and thus in the SY-CDMs as well. However, none of these improvements
has been introduced here to avoid masking the intended comparisons
between SYM and SY-CDM predictions, since the main objective of this
work is to evaluate the Kop effect on ΔKeff and on the damage field ahead
of the crack tip according to the traditional SYM mechanics. However,
such improvements will certainly be explored in future works.

5. Conclusions

SYM and SY-CDM predictions for several materials (6351-T6 and
7075-T6 Al alloys, and 1020 steel) indicate that the influence of crack

closure on FCG rates can be significantly lower when modeled by da-
mage accumulation principles than when accounted by assuming ΔKeff

is the FCG driving force. Indeed, SY-CDMs predictions, which assume
FCG rates are caused by the damage accumulated by the strain range
distribution ahead of the crack tip, predict much lower (although sig-
nificant) Kop effects than ΔKeff-based crack SYMs predictions. This
comparison is coherent since even though SY-CDMs predictions do not
use ΔKeff concepts, they do consider crack closure effects because they
are based on the very same strip-yield mechanics used by the SYMs.
Hence, if ΔKeff has indeed a tendency to overestimate fatigue crack
closure effects, this can be an evidence it may not be the FCG driving
force. In any case, to allow the correct identification of the true FCG
driving force, Kop should be properly measured in all experimental
verifications of FCG predictions, even if they can be properly fitted to
the measured data.
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