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Abstract
This paper analytically studies how elliptical holes affect the resistance of unidirectional laminate plates. Although local stress 
and strain concentration effects induced by notches are well known in isotropic materials, the same cannot be said about aniso-
tropic materials. Stroh formalism is used to describe the elastic stresses around the border of elliptical holes subjected to in-plane 
loads. Tsai–Wu, Puck, and LaRC05 failure criteria are applied to estimate initial damage, due to their good performance on the 
world-wide failure exercise. Plane strain conditions are also studied to evaluate 3D constraint effects induced by the plate thick-
ness. The major conclusions are: (1) the stress concentration may be up to about twice higher than for isotropic materials; (2) 
matrix failure is observed for most cases, and the notched strength is smaller than 10% of the unnotched strength; (3) strength 
prediction differences assuming plane stress and plane strain limit cases may be higher than 50%; and (4) for compressive loads, 
the LaRC05 model predicts a considerable strength reduction when compared to the other failure criteria.

Keywords  Composite · Stress concentration · Stroh formalism

1  Introduction

Notches like holes, slots, grooves, keyways, shoulders, cor-
ners, threads, reinforcements, etc., are usually unavoidable 
in real structural components for functional or manufactur-
ing reasons, but they introduce local stress/strain concen-
tration effects that cannot be neglected in most practical 
applications. Such effects are usually analytically mod-
eled considering bi-dimensional (2D) plane stress or plane 
strain approximations, as exhaustively discussed by Savin 
[1]. Studies of 3D notch effects in isotropic materials can 
also be found in the literature too, see, e.g., [2]. For stress 
analyses in anisotropic materials, Lekhniskii [3] and Stroh 

[4] formalisms are popular, and both can be used to generate 
exact elastic 2D solutions for concentration effects induced 
by circular and elliptical holes in infinite plates, as well as 
approximated solutions for other notch shapes [5, 6]. Tan 
[7, 8] proposed some useful functions to approximately 
describe stress gradients around elliptical holes, which play 
an important role in early crack growth [9]. Zappalorto and 
Carraro [10] proposed an approximated analysis for hyper-
bolic notches. A brief overview of the general 2D problems 
in anisotropic materials is presented by Sevenois and Kous-
sios [11]. However, these works use stress concentration fac-
tors instead of the complete stress distribution around the 
notch, following the usual approach for isotropic materials. 
In Sect. 3, the importance of considering the whole stress 
distribution for anisotropic materials is discussed.

Strength estimations for notched laminates are not a sim-
ple task at all. Analytically, a few models like those pro-
posed by Whitney and Nuismer [12] and by Tan [7, 8] are 
traditionally used because they can provide a relatively good 
approximation for some laminates. However, both models 
need to use adjustable experimental parameters that depend 
on the laminated material, layup type and other factors, and 
do not reproduce the physical failure mechanisms.

Recently, this problem has been widely analyzed. Exper-
imentally, Iarve et  al. [13] and Mollenhauer et  al. [14] 
used Moiré interferometric techniques to evaluate damage 
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progression and stress redistribution during failure evolu-
tion. O’Higgins et al. [15] compared some characteristics 
of glass fiber and carbon fiber open-hole composites and 
concluded that the glass fibers allow a higher strain level, 
whereas the carbon fibers provide stiffer laminates. Lee and 
Soutis [16] carried out a detailed and comprehensive study 
about how the specimen dimension affects the measured 
strength. Huang et al. [17] proposed a new specimen design 
to get a more uniform stress distribution in biaxial tests. 
Kureemun et al. [18] tested biaxial open-hole specimens 
under tension/compression, helping to fill this experimental 
data gap in the literature. Shah et al. [19] proposed the use 
of numerical tools (instead of experimental) to estimate the 
strength of laminates under biaxial loads because of their 
cost advantage. However, since experimental data depend 
on many factors, such as hole shape and dimensions, it is 
necessary to collect a large amount of data from different 
tests to obtain the data basis necessary for design purposes. 
Chen et al. [20] and Su et al. [21] analyzed the effect of the 
finite elements used for fracture simulation under uniaxial 
tension and compression, and of geometrical parameters 
like hole dimension and plate thickness. Other simulation 
approaches, like those proposed by Sadeghi et al. [22] and by 
Moure et al. [23], study as well the potential for numerical 
simulations in this field.

However, despite all these investigations, a comprehen-
sive parametric study of notch effects on composite struc-
tural components still is not available. Hence, there is room 
for limit analytical solutions in this field. Indeed, since the 
design of composite structural components involves a large 
amount of variables, numerical simulations can become very 
expensive or even unsuitable for some practical applications, 
and analytical models can be a very useful tool in such cases 
[24]. For instance, the importance of parametric analytical 
analyses for the design of composite pressure vessels is stud-
ied in [25].

In the following sections, first the Stroh formalism is 
used to obtain the solution for the stress distribution around 
elliptical holes in orthotropic plates under plane stress condi-
tions. A study about other notch types is presented by Zap-
palorto and Carraro [26, 27]. An alternative solution, valid 
just for orthotropic materials, is presented by Bonora et al. 
[28, 29]. However, considering unidirectional laminates, 
Bonora’s approach cannot model off-axis loads.

The stress distribution proposed here can be generalized 
for any anisotropic material, as well as for plane strain 
conditions, as proved by Ting [4] and Hwu [6]. It can also 
be extended, using the classical laminate theory (CLT), to 
obtain equivalent mechanical properties, which transform 
a laminate layup in an equivalent uniform homogenized 
orthotropic plate. The CLT may be useful as first approach 
to study stress concentration effect in multidirectional 
symmetric laminates, but numerical simulations must be 

carried out to evaluate out-of-plane stresses and strains 
around the hole due to border effects. The stress distri-
bution around elliptical notches developed here is used 
to estimate the initial damage of notched plates by three 
different criteria, using the world-wide failure exercise 
(WWFE) results as a basis [30], considering both the first 
(WWFE-I) [31] and the second (WWFE-II) [32] editions 
recommended guideline. Finally, plane strain conditions 
are considered to evaluate the possible error generated by 
neglecting the transversal stress component along the plate 
thickness direction when plane stress is assumed around 
the notch border. Even though plane stress and plane strain 
are simplified limit assumptions to analyze 3D structures 
as if it was a 2D problem, the actual stress components 
and strengths for any plate thickness are expected to be 
between these two bounds.

2 � Theoretical basis

Four principal coordinate systems are used to study the 
stress concentration problem in anisotropic plates, as 
shown in Fig. 1. Global coordinates x(g)

i
 are used for the 

applied load. The material coordinates are xi, where x1 is 
aligned to the fibers and the angle between x1 and x(g)

1
 is 

� . The elliptical hole geometry is defined by x(h)
i

 , where 
the angle between x(h)

1
 and x1 is � . Finally, the elliptical 

hole border is mapped by the local coordinates x(l)
i

 , where 
the angle between x(l)

1
 and x1 is � . The operator used to 

rotate tensors from one coordinate system to another can 
be defined as �ij = cos

(
xi, xj

)
 [33].

Fig. 1   Coordinate systems used to model stresses and strains around 
elliptical hole borders in anisotropic plates
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2.1 � Stroh formalism

The Stroh formalism is a powerful analytical tool to model 
anisotropic materials, and it is used herein considering gen-
eral orthotropic materials. An overview of the formalism is 
presented next, but further detailed derivations can be found 
in Ting [4] and Hwu [6]. As in all elasticity problems, the 
equilibrium requirements (neglecting body forces), the geo-
metrical compatibility and the constitutive equations must be 
satisfied by obeying the following equations:

The general solution for the displacement field uk is 
obtained by

The constants ak in Eq. (4) depend on material properties, 
which are defined as the material eigenvectors, and fk(zk) are 
functions obtained from the boundary conditions. Consider-
ing 2D problems, without loss of generality, zk = x1 + pkx1 , 
where pk are the material eigenvalues computed by manipu-
lating Eqs. (1–4) to obtain

where Qik = si1k1 , Rik = si1k2 and Tik = si2k2 . Then, the gen-
eral stress solutions are given by

where � =
[
�T + p�

]
� = −(1∕p)

[
� + p�

]
� . Using Airy’s 

stress function [31], the general solution for the stress func-
tion is

It is helpful to transform Eq. (5) in a classical form of the 
eigenvalue problem. Using matrix properties and the definition 
of � , the following relation can be obtained

where�1 = −�−1�T , �2 = �−1 and �3 = −��−1�T −�.

Considering the local coordinate system, a direct transfor-
mation can be obtained by

(1)�ij,j = 0

(3)�ij = (ui,j + uj,i)∕2

(3)�ij = sijkl�kl

(4)uk = akfk(zk)

(5)
[
� +

(
� + �T

)
p + �p2

]
� = �

(6)�i1 = −pbif
�

(z)

(7)�i2 = bif
�(z)

(8)�i = bif (z)

(9)
[
�1 �2

�3 �1

]T[
�

�

]
= p

[
�

�

]

(10)�(l) = � cos2 � +
(
� + �T

)
sin � cos � + � sin

2 �

(11)�(l) = � cos2 � + (� −�) sin � cos � + �T sin
2 �

Hence,

The Barnett–Lothe tensors [34] are defined in the integral 
form as

Explicit solutions for the Barnett–Lothe tensors can be 
found in Hwu [6].

The load expressed in global coordinates x(g)
i

 can be com-
puted in material coordinates x

i
 using

where the angle between x
i
and x(g)

i
 is � (see Fig. 1), and the 

stress vector can be defined in material coordinates as

Using conformal mapping to transform the ellipse into 
a unitary circle in complex space, the general form of the 
stress function that satisfies σ(l)

22
= 0 and yields stress com-

ponents that tend to the applied load far from the hole is 
given by

where � is used to map the circle on the complex space, the 
symbol 

⟨
ζ−1
ξ

⟩
 means a diagonal matrix with the elements 

ζ−1
ξ

 , � =
[
b1 b2 b3

]
 , and � is a generic vector to be 

determined.
The traditional approach [4, 6] fixes the ellipse princi-

pal axis, but here it is considered that the ellipse can be 
inclined in relation to the fiber direction by an angle � , as 
illustrated in Fig. 1. Then, the elliptical parametric equa-
tion is x1 = ra cos (� + �) cos � − rb sin (� + �) sin � and 

(12)
�(l) = � cos2 � −

(
� + �T

)
sin � cos � +� sin

2 �

(13)�
(l)

1
= −

[
�(l)

]−1[
�(l)

]T

(14)�
(l)

2
=
[
�(l)

]−1

(15)�
(l)

3
= −�(l)

[
�(l)

]−1[
�(l)

]T
−�(l)

(16)�
BL

=
1

� ∫
�

0

�
(l)

1
d�

(17)H
BL

=
1

� ∫
�

0

�
(l)

2
d�

(18)L
BL

=
1

� ∫
�

0

N
(l)

3
d�

(19)�
ij
= �ik�jl�

(g)

kl

(20)�i =
[
�i1 �i2 0

]T
, i = 1, 2

(21)� =
(
x
1
�
2
− x

2
�
1

)
+ 2Re

{
�
⟨
ζ−1
ξ

⟩
�
}
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x2 = ra cos (� + �) sin � + rb sin (� + �) cos � , where ra and 
rb are the major and the minor ellipse semi-axes and ψ is the 
angle defined on the complex space. Note that when � = 0◦ , 
both definitions become identical. Using the free surface 
boundary condition ( σ(l)

22
= 0 ), it is possible to find

Having obtained the stress function, the stress along the 
elliptical hole border can be computed as

where 
[
�
(l)

1

]T
=
[
cos � sin � 0

]
 and 

[
�
(l)

2

]T
=
[
− sin � cos � 0

]
 

are unit vectors in x(l)
1

 and x(l)
2

 directions.

The derivative ��
/
��

(l)

2
 can be obtained considering an 

infinitesimal arc of the ellipse ds, taking care to relate the 
angles ψ and θ using the infinitesimal triangle of sides ds, 
dx1 and dx2 . The result, as a function just of � , is

where �(l)

1
=
(
�

(l)

1

)T

− �
(l)

3
�BL

(
�BL

)−1 and �(l)

3
= −�

(l)

3(
�
BL

)−1.
Hwu [6] presented an analysis for polygonal and elliptical 

holes; however, the alternative approach presented above has 
some practical advantages. Indeed, it uses global coordinates 
to compute the applied load considering the angle between 
the ellipse and the material coordinates, so it allows a better 
view of the hole inclination effect in failure analyses. For a 
circular hole, ra = rb = r , the hoop stress solution is then 
given by

where �� =
[
1 0 0

]
 and �2 =

[
0 1 0

]
.

For some considerations about the classical laminate the-
ory application to extend the Stroh formalism application, 
see [35–37]. It is well known that interlaminar effects are 
generated because of the different properties of consecutive 
laminas in a laminate, see, e.g., Kant and Swaminathan [38], 
but these effects are not within the scope of this paper.

2.2 � First‑Ply failure analysis

According to Soden et al. [31], Tsai–Wu, Puck, and Cuntze 
are the anisotropic failure models that better fitted the 

(22)
� = −(1∕2)�−1

[(
ra cos �−irb sin β

)
�
2
−
(
ra sin �+irb cos β

)
�
1

]

(23)�
(l)

11
= −

[
�
(l)

1

]T
��

/
��

(l)

2

(24)

��

/
��

(l)

2
= − �

2
sin θ−�

1
cos θ

+ Re

{(
i sin (� − �) −

rb

ra
cos (� − �)

)(
�

(l)

1
+ i�

(l)

3

)[( ra

rb
cos �−i sin β

)
�
2
−

(
ra

rb
sin �+i cos β

)
�
1

]}

(25)�
(l)

11
= ��

(
�

(l)

1
�
2
+�

(l)

3
�
1

)
− �2

(
�

(l)

1
�
1
−�

(l)

3
�
2

)

WWFE-I data. The latter is not used in this paper because 
it provides similar predictions to Puck for First-Ply-Failure 
(FPF) [39]. Kaddour and Hinton [32] say that LaRC05 and 
Carrere models better described WWFE-II results, but the 
latter is not considered in this paper either, since it is based 
on a computational micromechanics approach. So, three 
failure criteria are used in the following analyses: Tsai–Wu, 
Puck, and LaRC05.

Tsai–Wu model uses just one polynomial function to 
fit the data, whereas the others use different functions to 
separate the concurrent damage mechanisms. A single 
polynomial equation is easier to implement, but different 
functions to evaluate different failure mechanisms can be 
more versatile. Hence, each failure model has advantages 
and disadvantages, and so far none has been recognized as 
clearly superior. Indeed, Soden et al. [31] suggest that the 
safest approach is to use more than one criterion to model 
composite structures and then to choose the most conserva-
tive result to design or analyze them.

A more recent failure design guideline [40] assumes the 
trace of the stiffness matrix is an invariant for carbon fiber-
reinforced polymer (CFRP), so that it can be considered a mate-
rial property. Hence, this criterion uses omni strain failure enve-
lopes and considers the most conservative one. According to the 
authors, even using the inner envelope curve, the results allow 
a strain level higher than usually assumed in industrial prac-
tices. However, this new criterion cannot be used here either, 
because it is not applicable for stress concentration problems, 
since initial damage estimates using this conservative approach 
results in a too small strain level on the rest of the structure. 
Alternatively, even though recent advances in micromechanical 
modeling may improve its usefulness, macromechanical criteria 
are selected for the present study, despite limited analysis for 
specific fiber volume fraction, because they still have a higher 
reliability than micromechanical models [41].

For all the models presented hereafter, failure is assumed 
to begin when the function used to describe them equals 
one. To keep generality, the failure criteria are presented for 
a 3D stress state.

2.2.1 � Tsai–Wu criterion

Tsai and Wu proposed a general failure criterion for aniso-
tropic materials [42, 43], not restricted to composites, based 
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on a polynomial function. Considering a unidirectional com-
posite as transversally isotropic for 3D cases, and consider-
ing its different strengths along each direction, this function 
can be expanded as

where a12 and a23 are calibration factors that represent the 
interaction between normal stresses.

In the absence of experimental data, the following val-
ues may be used as a first approximation

A similar approach based on strains was also proposed, 
and it can be useful for experimental analyses.

2.2.2 � Puck criterion

Puck’s theory [44, 45] has been widely used in Germany, 
inclusive in standard procedures [46], and it became more 
popular after the WWFE results and the publication of 
Knops’ book [47]. Using the traditional maximum stress 
theory as a starting point, the fiber failure criterion under 
tensile loads can be written as

where mf  is a constant used to quantify the effect of differ-
ent Poisson’s ratios for the fiber and the matrix, which in 
the absence of experimental data may be considered equal 
to 1.1 for glass fibers and to 1.3 for carbon fibers embed in 
polymeric matrices.

As experimentally proved by Puck and Schürmann in [44], 
shear stresses affect fiber failure under compressive loads, 
and in this case, the failure function can be expressed as

(26)

fTW =
�2

11

St
11
Sc
11

+

(
�2

22
+ �2

33

)
St
22
Sc
22

+
�2

12
+ �2

13(
S
12

)2 +

(
�
23

S
23

)2

+ a
12
�11

(
�22 + �33

)
+ a

23
�22�33 +

(
1

St
11

−
1

Sc
11

)
�
11

+

(
1

St
22

−
1

Sc
22

)(
�22 + �33

)

(27)a
12

= −

(√
St
11
Sc
11
St
22
Sc
22

)−1

(28)a
23

= −
(
St
22
Sc
22

)−1

(29)

f
(f ,t)

P
=
(
1
/
St
11

)
⋅

||||�11 +
[(

E1

/
E
(f )

1

)
�
(f )

12
mf − �

12

](
�22 + �33

)||||

(30)

f
(f ,c)

P
=
(
1
/
Sc
11

)||||�11 +
[(

E
1

/
E
(f )

1

)
�
(f )

12
mf − �

12

](
�
22
+ �

33

)||||
+
(
10�12∕G12

)2

To model matrix failure, a critical plane search must be 
carried out. The possible critical planes are rotated from 
the plane x2 − x3 and the “(23)” index is used to describe 
the stress components in this plane. Now, considering the 
plane x1 − x

(23)

2
 , where the stresses �

11
 , �(23)

12
 , �(23)

22
 and �(23)

23
 

are acting, and treating the shear components as a vector, 
the “effective” shear stress in this plane is [42]

The index � is adopted because the following equation can 
be defined

Based on this definition as basis, the tensile and compres-
sive functions used to model the matrix failure are

where X
11

= 1.1St
11

 if �
11

≥ 0 and X
11

= −1.1Sc
11

 if 𝜎
11

< 0 , 
and n is a parameter to be experimentally calibrated.

According to Puck and Schürmann [44], n is typically 
between 6 and 8. This study uses n = 8 . S�

12
 , pc

�
 and pt

�
 are 

explicitly defined by Deuschle and Puck [45].

2.2.3 � LaRC05 criterion

LaRC05 is more recent than the previous models, which 
have been available for a long time, but it has shown a good 
potential to predict composite failure. Although Pinho et al. 
[48] considered nonlinear variations of E2 and G12 depend-
ing on the strain level, this criterion is adapted here to just 
describe linear stress–strain relations, since they are usu-
ally enough for FPF analysis purposes. For shear loads, the 
nonlinear behavior is more pronounced and usually can be 
modeled by a hyperbolic tangent curve [35]. However, the 
assumption of linearly elastic shear model is usually accept-
able for FPF analysis. For matrix failure, the theory devel-
oped by Puck is used as basis. Assuming that brittle materi-
als are more sensitivity to traction than to compression, the 
matrix failure is described by

(31)��

12
=

√[
(�

(23)

12
)2 + (�

(23)

23
)2
]

(32)Φ = a tan
[
�
(23)

12

/
�
(23)

23

]

(33)f
(m,c)

P
=
(
��

12

/
S�
12

)2
+ 2

(
pc
�

/
S�
12

)
�
(23)

22
+
(
�11∕X11

)n

(34)

f
(m,t)

P
=
(
��

12

/
S�
12

)2
+ 2

(
pt
�

/
S�
12

)
�
(23)

22

+
(
1 − 2pt

�
St
22

/
S�
12

)(
�
(23)

22

/
St
22

)2

+
(
�
11

/
X
11

)n

(35)

f
(m)

L
=
[
�
(23)

12

/(
S
12
− bL�

(23)

22

)]2
+
[
�
(23)

23

/(
S
(23)

23
− bT�

(23)

22

)]2

+
[
max

{
0, �

(23)

22

}/
St
22

]2
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When the normal stress is positive, the term max

{
0, �

(23)

22

}
 

considers the break of polymeric chains in tension. This 
model thus considers mesoscale effects at a macroscale 
analysis level. In Eq. (35), bL and bT must be experimentally 
calibrated and S(23)

23
 is the shear strength in the plane 

x1 − x
(23)

2
 . According to Pinho et al. [48–50], in transverse 

compression tests the critical angle �0 is usually between 51° 
and 55°. Considering �0 as a material property

Notice that this prediction for S(23)
23

 is different from Puck’s. 
In the absence of additional experimental data, �0 = 53◦ and 
bL = 0.082 may be used. For tensioned fibers, the traditional 
maximum stress criterion is adopted

For fibers under compression, two different failure mech-
anisms may occur: kinking and splitting. However, keeping 
the focus in linear analyses, just one equation is necessary 
to model both, since these mechanisms need to be described 
by different models only for evaluations of the damage pro-
gression, not for first-ply failure. If all the fibers are aligned, 
a rotation by an angle � along the plane x2 − x3 must be 
used to search the critical plane that maximizes the damage 
function. Once it is found, the plane x1 − x

(�)

2
 should be ana-

lyzed. Fibers misalignment is an intrinsic initial imperfec-
tion (from fabrication process, for example), and it must be 
considered in the failure criterion. Hence, when compression 
failure mechanisms are analyzed, this initial misalignment 
contributes significantly for fiber instability due to the ini-
tial deformed shape, and another transformation at the plane 
x1 − x

(�)

2
 is necessary to consider the stress components with 

the fiber misaligned direction. The failure function on the 
misaligned plane can be expressed as

Equation (39) is the failure function used by the LaRC05 
criterion to define the failure resultant from the load on 
the longitudinal direction. Even when a pure longitudinal 
compression is applied (without shear), it is a hard task 
to define which constituent fails initially. According to 
Pimenta et al. [51], the following sequence of failure events 
is expected. First, the material has an elastic behavior even 

(36)bT = −
(
1
/
tan 2�0

)

(37)S
(23)

23
= Sc

22
cos �0

(
sin �0 + cos �0

/
tan 2�0

)

(38)f
(f ,t)

L
= �11

/
St
11

(39)

f
(f ,c)

L
=
[
�
(mis)

12

/(
S
12
− bL�

(mis)

22

)]2

+
[
�
(mis)

23

/(
S
(mis)

23
− bT�

(mis)

22

)]2

+
[
max

{
0, �

(23)

22

}/
St
22

]2

on the misaligned region. Then, when the load increases, the 
matrix yields in some points due to the high bending condi-
tion, increasing the fiber misalignment angle as rotation in 
a softer material. Finally, the fiber fails because of exces-
sive small curvatures. Hence, the fiber and matrix failure are 
closely related, and, in general, it is not possible to affirm 
which one takes place first. However, it is expected that the 
matrix yields first. Nevertheless, to avoid misunderstand-
ing, everywhere fiber failure in compression is mentioned in 
relation to the LaRC05 model, it is just meant that Eq. (39) 
is equal to 1.

3 � Results and discussion

In the following analyses, an AS carbon/epoxy composite 
lamina with properties listed in Table 1 [52] is used for all 
the simulations. Since the laminas are transversally isotropic, 
E
3
= E

2
 , G

13
= G

12
 , St

33
= St

22
 , Sc

33
= Sc

22
 and S

13
= S

12
.

3.1 � Influence of the lamina orientation 
in a laminate with a circular hole

Before analyzing stress concentration issues, it is helpful 
to evaluate the influence of the lamina orientation with 
respect to the uniaxial load direction on its first-ply failure 
(FPF) strength to get a better understanding about its failure 
process. Considering the laminates [�]n and [± α]ns, their 
tensile 

(
St
FPF

(�)
)
 and compressive 

(
Sc
FPF

(�)
)
 strength varia-

tions according to the fiber-to-load angles predicted using 
Tsai–Wu, Puck, and LaRC05 criteria are plotted in Fig. 2. 
This figure considers the stress concentration effects induced 
by a circular hole in a very large laminated orthotropic plate 

Table 1   Mechanical properties 
of the AS carbon/epoxy 
composite used for the 
simulations [52]

AS carbon/epoxy

Properties Units

E
1

GPa 140
E
2

GPa 10
G

12
GPa 6

G
23

GPa 3.35
�
12

– 0.3
�
23

– 0.49

E
(f )

1

GPa 231

�
(f )

12

– 0.2

S
t

11
MPa 1990

S
c

11
MPa 1500

S
t

22
MPa 38

S
c

22
MPa 150

S
12

MPa 70
S
23

MPa 50
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of the type [�]n , with its fiber angle � = 0◦, 15◦,… , 90◦ with 
respect to the main nominal load direction, presented in 
Fig. 2 for some important load cases, where the thick black 
line illustrates the hole border. Comparing these results 

with those for isotropic materials, it is necessary to point 
out some important differences:

	 (i)	 for a uniaxial tensile nominal load �(g)

11
= �n (applied 

on the horizontal direction in the figure), the tangen-

Fig. 2   Ratio between the tangential stress distribution around the cir-
cular hole border and the nominal load �(l)

11

/
�
n
 for a large orthotropic 

plate with a circular hole for different values of � loaded under vari-

ous loading conditions (notice the two different α legends, the upper 
one applicable to the first three figures and the bottom one for the last 
two)
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tial or hoop stress distribution along the hole border 
varies from − 4 σn up to almost 7 σn, whereas for 
isotropic materials this range is between − 1 σn and 
3 σn;

	 (ii)	 for nominal stresses in thin-walled pressure vessels 
�
(g)

11
= 2.�

(g)

22
= �n , the hoop stresses along the hole 

border can be higher than 4 σn and can also be even 
compressive, whereas for isotropic materials the 
stress along the border is always tensile and ranges 
from 0.5 to 2.5 σn;

	 (iii)	 for equal biaxial nominal stresses, there is a small 
variation on the hoop stress distribution along the 
hole border, whereas for isotropic materials it is con-
stant and equal to 2 σn;

	 (iv)	 for isotropic materials, biaxial tension/compres-
sion ( �(g)

11
= �n , �

(g)

22
= −�n ) and pure shear loads are 

equivalent and induce a stress concentration factor 
4 σn, whereas for anisotropic materials the effects of 
these loads are significantly different, as shown in the 
lower figures, because of the asymmetry induced by 
the fibers, a non-intuitive result.

The difference between the pure shear (s) and equal ten-
sion–compression (t–c) behavior in this very large ortho-
tropic plate with a central circular hole is due to the influ-
ence of the fibers direction on the stress concentration 
effects. Figure 3 shows the Mohr’s circle, which is equal 
for both (s) and (t–c) loads, and a differential element with 
� = 0◦ , for simplicity. The stress concentration along the 
hole border is similar, as it should be, but it acts on material 
elements with fibers rotated 45°. Consequently, although the 
shear strength can be obtained from a tension–compression 
test, the tested strength represents the case of pure shear act-
ing in an orthotropic plate with a different fibers orientation.

Therefore, to apply a failure criterion to predict the 
stress concentration effect on the orthotropic plate, it is 
necessary to transform the stress components from a local 
system, tangent to the border, to a material coordinate sys-
tem, which coincides with the fibers direction. For uniaxial 
loads, the material stresses around the circular hole border 
are presented in Fig. 4 for various fibers-to-load angles α, 
as a function of the point location around the hole border 
θ. Predictions of tensile and compressive FPF strengths for 
these cases by the three failure criteria used in this work 

Fig. 3   Different stress concen-
tration effects under pure shear 
and equal tension–compression 
loads
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are shown in Fig. 5, as a function of the fibers orientation. 
For tension loads, the three failure theories yield quite close 
results, while for compression loads they generate signifi-
cantly different predictions. The results are normalized by 
the strengths of unnotched laminates on the fibers direction. 
For convenience, FPF is used to denote the initial damage of 
the plate henceforward, even knowing that it does not mean 
total failure of the first ply.

Despite the drastic notch-induced reduction in the pre-
dicted FPF strength for the studied orthotropic plate, 
this result can be easily explained. Notice in Table 1 that 
St
11

/
St
22

= 52.4 and Sc
11

/
Sc
22

= 10 , an indication that matrix 
failure tends to be the dominant mechanism in Fig. 5. To 
further explore this result, the failure functions are studied 
along the circular hole border for some selected fiber incli-
nations and applied stress levels. So, three different loading 

conditions are analyzed next (namely �(g)

11
= 90 MPa and 

� = 0◦ ; �(g)

11
= −70 MPa and � = 15◦ ; and �(g)

11
= −60 MPa 

and � = 75◦ ), to illustrate the difference in the FPF predic-
tions made by the three studied anisotropic failure criteria.

For pure tensile loads aligned with the fibers, with 
� = 0◦ , all models predict that the FPF failure initiates for 
90 MPa < 𝜎

(g)

11
< 100 MPa . Because Puck and LaRC05 use 

separate matrix and fiber failures models, their predictions 
for each component are presented, and for this case matrix 
failure is expected for all cases, see Fig. 6 (although the 
load is not high enough to cause it, since in all cases f < 1, 
whereas failure occurs when f = 1). However, contrary to 
what happens in isotropic plates, failure is expected in this 
case at θ ≅ ∓ 20°, instead of at θ = 0°, even though the maxi-
mum stress concentration point is θ = 0° (see Fig. 2). There-
fore, it is worth to point out once again that the critical stress 

Fig. 4   Stresses around the circular hole border in material coordinates for uniaxial loads
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concentration point is not the most stressed point along the 
hole border in this notched anisotropic plate.

Figure 7 shows the FPF prediction for the same ortho-
tropic large plate with a circular hole under a uniaxial pure 
compressive load σ11 = − 70 MPa, when the fibers make 
an angle α = 15° with the load direction. In this case, the 
difference between the various anisotropic failure criteria 
predictions is significant. Just the LaRC05 model predicts 
fiber failure at the location θ ≅ 170°. Moreover, the precise 

position of the critical point around the hole border predicted 
by the three criteria is not identical, neither it coincides with 
the critical point for isotropic plates. Only the LaRC05 crite-
rion indicates fiber failure under compression for this case, 
because this model is the only one where fiber instability 
failure is considered, as discussed in Sect. 2.

Figure 8 shows the FPF tendency prediction for the same 
holed orthotropic plate under a uniaxial compressive load of 
− 60 MPa, when the fibers make an angle α = 75° with the 

Fig. 5   Prediction of St
FPF

/
S
t

11
 and Sc

FPF

/
S
c

11
 for the holed orthotropic plate strength for initial damage under tension and under compression loads 

by the 3 failure criteria, as a function of the fibers-to-load angle α 

Fig. 6   FPF tendency predicted by the three damage criteria for 
the orthotropic plate with a circular hole loaded by a pure tensile 
load σ11 = 90  MPa aligned with its fibers (since failure is predicted 
when f = 1, none of the criteria predicts failure in this case, but it 
is expected under slightly higher loads in the matrix, at a position 
θ ≅ ± 20°)

Fig. 7   FPF tendency predicted by the three damage criteria for the 
holed orthotropic plate loaded under a compressive load of − 60 MPa 
that makes an angle α = 15° with its fibers direction. Failure is pre-
dicted in the fibers by the LaRC05 criterion, but not by the Puck and 
the Tsai–Wu criteria



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:462	

1 3

Page 11 of 27  462

load direction. The difference between the various failure 
criteria predictions in this case is also significant. No criteria 
predicts failure, but all of them indicate that the critical point 
around the hole border is θ ≅ 100°, again at slight different 
points, at a position quite different from that predicted for 
isotropic plates. It is interesting to note that LaRC05 predicts 
an equal tendency for failure of the fibers and of the matrix, 
whereas Puck predicts that the fibers are much more resistant 
than the matrix. Hence, in the authors opinion, these com-
pressive load cases could be a good test to verify which of 
these criteria can better describe the behavior of such holed 
orthotropic plates, despite the practical difficulty to test thin 
holed plates in compression.

The stress distributions in material coordinates along the 
circular hole border induced by applied pure shear loads are 
presented in Fig. 9 for large orthotropic plates with various 
fiber-to-load angles α. For the orthotropic material whose 
properties are listed in Table 1, these stress ratios vary sig-
nificantly with α. Note in particular that σ11/σn may reach 
much higher values than the isotropic Kt, information that 
cannot be neglected when designing notched orthotropic 
plates. Once again, these results are not intuitive, at least 
for structural engineers trained to dimension notched plates 
of isotropic materials.

For isotropic materials, pure shear is equivalent to equal 
biaxial tension/compression and induce maximum and 
minimum stresses ± 4 σn, since the corresponding values 
for pure tension are 3 σn and − 1 σn and the superposition 
principle may be directly used in these materials. On the 
other hand, for anisotropic materials, even for the elastic 
regime, it is necessary to take special care before applying 
the superposition principle: the stress must be defined in the 

material coordinate system, because the same load has dif-
ferent effects for different fiber-to-load angles. For example, 
considering a pure shear load �(g)

12
= �n with a general fibers-

to-load angle equal to � . The superposition principle can be 
used to compute the effect of a tensile load with �(g)

11
= �n 

and a compressive load with �(g)

22
= −�n , both with fibers-to-

load angle equal to � − 45◦ (or, in a similar way, �(g)

11
= −�n 

and �(g)

22
= �n and fibers-to-load angle equal to � + 45◦ ), as 

it is clearly shown in Fig. 3 by Mohr’s circle. The superpo-
sition principle is a fundamental tool to model mechanical 
systems and may be applied for any material, while it is in its 
linear and elastic range. The single fundamental condition to 
apply the superposition principle is that a given solicitation 
must be linearly related to the structural response, indepen-
dently of any kind of anisotropy.

The FPF strength predictions for the large orthotropic 
plate with a circular hole when it is loaded by pure nominal 
shear stresses are presented in Fig. 10. These predictions 
have two distinct phases: if 40◦ < 𝛼 < 50◦ , then the FPF 
models estimate a peak strength almost constant and equal 
to about 0.78 S12, where S12 is the strength measured in an 
unnotched specimen listed in Table 1; else, the strength pre-
sents a smooth decrease, reaching a minimum for � = −45◦ . 
The tension/compression strengths are not plotted to avoid 
repeated information, since it has just a fiber-to-load angle 
shift of 45o. However, using the same argument based on 
the superposition principle for the shear and for the tension/
compression loads analogy, the anisotropic strength predic-
tions can be better interpreted. The FPF strength of the large 
notched orthotropic plate is maximized when the maximum 
tensile stress is acting parallel to the fibers direction ( � = 45◦ 
for pure shear and � = 0◦ for tension or compression), and it 
is minimized when the tensile stress acts in the matrix direc-
tion ( � = −45◦ for pure shear and � = ±90◦ for the tension/
compression case).

The tensile and compressive FPF strengths can yield val-
ues smaller than 8% of the properties of the unnotched plate, 
but these values are normalized by strengths on the fibers 
direction, which are much higher than the matrix properties 
(recall that St

11

/
St
22

= 52.4 and Sc
11

/
Sc
22

= 10 ). On the other 
hand, the failure of a large plate loaded by pure shear ranges 
from 20% up to almost 80% of the unnotched strength. The 
reason for this prediction is because the failure of notched 
plates is dominated by the matrix in the majority of the cases 
studied, as well as the failure for the unnotched plate under 
shear. This is why the shear strength ratio is not so notch-
sensitive, contrary to the tensile and compressive strengths 
that were normalized using the properties on the fiber direc-
tion. Two different cases are selected to evaluate the different 
predictions made by the various failure criteria for pure shear 
loads: �(g)

12
= 42.5 MPa and � = 30◦ ; and �(g)

12
= 50 MPa and 

� = 45◦ . Figure 11 shows the failure functions values for a 
shear load of 42.5 MPa when the fiber-to-load angle is 30°. 

Fig. 8   FPF predicted by the three damage criteria for the holed ortho-
tropic plate loaded under a compressive load of − 60 MPa that makes 
an angle α = 75° with its fibers direction
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Despite the difference of the predicted damage distributions 
along the hole border position θ, the estimates of the critical 
point are similar, θ ≅ 20° (except for fibers that fail accord-
ing to the LaRC05 criterion, but this model predicts that the 
matrix fails before the fiber in this case). These plots also 
show a tendency that can be extended to the other graphics: 
for matrices under tension, Tsai–Wu predicts earlier FPF, 
while for matrices under compression, Tsai–Wu predicts the 
smallest value of the failure index. Notice in Fig. 11 that 
failure is predicted by the Tsai–Wu criterion, but not by the 
Puck and the LaRC05 criteria.

Figure 12 shows the FPF prediction for an applied shear 
stress of 50 MPa when the fibers make an angle α = 45° with 
the load direction, which presents the highest strength for 
pure shear (see Fig. 10). For this load level, although none 

of those criteria indicates failure, some conclusion still can 
be pointed out analyzing theirs tendency. Once again, the 
difference between the fibers failure prediction under com-
pression made by Puck and LaRC05 is quite large: while 
Puck estimates f < 0.1 for θ = 90°, LaRC05 predicts f ≅ 0.9, 
making necessary an experimental validation of the hypoth-
eses assumed during each model formulation.

Notice in Fig.  12 that no criterion predicts failure, 
but all of them indicate that the critical point around 
the hole border is θ ≅ 90°. Notice as well that LaRC05 
predicts an equal tendency for failure of the fibers and 
of the matrix, whereas Puck predicts that the fibers are 
much more resistant than the matrix (it is equivalent to 
�
(g)

11
= −�

(g)

22
= 50 MPa and � = 0◦ ). This is because the 

LaRC05 uses a quite similar equation to model matrix and 

Fig. 9   Material stress distributions along the circular hole border induced by pure nominal shear loads for various fiber-to-load angles α in a 
large plate of the orthotropic material whose properties are listed in Table 1
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fiber under compression; the difference is just the mis-
alignment angle. On the other hand, the Puck model for 
fiber compression failure just add the last term, to take 
into account the shear influence on fiber instability, when 
compared to the tension one. Moreover, for matrix failure, 
the Puck model also considers the critical plane idea, as 
well as the LaRC05.

Once the three simplest loads are studied (pure ten-
sion, compression, and shear), it is useful to evaluate the 
effect of multiaxial loads. For this purpose, two different 
simple biaxial load cases can be studied: tension/tension 

and compression/compression. Recall that the tension/
compression load is similar to the shear one, but with an 
angle-to-load shift of 45º. For both, the stress concentra-
tion in local coordinate is independent of the value of � , as 
shown in Fig. 13, i.e., the strength curves are superposed. 
This behavior becomes clear using Mohr’s circle; the radius 
of the circle is equal to zero, and hence, no influence of the 
fiber-to-load angle is realized. All the failure models studied 
here made exactly equal predictions for biaxial strengths: 
St−t
FPF

= 17.7 MPa and Sc−c
FPF

= −68.1 MPa (hence their plots 
are omitted). Notice that these values are equivalent to 
St−t
FPF

= St
22
∕2.2 and Sc−c

FPF
= −Sc

22
∕2.2 , which indicates that 

the matrix fails under pure tension or compression, justify-
ing why the strength predictions are equal. To prove this 
affirmation, the failure functions variation along the hole 
border are evaluated next.

Figures 14 and 15 show that although their FPF tendency 
distributions along the hole border are different (in particu-
lar for compression), the models tend to become coincident 
when the nominal stresses are close to the predicted strength, 
since all of them predict failure for θ = 90°. According to 
Fig. 13, the matrix is under pure uniaxial stresses in this 
point, so failure occurs when the stress in it is equal to the 
matrix strength. Indeed, all theories must indicate failure 
when there is just one non-null stress component on the 
material coordinate system and it equals the equivalent 
strength in that direction.

From the results presented in Figs. 14 and 15, it can be 
expected that the matrix starts to fail before the fibers in plates 
with circular holes, except maybe for fibers under compres-
sion according to the LaRC05 model. All these failure theo-
ries also predict that uniaxial tension with � = 0◦ and pure 

Fig. 10   Prediction of Ss
FPF

/
S
12

 for the orthotropic plate with a circu-
lar hole strength, considering initial damage under pure shear loads 
by the 3 failure criteria, as a function of the fibers-to-load angle α 

Fig. 11   FPF tendency predicted by three failure criteria for the holed 
orthotropic plate loaded under a shear load of 42.5 MPa that makes 
an angle α = 30° with its fibers direction

Fig. 12   FPF predicted by the three damage criteria for the holed 
orthotropic plate loaded under a shear load of 50 MPa that makes an 
angle α = 45° with its fibers direction



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:462

1 3

462  Page 14 of 27

shear with � = 45◦maximize the stress concentration effect. 
However, because the strengths are dependent on the fiber 
orientation, to minimize the Kt value is not necessarily the 
most important design guideline. Although stress concentra-
tions should be avoided, most real structures need notches 
for functional reasons. However, contrary to isotopic materi-
als, for the anisotropic plates studied here the most important 
point is not to minimize Kt, but instead to minimize its direc-
tion-dependent effect on the notched structure. Moreover, the 
strength decreases for an isotropic large plate with a circular 
hole is equal to 3 for tensile or compressive loads and equal 
to 4 for shear, while for the orthotropic laminate the strengths 
decrease may be much more important depending on the load. 
Indeed, their strength decreases at least by a factor of 20 for 
tension, 12.5 for compression, and 1.25 for shear (the results 
may be even higher according to the fibers orientation). Notice 

that for shear loads, the notch effect is less pronounced for 
unidirectional laminates than for isotropic materials.

The LaRC05 model can underestimate the strength of 
the holed laminated plates when their fibers fail under com-
pression, if the misaligned fibers do not coincide with the 
point around the hole. Even though the fiber misalignment 
is usually smaller than 5o, neglecting this small angle does 
not result in very different predictions. The main reason for 
LaRC05 and Puck unmatched estimations for fibers under 
compression is their phenomenological basis: the LaRC05 
criterion attempts to model fiber instability and matrix yield-
ing in a critical plane. Single-layered laminates ( [�]n ) have 
limited practical use since their stiffness and strength are too 
anisotropic, whereas many real loads are multiaxial. Nev-
ertheless, it is important to understand the [�]n behavior, 
since it can be extended to any symmetric laminate using 
homogenization techniques [53].

Fig. 13   Stress concentration distribution in the material coordinate system for biaxial loads
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3.2 � Elliptical holes

Two additional variables are needed to analyze the effect 
of elliptical holes in large single-ply anisotropic plates: the 
ratio between the ellipse semi-axes ra

/
rb and the ellipse 

inclination � in relation to the fibers, see Fig. 1. Although 
more laborious to analyze, elliptical holes are especially 
useful to approximate other notches and to study stress 
gradients and fracture effects [54–58]. Three different 
ellipse aspect ratios, ra

/
rb = 2, 5, 10 , are analyzed here, 

but to simplify this study, just uniaxial nominal stress and 

single-layered laminates are considered in this section. 
The scope of this analysis is to evaluate the influence of 
the ellipse aspect ratio and of its inclination. Before pro-
ceeding, notice that sometimes it is useful to plot the data 
using �∗ = � + � coordinates, since they may better repre-
sent the ellipse inclination effects in relation to the global 
axes where the load is applied, where � is the elliptical 
hole inclination in relation to the materials coordinates 
(see Fig. 1).

Figures 16, 17, and 18 show the stress concentration 
effects in material coordinates for the laminate [�]n with 

Fig. 14   FPF tendency predicted by the three damage criteria for the orthotropic plate with a circular hole loaded under biaxial tension/tension 
load of 15 MPa and 17.5 MPa

Fig. 15   FPF tendency predicted by the three damage criteria for the orthotropic plate with a circular hole loaded under biaxial compression/com-
pression load of − 60 MPa and − 68 MPa
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ra
/
rb = 2 and fiber-to-load angles varying from 0° to 90° 

in 30° steps. To better interpret these results, the same 
color scale is used for each stress component, independ-
ent of the fibers-to-load angle. Figure 16 shows that �11 is 
maximized for � = 0◦ , while the opposite occurs with �22 , 
which, as expected, is maximized for � = 90◦ . Moreover, 
the most important point from these figures is that the 
ellipse inclination that maximizes the stress concentra-
tion effect in absolute value is not necessarily �∗ = 90◦ , 
as well known for isotropic materials. Indeed, �11 is maxi-
mized when 90◦ < |𝛽∗| < 90◦ + 𝛼 ( 90◦ − 𝛼 < |𝛽| < 90◦ ), 
as well demonstrated for the laminate [30]n in Fig.  16, 
and �22 has a higher magnitude when 60◦ < |𝛽∗| < 90◦ 
( 60◦ − 𝛼 < |𝛽| < 90◦ − 𝛼 ), e.g., for [60]n in Fig.  17. 
Although �12 also affects failure, �11 and �22 are easier to 

physically understand, since these stress components can 
be easily separated into fiber and matrix components, while 
�12 jointly affects both matrix and fibers failure mechanisms.

Hwu and Ting [59] proved analytically that under uni-
axial loads �(g)

11
= �n , when the ellipse inclination is � = 90◦ , 

the stress concentration factor at the tips of the minor ellipti-
cal hole axis � = 90◦ , which for isotropic materials is equal 
to -1, for anisotropic materials is also independent of the 
ratio ra

/
rb and depends only on material properties. How-

ever, whereas the Kt value is sufficient to analyze stress con-
centration effects in isotropic materials, whose strength is 
independent of the direction, such a punctual stress solution 
is not enough to predict the failure of anisotropic materials, 
which must be analyzed considering the entire stress-to-
strength distribution along the notch border.

Fig. 16   �
11

 stress concentration for [�]
n
 laminated plates with a central elliptical hole with r

a

/
r
b
= 2
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To get a better comprehension about the ellipse geometry 
and inclination influence on the failure process of a large 
anisotropic plate, a parametric study of tension and compres-
sion loads is presented in Fig. 19, which shows the tensile 
and compressive strengths, respectively, for the same ranges 
of fiber-to-load angles presented in Figs. 16, 17, 18. First, 
it is important to notice the axes scales for the tensile loads. 
Different scales are needed to permit a good interpretation of 
all graphics. However, the scale is the same for all compres-
sive strengths predictions. This observation alone is enough 
to indicate that the tensile strength is more sensitive to the 
ra
/
rb ratio than the compressive strength.

Tensile loads with � = −� , for which the ellipse major 
axis is parallel to the load direction, result in higher FPF 
strengths. On the other hand, the most critical position is usu-
ally around 90◦ − 𝛼 < 𝛽 < 90◦ , for which the major ellipse 

axis inclination is between a direction perpendicular to the 
applied load x(g)

2
 and the direction perpendicular to the fibers 

x2 . The tendency of damage evolution perpendicular to the 
fibers if � = 0◦ can be understood supposing that the set hole 
plus damaged zone could be approximated using an elliptical 
hole and that the ratio ra

/
rb increases as the damaged zone 

increases. The difference between the notched plate strength 
for � = ±90◦ and for the other elliptical hole inclinations also 
increases with ra

/
rb . For � = 90◦ , the matrix is expected to 

fail, as clearly shown by the different scales needed for the 
strength axes, and the same reasoning is valid. Moreover, the 
large difference between the predicted strengths indicates that 
matrix failures are expected at least for 𝛼 > 15◦ , a prediction 
that is in agreement with the experimental results presented 
by Kaman [9] to evaluate fracture in [0∕�]s laminates using 
a fracture mechanics approach.

Fig. 17   �
22
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For compression loads, a similar strength behavior is 
presented and the tendency of the LaRC05 model to esti-
mate failure before the other models decreases when ra

/
rb 

increases, because of the critical point location. Moreover, 
for � = 0◦ all the three models yield very similar predictions 
and the notched strength is almost independent of the ratio 
ra∕rb . To help understanding the failure mechanism, Fig. 20 
shows the variation of the notched compressive strength 
according to ra∕rb , Fig. 21 shows the stress concentration, 
and Fig. 22 shows the failure functions. Tsai–Wu and Puck 
models indicate that the strength is constant for ra∕rb > 1.4 
and LaRC05 for ra∕rb∕2 (see Fig. 20). The stress distribu-
tion around the hole, presented in Fig. 21, indicates that as 
the ellipse becomes thinner and closer to a crack shape, the 
stress in � = 0◦ tends to the nominal applied load, while it 
is virtually constant in � = 90◦ . Clearly, the independence 
of ra∕rb on compressive strength curves indicates that the 

matrix is failing under tension in � = 90◦ , as presented in 
Fig. 22. However, once again the LaRC05 indicates fiber 
failure, while the Puck model indicates the matrix failure.

4 � Three‑dimensional effects

Góes et al. [2] presented results showing the influence of non-
negligible 3D effects in the stress concentration for notched 
isotropic materials that are usually neglected when the notches 
are treated as 2D geometries. Based on those results, it can be 
expected that for anisotropic materials the thickness also influ-
ences the stress distribution and failure predictions. Neverthe-
less, most numerical simulations and analytical approaches use 
2D geometries and plane stress hypothesis for model compos-
ite plates. In this section, an analytical study of the plane strain 
assumption is introduced, since this hypothesis is a simplified 

Fig. 18   �
12
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Fig. 19   Prediction of tension and compression FPF strength of large plates with elliptical holes
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bound for real plates. To evaluate the thickness effects, the 
transversal constraint factor defined in Eq. (40) can be useful:

Notice that Tc is defined according to the local coordinates. 
The material constitutive relation in the local coordinate 
system is given by

(40)Tc =
�
(l)

33

�
(l)

11
+ �

(l)

22

(41)�
(l)

ij
= c

(l)

ijkm
�
(l)

km

where c(l)
ijkm

 is the compliance tensor in local coordinates. The 
compliance tensor components for a transversally isotropic 
material can be defined in simplified matrix form as [2]

(42)c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E1

−
�12

E1

−
�13

E1

0 0 0

−
�21

E2

1

E3

−
�23

E2

0 0 0

−
�31

E3

−
�32

E3

1

E3

0 0 0

0 0 0
1

G23

0 0

0 0 0 0
1

G13

0

0 0 0 0 0
1

G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 19   (continued)

Fig. 20   Variation of compression FPF strength of large plates with 
central elliptical holes parallel to the fibers direction according to the 
ellipse aspect or axes ratio ra/rb

Fig. 21   Stress concentration for large plates with elliptical holes par-
allel to the fibers
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To compute the compliance components in local coordi-
nates, the following transformation must be used

For plane stress, �(l)

33
= 0 and consequently Tc = 0 . For plane 

strain, along the elliptical hole border, remembering that the 
x
(l)

2
 is the surface free direction perpendicular to the hole (see 

Fig. 1), the transversal strain obeys

Thus, the transversal constraint factor is

(43)c
(l)

ijkl
= �im�jn�ko�lpcmnop

(44)�
(l)

33
= c

(l)

3311
�
(l)

11
+ c

(l)

3333
�
(l)

33
= 0

(45)Tc =
�
(l)

33

�
(l)

11

= −
c
(l)

3311

c
(l)

3333

For plane stress, �(l)

33
= 0 and consequently Tc = 0 . For plane 

strain, along the elliptical hole border, remembering that the 
x
(l)

2
 is the surface free direction perpendicular to the hole (see 

Fig. 1), the transversal strain obeys

Thus, the transversal constraint factor is

Notice that c(l)
3313

= 0 and �(l)

33
= �

33
 along the elliptical hole 

border, because its axis rotation is on the plane x1 − x2 . If the 
material is isotropic, c(l)

3311
= c

3311
 and c(l)

3333
= c

3333
 , resulting 
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Fig. 22   Variation of the failure functions for compressed large plates with central elliptical holes parallel to the fibers direction
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in Tc = � , as observed by Góes et al. [2]. The constraint 
factor variation along the hole border for the laminate [�]n 
with the material properties from Table 1 is presented in 
Fig. 23. Since the constraint factor is not constant, the stress 
components in material coordinates are not multiplied by the 
same value along the border, resulting in a completely dif-
ferent stress distribution. Notice that Fig. 23 is independent 
of the fiber-to-load angle, the load, and the hole geometry, 
it depends just on the material properties.

Plane strain and plane stress assumptions are limit cases 
for thick and thin plates that can be used to estimate thick-
ness effects. For plane strain, some quantities defined on the 
Stroh formalism must be modified. The details are omitted 
in this text, but can be found in [4, 6]. For a large plate with 
a circular hole under a uniaxial applied load, as considered 
previously for plane stress, the components of stress con-
centration variation in material coordinate are presented in Fig. 23   Constraint factor variation along the elliptical hole border for 

plane strain in a AS carbon/epoxy composite

Fig. 24   Stress concentration for a structure under plane strain and uniaxial applied load
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Fig. 24. Notice that now there is one more stress component 
and that this additional component, namely σ33, can be even 
larger than the nominal applied stress depending on the fib-
ers-to-load angle, indicating that the failure predictions are 
highly sensible to the assumptions adopted.

For plane strain, the strengths were obtained following 
the same procedure used for plane stress and are presented 
in Fig. 25. Since the aim of this study is to evaluate possible 
stress concentration issues, the strengths estimated for plane 
stress are also plotted together to permit a direct compari-
son. For tensile loads, the failure tendencies remain similar, 
but for compression the results are very different, both in 
curve shapes and magnitudes. The largest variation is for the 
LaRC05 criterion, because the multiaxial stress state has a 
non-negligible influence in fiber stability [48, 51].

Some load conditions were selected for a more detailed 
analysis presented in Fig. 26. First, for �(g)

11
= 70 MPa and 

� = 0◦ , just Tsai–Wu’s model predicts failure, due to the 
direct sum of one more stress component of the poly-
nomial function, while for the other models, the critical 
plane search is not so sensitive to one more normal stress 
component. This conclusion can be realized for general 
tensile strengths: just Tsai–Wu indicates the tendency for 
strength decrease. For the compressive loads, three differ-
ent results are shown: for �(g)

11
= −70 MPa and � = 15◦ , just 

LaRC05 indicates failure on the fibers; for �(g)

11
= −70 MPa 

and � = 45◦ , Tsai–Wu’s is the only one that indicates a safe 
condition, and for �(g)

11
= −60 MPa and � = 75◦ , only the 

LaRC05 does not predict failure. No definitive conclusion 
may be obtained from these results, due to the wide range 
of different predictions, but the results from the WWFE-
II [30] show that for 3D stress states, the critical plane 
search becomes even more important and the physically 

based models are more recommended than the polynomial 
fitted ones.

The Tsai–Wu criterion predicts a very peculiar behav-
ior for the FPF compressive strength. To enlighten why 
the curve has so many abrupt variations, mainly because 
this failure function is not able to different matrix and 
fiber failure, the variation of the Tsai–Wu failure function 
according to the θ for different values of α is presented 
in Fig. 27. With this one more stress component on the 
polynomial function, the failure location becomes highly 
sensitive to the fiber orientation.

Góes et al. [2] obtained a difference on the strength 
prediction between plane stress and plane strain limit cases 
smaller than 10% using Tresca and von Mises criteria for 
isotropic materials. For these unidirectional laminates, 
the ratios between the strengths for plane strain and plane 
stress are represented in Fig. 28. To assume a plane stress 
condition can be a conservative hypothesis or not, depend-
ing on the criteria applied, the fiber-to-load angle, and 
the applied load. However, some major issues must be 
highlighted about these assumptions: Tsai–Wu and Puck 
predicted strengths differences larger than 20%, which 
is already an alarming result; LaRC05 predictions indi-
cate a difference larger than 50%, clearly evidencing the 
gap between 2D assumptions and the possible thickness 
effects, indicating once more the need for reliable experi-
mental data to validate the anisotropic damage models. 
Therefore, numerical simulations with 3D geometries are 
recommended before using simplified 2D assumptions for 
design if the slenderness of the laminate is not assured.

Fig. 25   Prediction of maximum applied tension a and compression b load for initial damage in a structure under plane strain
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5 � Conclusions

This paper first reviews some theoretical approaches for pre-
dicting the strength of anisotropic materials, in particular, of 
laminate composites. Then, it applies three failure theories, 
chosen considering the WWFE results and recommenda-
tions, to study stress concentration effects on single-layer 
laminated plates: Tsai–Wu, Puck, and LaRC05.

The failure models are compared considering different 
load conditions, fibers orientation, and circular and ellip-
tical hole geometries. Tsai–Wu has a simple form and is 
represented by just one equation, resulting in an easier 
implementation, saving computational cost. On the other 
hand, Puck and LaRC05 have different models for fiber and 
matrix failure under compression and tension, resulting in 
three or four different equations, thus requiring more time to 

compute their predictions. Nevertheless, this effort is justi-
fied by the gain it allows in the physical understanding of 
the failure process. Especially for fibers under compression, 
the LaRC05 model leads to very different predictions from 
the other models, and for some conditions, it predicts failure 
considerably earlier than Puck’s and Tsai–Wu criteria, due 
to the shear influence on the laminate failure for longitudinal 
compression. On the other hand, Puck’s criterion is also able 
to distinguish different failure mechanism using the critical 
plane concept, but has the advantage to have explicit expres-
sions for matrix failure only for plane stress conditions. This 
way, the computational critical plane search is not necessary, 
which is a major advantage for numerical implementations.

Large plates made by single-layered unidirectional lami-
nates with circular holes had a FPF strength decrease estima-
tion of more than 95%, 90% and 20% for uniaxial tension, 

Fig. 26   Selected cases for uniaxial applied stress considering the plane strain
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compression, and pure shear loads, respectively. These 
results become even more pronounced, depending on the 
fiber orientation.

For elliptical holes, some results are presented to enhance 
the influence of the hole inclination and laminate angle. It is 
observed that the inclination that induces maximum stress 
concentration for uniaxial loads is somewhere between the 
direction perpendicular to the applied load and the direction 
perpendicular to the fiber. However, as clearly demonstrated 
for circular holes where the laminate angle is the single vari-
able that affects it, the maximum stress concentration does 
not represent the critical point.

Finally, the plane strain hypothesis is analyzed to study 
the thickness influence on the laminate failure. There are 

large differences between plane stress and plane strain pre-
dictions: larger than 20% according to Tsai–Wu and Puck 
criteria and larger than 50% according to LaRC05 criterion, 
indicating that it may be unsafe to consider plane stress as a 
simplifying assumption.

In summary, the major contributions of the present study 
are:

1.	 For unidirectional loads on single-layer laminates with a 
circular hole, the stress concentration may be as large as 
7 or more than twice higher than the well-known result 
for isotropic materials;

2.	 Due to this severe stress concentration effect around the 
notches, matrix failure is predicted for most cases, and 
the notched strength of single-layer laminates can be 
smaller than 10% of their unnotched strength;

3.	 Pure shear and biaxial tension/compression cannot be 
directly compared as equivalent conditions in notched 
single-layer laminates;

4.	 The difference of strength predictions assuming plane 
stress and plane strain limit hypotheses may be higher 
than 50%, so thickness effects can be very important in 
single-layer laminates; and

5.	 For tension loads, all the studied failure criteria indicate 
similar predictions, but for compression, the LaRC05 
model indicates a considerable strength reduction when 
compared to the other models, due to the fibers instabil-
ity for combined longitudinal compression and shear.
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