
Vol.:(0123456789)1 3

Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2020) 42:104  
https://doi.org/10.1007/s40430-020-2187-8

TECHNICAL PAPER

Parameter adjustments for optimizing signal integration using 
the FFT‑DDI method

José Geraldo Telles Ribeiro1 · Jaime Tupiassú Pinho de Castro2 · Marco Antonio Meggiolaro2

Received: 19 January 2019 / Accepted: 13 January 2020 
© The Brazilian Society of Mechanical Sciences and Engineering 2020

Abstract
Relative displacement measurements are needed in many practical applications, in particular to estimate damage from the 
associated strains and to follow and/or to control paths of moving objects. In many cases, such as monitoring of huge struc-
tures like tall bridges or of moving objects like vehicles, it is much easier to indirectly measure displacements by double-
integrating an accelerometer signal, using some suitable numerical methods. However, such methods are susceptible to 
unknown initial conditions and to zero shifts, which may induce errors that are inadmissible in structural integrity evaluations 
and path control, so must be removed from the integrated signal. Many methods based on time-domain techniques are used 
in practice to decrease such zero-shifting errors; among them, the FFT-DDI method is used. Since this method is not well 
established yet, the purpose of this paper is to present some new techniques that can improve its efficiency.

Keywords Vibrating structures · Double integration · Accelerometers · Displacement

1 Introduction

Displacement measurements are often needed in many prac-
tical applications, for instance, to monitor machine move-
ments, to calculate strain fields, or to follow and control 
paths of autonomous vehicles. Moreover, several works have 
used such measurements to study the dynamic behavior of 
bridges and civil structures [1, 2] and to evaluate the severity 
of earthquakes [3–5]. There are various kinds of non-inertial 
displacement gages available, based on capacitive, resistive, 
LVDT, eddy current, and optical sensors, but all such trans-
ducers need to be connected to some fixed reference close 

to the point of measurement, since all of them are direct 
measurement devices. However, a close inertial reference 
may be very difficult to find in large structures, such as sta-
diums and bridges, and may be simply unavailable in the 
case of most moving objects. Indeed, when feasible, the con-
struction of auxiliary inert structures like columns or rigid 
beams supported directly on rigid soil is expensive and time-
consuming. GPS signals can be an option when the displace-
ment resolution needed is in the order of meters, but in many 
practical cases, e.g., when the displacements should be used 
to calculate strains, such a resolution is simply not enough.

Moreover, since velocity and displacement seismic trans-
ducers cannot be made with both small size and low-fre-
quency response, it is often necessary to indirectly measure 
displacements through the double integration of the signal 
generated by some appropriate acceleration transducer. 
Since there are commercial accelerometers with small 
size, good dynamic response, good reliability and afford-
able prices, they are a natural choice to measure structural 
vibrations. However, the precise measurement of displace-
ments by integrating accelerometer signals is not a trivial 
task, as it might look at first sight. Indeed, even though there 
are many displacement-measuring devices available in the 
market that use analog circuits to double integrate acceler-
ometer data, such integrators have no linear phase response 
for frequencies typically below 10 Hz; thus, these circuits 
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can much distort transient signals. Hence, this method may 
not be accurate and/or reliable enough for most practical 
applications [6].

Digital integration techniques, such as the trapezoidal 
rule or the Simpson 1/3 rule, can solve most of those prob-
lems, since they do not introduce errors due to nonlinear 
phase response. In principle, a digital integration scheme can 
be easily implemented by using the sampled signal measured 
by a data acquisition system. However, digital integration 
has its own problems, since it is very sensitive to the signal 
low-frequency components, which introduce a time-increas-
ing error in the displacement signals. Since the integration 
has a cumulative characteristic, these errors cause drift or a 
zero-shifting type error, a problem that is magnified when 
the signal is double-integrated. Such errors are simply inad-
missible for structural integrity evaluation purposes, because 
they would be associated with false strains and stresses of 
increasing magnitude. Direct GPS-based displacement 
measurements are another option, but as mentioned above 
the resolution obtainable from these devices is still not 
enough for measuring the small displacements needed in 
most structural integrity evaluations, even though they can 
be reduced using data fusion [7–12].

Therefore, since accelerometers still are the best choice 
for most dynamic measurements, many recent works are 
available in the literature proposing methods for decreasing 
the errors of the double integration of accelerations data, 
without using data fusion [13–21]. However, most of these 
methods are based on time-domain techniques that use least 
squares data-fitting methods and digital filters, which induce 
distortions of the signal as a side effect of the digital filter-
ing [13, 14].

On the other hand, the FFT-DDI method [22–26] removes 
the zero shift of the signal in the frequency domain, avoid-
ing time aliasing induced by digital filtering in the time 
domain [24]. The FFT-DDI is not a recent proposal, but it 
presents good results and has the advantage of not distort-
ing the signal. However, its parameters (such as acquisition 
time, sample rate and number of samples) that optimize its 
application are not well established yet. Hence, the purpose 
of this paper is to present the most recent advances of the 
FFT-DDI method that can be used to establish the correct 
parameters to acquire acceleration signals.

2  Sources of errors in the digital integration

Without loss of generality, the extended trapezoidal rule 
is used throughout this paper. This method obeys Eq. (1), 
where vT (k) is the estimation for the actual value of the 
velocity v(t) at tk:

To calculate the approximate displacements, this same 
equation must be used once again on the calculated veloc-
ity. Equation (2) is the estimation of the displacement x(t) 
at the instant tk:

Incorrect estimates of the initial conditions are a source of 
error in Eqs. (1) and (2). Another source of error is the zero 
shift, a constant value superimposed on the actual accelera-
tion signal a(t) as shown in Eq. (3). This error is present in 
any real transducer output:

Hence, the actual initial velocity and zero shift must be 
correctly estimated to obtain the correct velocity signal. 
Incorrect estimates of any of these variables result in an 
incorrect estimated velocity as shown in Eq. (4), where vi 
and de are the estimations of the initial velocity and of the 
zero shift:

Finally, if the actual displacement x0 is not known and is 
assumed incorrectly as xi , the displacement will be estimated 
incorrectly as shown in Eq. (5):

3  Time‑domain trend removal

Equations (3), (4) and (5) show that an incorrect estima-
tion of the initial velocity and displacement is equivalent 
to introduce a zero drift in them. Hence, only the accelera-
tion estimate needs to be studied, since the same method to 
remove zero shift can be applied in each integration stage. 
A common way to estimate and remove such errors is to 
use the least squares method to calculate the mean value 
of the acceleration, the resulting linear velocity signal and 
the quadratic curve of the double-integrated displacement. 
This method, named time-domain trend removal (TDTR), 
is presented next. If the acceleration has a zero-mean value, 
a common method used to remove the zero-shift error is to 
calculate the mean value of the measured acceleration:

(1)

vT (k) = v0 +
Δt

2

k∑
l=1

[a(l − 1) + a(l)] k = 1,… ,N − 1.

(2)

xT (k) = x0 +
Δt

2

k∑
l=1

[
vT (l − 1) + vT (l)

]
k = 1,… ,N − 1.

(3)am(k) = a(k) + d k = 0, 1,… ,N − 1.

(4)
ve(k) = vT (k) +

(
v0 − vi

)
+
(
d − de

)
⋅ k ⋅ Δt k = 0, 1,… ,N − 1.

(5)

x
e(k) = x

T2

(k) +
(
x0 − x

i

)
+
(
v0 − v

i

)
⋅ k ⋅ Δt

+
d − d

e

2
⋅ (kΔt)2 k = 0,… ,N − 1.
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The estimated zero shift will then be equal to the actual 
zero shift if and only if

However, this is not always true. Suppose the acceleration 
is a sinusoidal signal defined by

Then, the estimated mean value using the acquired data 
becomes

Equation (9) shows that this mean value is zero for any � 
if f1T  is an integer. Otherwise, the mean value depends on 
� . Suppose now that the acceleration is a damped sinusoidal 
signal defined by

Then, the estimated mean value using the acquired data 
becomes

(6)de =
1

N

N−1∑
k=0

am(k) =
1

N

N−1∑
k=0

[a(k) + d] = d +
1

N

N−1∑
k=0

a(k).

(7)1

N

N−1∑
k=0

a(k) = 0.

(8)a(k) = sin

(
2�f1k

T

N
+ �

)
k = 0, 1,… ,N − 1.

(9)

1

N

N−1∑
k=0

sin

(
2�f1k

T

N
+ �

)

=
cos (�)

[
1 − cos

(
2�f1T

)]
+ sin (�) sin

(
2�f1T

)
2�f1T

.

(10)a(k) = e
−�k

T

N ⋅ sin

(
2�f1k

T

N

)
k = 0, 1,… ,N − 1.

Equation (11) shows that this mean value is not be zero 
for any � , even if f1T  is an integer. Hence, there are situa-
tions when Eq. (6) does not estimate correctly the zero shift, 
resulting in a parabolic term in the estimated displacement 
as shown in Eq. (5). This explains the necessity of using 
least squares methods to remove this trend in displacement 
signals.

4  The FFT‑DDI method

This section presents the fundamentals the FFT-DDI 
method. First, consider the FFT of a sampled discrete func-
tion, defined as

where the FFT G(n) is defined at the frequencies

It is important to review some characteristics of the 
FFT of some common functions to understand the method. 

(11)

1

N

N−1∑
k=0

e
−�k

T

N ⋅ sin

(
2�f1k

T

N

)

=
1

T

2�f1 − e−�NΔt
[
� sin

(
2�f1T

)
− 2�f1 cos

(
2�f1T

)]

�2 +
(
2�f1

)2 .

(12)G(n) =

N−1∑
k=0

g(k)e−j2�
n

N
k

n = 0, 1,… ,N − 1

(13)f =
n

T
n = 0, 1,… ,

N

2

Fig. 1  Typical FFT of the unit step function with 16 sampled points
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Figure 1 is the FFT of the unit step function defined by Eq. 
(14), with T = N = 16:

Figure 2 is the FFT of a sinusoidal function with f1T  not 
an integer, defined by

(14)g(k) = 1 k = 0, 1,… ,N − 1

(15)G(n) =

{
N if n = 0

0 elsewhere

Figure 3 is the FFT of a damped sinusoidal function with 
f1T  being an integer, defined by

(16)g(k) = sin

(
2�

4.7

16
k
)

k = 0, 1,… ,N − 1.

(17)g(k) = e−0.1k ⋅ sin
(
2�

4

16
k
)

k = 0, 1,… ,N − 1.

Fig. 2  Typical FFT of a sinusoidal function with 16 points sampled when f1T  is not an integer

Fig. 3  Typical FFT of a damped sinusoidal function with 16 points sampled
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The FFT G(n) of any function has one characteristic that 
will be the base of the FFT-DDI method: the value of G(0) is 
proportional to the mean value of g(k) , as shown in Eq. (18).

From Figs. 1, 2 and 3, it can be verified that:

(18)G(0) =

N−1∑
k=0

g(k) = N ⋅ �̂�g n = 0, 1,… ,N − 1.

Fig. 4  Double integration of the acceleration associated with the displacements of Eq. (26), with the vibration starting at t1 = 0.30 s

Fig. 5  Double integration of the acceleration associated with the displacements of Eq. (26), with the vibration starting at t1 = 0.10 s

Table 1  Summary of Fig. 4 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley + 10.0 + 10.00 0.00 + 10.50 5.00
Peak + 5.00 + 5.00 0.00 + 5.46 9.20
Valley − 5.00 − 5.00 0.00 − 5.04 0.80%
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• the only influence of a constant value on the FFT of the 
acceleration is at n = 0;

• for any real valued function, the imaginary part at n = 0 
is zero; and

• the real part of the FFT is an even function.

The solution proposed by the FFT-DDI method is then 
to estimate the value of the FFT of the signal at n = 0 using 
the values of the vicinity, but a good estimator has not been 
established yet.

Table 2  Summary of Fig. 2 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley + 10.0 + 10.00 0.00 + 10.58 5.8
Peak + 5.00 + 5.00 0.00 + 5.08 1.6
Valley − 5.00 − 5.00 0.00 − 5.50 10

Fig. 6  Double integration of the acceleration associated with the displacement of Eq. (27), with � = 0 rad

Fig. 7  Double integration of the acceleration associated with the displacement of Eq. (27), with � = 0 rad
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5  Parameter adjustment for the FFT‑DDI 
method

Some other characteristics of the FFT of the harmonic sig-
nals must be verified to establish a better estimator:

• if the fundamental frequency of the signal is sufficiently 
high, the real part of the FFT at low frequencies can be 
approximated by a polynomial function.

• From Figs. 2 and 3, it can be deduced that this fundamen-
tal frequency component fmin must be equal or higher 
than 5∕T .

• Since these low-frequency components are not affected 
by the zero shift, this polynomial can be used to estimate 
the value G(0) by interpolation.

Using these assumptions, it can be established that the 
minimum acquisition time must be obtained using Eq. (19):

Using this acquisition time, the low-frequency compo-
nents at n from 1 to 3 can be used to obtain the polynomial. 
Furthermore, due to the symmetry of the real part of the FFT 
of a real function, it can be obtained by a polynomial of fifth 
order, as shown in Eq. (20):

(19)Tmin =
5

fmin

.

(20)p(n) = b5n
5 + b4n

4 + b3n
3 + b2n

2 + b1n + b0.

Fig. 8  Double integration of the acceleration associated with the displacement of Eq. (27), with � = �∕3 rad

Table 3  Summary of Fig. 6 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley + 10.0 + 10.00 0.00 + 10.67 6.70
Peak + 5.00 + 5.00 0.00 + 5.15 3.00
Valley − 5.00 − 5.00 0.00 − 5.54 10.80

Table 4  Summary of Fig. 7 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley + 10.0 + 10.00 0.00 + 10.67 6.70
Peak + 5.00 + 5.00 0.00 + 5.54 10.80
Valley − 5.00 − 5.00 0.00 − 5.15 3.00

Table 5  Summary of Fig. 8 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley + 10.0 + 10.00 0.00 +10.41 4.10
Peak + 5.00 + 5.00 0.00 + 5.20 4.00
Valley − 5.00 − 5.00 0.00 − 5.22 4.40



 Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2020) 42:104 

1 3

  104  Page 8 of 15

The constants of the polynomial can be obtained solving 
the linear system shown in Eq. (21), where Am(n) is the FFT 
of the measured acceleration and Am

r
(n) is its real part:

(21)

⎡⎢⎢⎢⎢⎢⎢⎣

(−3)5 (−3)4 (−3)3 (−3)2 (−3)1 1

(−2)5 (−2)4 (−2)3 (−2)2 (−2)1 1

(−1)5 (−1)4 (−1)3 (−1)2 (−1)1 1

35 34 33 32 31 1

25 24 23 22 21 1

1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

b5
b4
b3
b2
b1
b0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

p(−3)

p(−2)

p(−1)

p(1)

p(2)

p(3)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Am
r
(3)

Am
r
(2)

Am
r
(1)

Am
r
(1)

Am
r
(2)

Am
r
(3)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Fig. 9  Measurements of the displacements and accelerations

Fig. 10  Double integration of 8192 points of the acceleration of Fig. 9, from t1 = 8.87 s
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The objective of this polynomial is to obtain the value of 
the FFT of the actual acceleration at n = 0 . Then, it is neces-
sary to calculate b0 only, as shown in Eq. (22):

Using Cramer’s rule, b0 can be calculated using

(22)p(0) = b0 ≅ A(0). (23)

b0 =

|||||||||||||

(−3)5 (−3)4 (−3)3 (−3)2 (−3)1 Am
r
(3)

(−2)5 (−2)4 (−2)3 (−2)2 (−2)1 Am
r
(2)

(−1)5 (−1)4 (−1)3 (−1)2 (−1)1 Am
r
(1)

35 34 33 32 31 Am
r
(3)

25 24 23 22 21 Am
r
(2)

1 1 1 1 1 Am
r
(1)

|||||||||||||
691200

Fig. 11  Double integration of 8192 points of the acceleration of Fig. 9, from t1 = 8.93 s

Fig. 12  Double integration of 8192 points of the acceleration of Fig. 9, from t1 = 8.99 s
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The zero shift of the acceleration can be estimated using 
Eq. (24):

If the condition of Eq. (19) is valid, this estimation will 
be much better than the estimation obtained using Eq. (6). 
Then, the actual acceleration can be calculated using Eq. 
(25):

(24)d ≈
Am(0) − b0

N
.

This acceleration can be used to obtain the velocity using 
Eq. (1), considering vi = 0. If this estimation is incorrect, it 
will introduce a zero shift in velocity that is equal the actual 
initial velocity, as shown in Eq. (4). Then, the same process 
can be used to remove this zero shift and to obtain the veloc-
ity that will used to obtain the displacement using Eq. (2).

(25)a(k) = am(k) −
Am(0) − b0

N
k = 0, 1,… ,N − 1.

Fig. 13  Double integration of 8192 points of the acceleration of Fig. 9, from t1 = 15.07 s

Fig. 14  Double integration of 8192 points of the acceleration of Fig. 9, from t1 = 15.39 s
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Fig. 15  Double integration of 8192 points of the acceleration of Fig. 9, from t1 = 15.78 s

Fig. 16  Velocities and displacements obtained using the trapezoidal rule on white noise signals

Table 6  Summary of Fig. 10 results

Parameter Actual FFT-DDI TDTR

Calculated Error (%) Calculated Error (%)

Peak-to-
valley

10.13 10.17 0.39 10.30 1.68

Peak 5.11 5.15 0.78 5.08 − 0.58
Valley − 5.02 − 5.02 0.00 − 5.22 3.98

Table 7  Summary of Fig. 11 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley 10.13 10.18 0.49 10.21 0.79
Peak 5.11 5.16 0.98 5.17 1.17
Valley − 5.02 − 5.02 0.00 − 5.04 0.39
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6  Numerical simulations

In the simulations below, it is supposed that a structure at a 
stationary position starts vibrating from instant t1 and that 
this vibration is monitored with an acceleration measure-
ment system that acquires N = 8192 points with a sample 
time interval Δt = 0.00062 s , leading to an acquisition time 
of T = 5 s . The displacement during this period is expressed 
by

Consider that the structure vibrates with an amplitude 
X = 5mm , at a frequency f1 = 2.1Hz , and that � = 2 . The 
results of the double integration of the measured acceleration 

(26)
x(t) = −X ⋅

[
1 − e−�(t−t1)

]
⋅ sin

[
2� ⋅ f1 ⋅

(
t − t1

)]
t ≥ t1.

are shown in Figs. 4 and 5, and the results are summarized 
in Tables 1 and 2.

After the transient, the displacement is expressed by

The value of the phase angle � depends on the initial 
value of the acceleration. The results of the double integra-
tion of the acceleration are shown in Figs. 6, 7 and 8, and the 
results are summarized in Tables 3, 4 and 5.

7  Experimental validation

The experimental validation is performed generating a 
sinusoidal displacement signal with 5 mm amplitudes at the 
frequency of 2.1 Hz using an Instron 8501 servo-hydraulic 
machine equipped with an LVDT, which was used as the 
reference displacement transducer.

The acceleration is measured using a resistive acceler-
ometer model AS-1G from Kyowa Electronic Instruments, 
connected to a signal conditioner model NI 9237 from 
National Instruments. The acquisition system is connected 
to a desktop using Windows 10 and LabVIEW 2014. The 
acquisition sampling time has been set as Δt = 0.00062 s . 
Figure 9 shows the acceleration signal measured using the 
accelerometer, as well as the displacement signal measured 
using the LVDT. The results of both studied methods are 
shown in Fig. 10, 11, 12, 13, 14, 15 and 16, with the results 
summarized in Tables 6, 7, 8, 9, 10 and 11.

8  Effects of the noise

Noise is any undesirable spurious signal that contaminates 
measurements reducing their resolution and accuracy. 
Hence, noise can be another important error source in prac-
tical measurements. In accelerometers, noise is generated 
by their electrical and mechanical components, as well as 
by their amplifier and cables [25]. Assuming noise can be 
modeled as a Gaussian wide band, it can be characterized by 
its statistical parameters, its mean and variance. The mean 
value of the noise can be estimated from

while the variance of the noise can be estimated using

(27)x(t) = −X ⋅ sin
(
2� ⋅ f1 ⋅ t + �

)
.

(28)�̂�a =
1

N

N∑
i=1

ai,

(29)�̂�2

a
=

1

N

N∑
i=1

(
ai − 𝜇a

)2
.

Table 8  Summary of Fig. 12 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley 10.13 10.19 0.59 10.59 4.54
Peak 5.11 5.17 1.17 5.49 7.44
Valley − 5.02 − 5.02 0.00 − 5.10 1.59

Table 9  Summary of Fig. 13 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley 10.09 10.05 − 0.40 10.66 5.65
Peak 5.09 5.07 − 0.39 5.15 1.18
Valley − 5.00 − 4.98 − 0.40 − 5.51 10.20

Table 10  Summary of Fig. 14 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley 10.09 10.13 0.40 10.32 2.28
Peak 5.09 5.15 1.17 5.15 1.17
Valley − 5.00 − 5.00 0.00 − 5.17 3.40

Table 11  Summary of Fig. 15 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley 10.09 10.09 0.00 10.64 5.45
Peak 5.09 5.07 − 0.39 5.50 8.06
Valley − 5.00 − 5.02 0.40 − 5.13 2.60
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Since the noise is a random process, its mean value has 
a Gaussian distribution centered at zero and the variance of 
its estimation can be estimated using

In Eq. (30), B is the bandwidth of the signal and T  is 
acquisition time. The random error of the estimate �̂�a has a 
standard deviation:

(30)Var
[
�̂�a

]
≈

𝜎2
a

2BT
.

(31)𝜎
�
�̂�a

�
≈

1√
2T

𝜎a√
B
.

Therefore, there is a probability of about 95% that the 
estimate �̂�a falls within the interval [26]:

Considering an initial velocity v0 = 0 in the integration 
of the noise, the velocity at sample k can be estimated using

Using Eq. (32), it can be deduced that the probability the 
estimate vT (k) will fall within the interval:

is about 95%. Using Eq. (31), then

which becomes

Considering an initial displacement x0 = 0 in the integra-
tion of vT , the displacement at sample k can be estimated 
using

Using a similar method, it can be deduced that the prob-
ability that the estimate xT (k) will fall within the interval

(32)
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.
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Fig. 17  Double integration of 8192 points of the acceleration of Fig. 9, from t1 = 27.79 s

Table 12  Summary of Fig. 17 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley 10.06 11.69 16.20 10.62 5.57
Peak 5.08 6.07 19.50 5.25 3.35
Valley − 4.98 − 5.61 12.65 − 5.36 7.63

Table 13  Summary of Fig. 18 results

Parameter Actual FFT-DDI TDTR

Calculated Error % Calculated Error %

Peak-to-valley 10.06 10.05 0.01 10.39 3.28
Peak 5.08 5.04 − 0.79 5.09 0.20
Valley − 4.98 − 5.01 0.60 − 5.30 6.43
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is about 95%.
Figure 16 shows the integration and double integration 

results using the trapezoidal rule of several noise signals 
with standard deviation �a = 5.62mm s−2 , using N = 8192 
points with a sample time of Δt = 0.00062s , leading to an 
acquisition time period T = 5 s . The confidence interval 
shown in Eq. (36) for velocity and Eq. (38) for displacement 
is represented in the dotted lines of the figures.

Figure 17 shows the double integration of a sample of the 
acceleration shown in Fig. 9, with a huge error that was not 
present in the previous results. This error is due to the noise 
present in the measurement system, which has a standard 
deviation �a = 5.62mm s−2 (Tables 12 and 13).   

Then, the acceleration signal is filtered using a high-pass 
FIR filter with a cutoff frequency of 0.7 Hz and used to 
obtain the displacement using both methods. The results are 
shown in Fig. 18.

9  Conclusions

The FFT-DDI showed good results in past works [24, 25], 
but the methodology of removing the zero shift was not well 
established, so the method was not easy to use. The param-
eter fitting procedure proposed in Sect. 5 can be used to 
minimize displacement errors introduced in double numeri-
cal integrations of an acceleration data. The first important 
piece of information in the proposed methodology is the 

(38)

�
−

√
2

2
⋅

𝜎a√
B
⋅ t3∕2 ≤ xT (k) <

√
2

2
⋅

𝜎a√
B
⋅ t3∕2

� fundamental frequency of the acceleration. Using this infor-
mation, the minimum time acquisition is calculated using 
Eq. (19). The sample rate and the number of samples do 
not affect the zero shift removal; thus, they must be cho-
sen based on the error of the integration method used. The 
removal of the zero shift of the acceleration can be done by 
calculating its FFT and using in sequence Eqs. (23), (24) 
and (25). The removal of the zero shift of the calculated 
velocity and displacement can be done in a similar process. 
The simulations and experimental validation showed that 
this method presented results much better than the baseline 
correction using least squares methods. Finally, it must be 
emphasized that noise is a huge source of error. It corrupts 
the displacement signal in both methods. But after a con-
venient filtering of the signal, the FFT-DDI presented the 
best results.
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