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A B S T R A C T

A pure mode-I approach cannot properly analyze many important practical problems that involve combined
mode I and II loadings, which in particular may not be sufficient to estimate crack paths and fracture toughness
in such cases. Multiaxial crack tip conditions characterized by a crack inclination angle β in a modified mixed-
mode single edge tension SE(T) specimen are used to consider mixed-mode effects on the shapes and volumes of
the plastic zones (pz) that form ahead of crack tips, as well as on the plastic work Upl dissipated inside them. A
methodology is proposed to evaluate pz volumes Vpz based on a sub-modeling FE analysis that uses the influence
volume around a plastified Gauss integration point. For a given Equivalent Stress Intensity Factor Keq, both Vpz

and Upl are evaluated for different nominal stress to yield strength ratios σn/SY and several combinations of
geometric parameters β, W/B and a/W, where a is the crack size, W is the cracked specimen width, and B is its
thickness. Before performing all these analyses, compatibility and convergence studies are carried out to validate
the submodels used in such analyses.

1. Introduction

Elastoplastic (EP) stress/strain fields around crack tips are most
important in structural integrity evaluations. Damage accumulated in
them is the actual driving force for failure mechanisms such as fatigue
crack growth (FCG), stable crack tearing, unstable fracture, and even
environmentally assisted cracking. Since cracks prefer to grow per-
pendicular to the main principal stress (at least when it is tensile), most
engineering problems that involve FCG and fracture can be properly
modeled by taking into account only mode-I features. However, there
are many important problems where the combined effect of mixed
mode I and II loadings cannot be neglected. In particular, a pure mode-I
approach may not be sufficient to estimate, for practical purposes,
fracture toughness and fatigue crack paths in such cases. Such mixed-
mode problems involve crack orientation and/or load conditions that
lead to combined local Stress Intensity Factors (SIFs) KI-KII around the
crack front. Therefore, it is almost a truism to claim that analyses of
cracked components that induce mixed-mode conditions around the
crack tip under multiaxial stress states are needed to properly evaluate
their fatigue and fracture behavior.

It is well known that geometric parameters, loading conditions, and
transversal constraints can affect plastic zone (pz) sizes and shapes.
Indeed, for instance under pure mode I conditions, a given SIF value KI

can provide different pz sizes and shapes in thin or thick components,
due to dominant plane stress or plane strain conditions along the crack
front. This effect is due to transversal displacement constraints around
the crack tip in thick components, which may restrict the pz formation
by inducing higher localized hydrostatic stress components (in com-
parison to the prevalent conditions in thin plane stress cracked com-
ponents). In the case of pure mode I loadings, there is a number of
detailed 3D numerical studies to quantify pz effects on the structural
integrity of cracked mechanical components [1–4].

However, what is certainly less well-known is that pz sizes and
shapes can be much affected as well by equally important nominal load
and crack size effects, which make pzs much dependent on σn/SY and a/
W ratios. Such effects are simply neglected in traditional pz estimates,
which assume pz sizes and shapes depend only on the SIFs and on the
cracked component thickness, even though relatively simple improved
estimates can clearly identify non-negligible σn/SY effects [5]. There-
fore, it should not be a surprise that traditional pz estimates, as well as
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structural integrity evaluations based on idealized SIF-dominated
stress/strain fields, can be highly inaccurate and even useless for many
practical applications where reliable predictions are needed.

Moreover, probably due to the widespread use of traditional SIF-
based pz estimates, σn/SY and a/W effects are not properly evaluated or
even considered in many numerical studies either. To show how in-
appropriate this practice can be, a recent work [6] used extensive 3D
incremental elastoplastic (EP) numerical simulations to calculate the
plastic work Upl dissipated inside the pz under a given KI value, but
different σn/SY and a/W conditions. That work quantitatively evaluates
the use of Upl to estimate the onset of crack tearing in practical EP
fracture applications, and presents some experimental evidence to
support the use of this simple idea. Such σn/SY and a/W effects can
explain the typically high dispersion of EP fracture toughness mea-
surements in non-identical specimens. Indeed, from a physical point of
view, the toughness should be controlled by Upl in most practical ap-
plications, since the work spent to create two new crack faces is usually
negligible in tough materials.

In fact, if the plastic zone sizes and shapes ahead of crack tips, and
thus the pz volumes and the Uplspent inside them, strongly depend on
geometric parameters, loading conditions, and transversal constraints,
the consequent toughness should depend on σn/SY and a/W ratios as
well. This Upl-dependent toughness may become a practical tool to re-
place too conservative toughness estimates for design purposes based
on highly constrained K [7] or J [8] measurements [4,9–11]. Indeed, a
recent contribution discusses a methodology to obtain results of strain
measurements using synchrotron X-ray diffraction [11], which are
compared with those predicted from 3D EP FEM. This kind of experi-
mental work may also be useful to quantify the dependence of fracture
toughness on the 3D plastic constraint.

Standards for toughness measurements [7,8] are available only for
pure mode I, which can be highly conservative in many mixed-mode
design cases. A recent work [12] shows through numerical and analy-
tical calculations that the classic estimates for the pz size of shear-mode
cracks must be corrected. Based on a comparison between linear elastic
fracture mechanics (LEFM), the HRR field [13] and FEM, the correct
assessment of the pzs must be carefully performed because part of the
applied load is transferred by fracture surfaces. Another recent con-
tribution presents numerical analyses and correlations between the
plastic SIF and the constraint parameter for a range of mixed-mode

loadings [14].
It is reasonable to extend to mixed mode I-II problems the idea that

Upl can and (at least in the authors’ opinion) should be used to quantify
EP toughness in practical applications, in particular because its nu-
merical calculation by EP finite element procedures (although not a
trivial task) is not anymore a major barrier nowadays.

In this work, single edge tension (SE(T)) specimens are numerically
investigated to evaluate 3D crack tip plastic zones for several values of
equivalent SIF Keq, crack inclination angle β, W/B width-to-thickness
ratio, and a/W crack length-to-specimen width ratio, for mixed mode
I–II problems. Moreover, to validate the used numerical models, they
are compared to experimental photoelastic tests and 2D numerical
studies under mixed mode I–II configurations, which have been pre-
viously examined and well documented elsewhere [16–18].

This work describes and uses an improved methodology for evalu-
ating 3D pz volumes around crack fronts, based on 3D elastoplastic (EP)
submodeling finite element (FE) techniques proposed and detailed
elsewhere [6]. This methodology can be used to evaluate cracked
components under different transversal constraint levels. These con-
straints are varied changing the specimen geometry and loading con-
ditions. Geometric parameters are represented by crack length-to-spe-
cimen width a/W and specimen width-to-specimen thickness W/B
ratios. Loading conditions are considered by examining different
nominal stress-to-yield strength σn/SY ratios for a given KI or combined
KI-KII, which can also be represented as Keq or Keq

2 = KI
2 + KII

2.
In the following Sections, 3D EP FE models are used to calculate

several pz sizes and shapes in cracked specimens, their pz volumes, as
well as the corresponding plastic work spent Upl inside them. Different
transversal displacement constraints around the crack front are con-
sidered, under various Keq, β, a/W and W/B ratios. Multiaxial loading
conditions are analyzed by varying the crack inclination angle β in a
modified mixed-mode KI-KII single edge tension SE(T) specimen [17], as
illustrated in Fig. 1, where the specimen width is W, its height is 2L, its
thickness is B, and the crack length is a.

2. Finite element analysis

A modified SE(T) specimen is considered in this study to simulate
mixed mode I–II loading conditions by simply varying the crack angle β,
as depicted in Fig. 1. Pure mode I loading conditions are achieved when

Nomenclature

a crack length
B specimen thickness
E Young’s modulus of elasticity
EP elastoplastic
Es element size
FE finite element
fi, gi geometry factors
H monotonic Ramberg-Osgood hardening coefficient
h monotonic Ramberg-Osgood hardening exponent
J J-integral (energy release rate of EP materials)
JIC plane strain fracture toughness characterized by J
K, KI stress intensity factor (SIF) in mode I
Keq equivalent SIF
KIC plane strain fracture toughness
KII SIF in mode II
L half-height of SE(T)
LE linear elastic
mp middle position
P load
pl, PL plastic
pl-ε plane strain

pl-σ plane stress
pz plastic zone
SE(T) single edge tension specimen
SIF stress concentration factor
SY yield strength
Tz transversal constraint factor
u(x) horizontal displacement
Uep elastoplastic work
uep elastoplastic work density
Upl plastic work
v(y) vertical displacement
Ve volume of the element
Vpz plastic zone volume
W specimen width
w(z) out-of-plane displacement
x, y, z global Cartesian coordinates
ν Poisson’s coefficient
σn nominal stress
δIC critical crack tip opening displacement
εeq von Mises equivalent strain
εY yield strain
β crack inclination angle
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β = 0°. This modified SE(T) specimen is supposed to carry a purely
tensile nominal stress σn at its upper extremity (y = L), assuming a
uniformly distributed load P per unit area W∙B in the y-axis direction.
The lower SE(T) extremity (y = −L) is assumed fixed in all degrees of
freedom.

First, the submodel loading conditions are obtained from the nu-
merical solution of the global model, using proper elements to globally
describe its crack. The submodel sizes (xs, yx, B/2) are then chosen to
assure LE conditions all around its perimeter, keeping the pz inside the
submodel. All numerical finite element (FE) calculations are performed
considering (in the submodel) its symmetry about the xy-plane (z-axis).
When β = 0°, only 1/4 of the specimen needs to be modeled, due to the
additional symmetry in the xz-plane (y-axis). Then, refined 3D EP FE
calculations are performed in the submodel to obtain the desired pz
volumes as well as the plastic work Upl performed inside them. To do so,
the Ansys Parametric Design Language (APDL) is used. Further details
about the numerical problem can be found in [6], which focuses only
on pure mode I.

The properties of the material used in all simulations are presented
in Table 1 [15,19], where E is Young’s modulus, ν is Poisson’s coeffi-
cient, SY is the yielding strength, and H and h are the monotonic
Ramberg-Osgood strain hardening coefficient and exponent.

2.1. FE model

The FE procedure involves two calculation steps. First, the global
model with a relatively coarse mesh is numerically solved to quantify
the stress field inside it, considering the inclined crack effect. This

requires the use of proper elements to simulate the crack tip behavior,
but besides this precaution it poses no major problems. Then, a sub-
model that contains the crack tip and its entire pz volume is chosen for
mesh refination purposes, assuring LE conditions around its perimeter
in the global model, which are used as displacement loading conditions
for such a submodel. This submodel is remeshed to assure that the re-
quired accuracy can be achieved when numerically solving its EP
stress/strain fields.

The pz 3D EP frontiers are mapped in terms of the equivalent von
Mises strain εeq. Quadratic elements (3D SOLID186) are used in these FE
simulations, and only the fractions of the volumes corresponding to
their plastified Gauss integration points are counted as part of the 3D pz
around the crack fronts (εeq ≥ εY). Hence, the smallest unit of volume
considered in the pz models, and in the calculation of the plastic work
Upl performed inside them, becomes 1/8 of the total volume of the
element [6].

When this modified SE(T) specimen with an inclined crack (which
provides mixed mode I–II conditions simply by varying its crack in-
clination angle β) is large and its residual ligament is much larger than
its crack size, then there are well-known, easy-to-deduce analytical
expressions for its SIFs KI and KII. When the modified SE(T) residual
ligament is not much larger than a, see e.g. [18], the general expression
for its Ki is given by [18]:

=K σ a f g· ·n i ii (1)

where σn is the nominal tensile stress applied in the cracked specimen
upper boundary (y = L), see Fig. 1, and fi and gi are geometry factors
that depend on the crack size-to-specimen width a/W ratio and on αi, δi,
and γi parameters defined below, with i = I or II, namely:

=g βcosI
2 (2)

=g β βcos sinII (3)

= +
−f a W α δ γ γ a W α a W( / , , , ) ·[cos( / )] ·( / )i i i i

δ
ii

i (4)

= − +α β β1.12/[ 0.73 0.8]I
3 2 (5)

= − − +δ β β β[8.53 5.57 ]/[ 0.82 1.37]I
2 (6)

= −
−γ β β1.9·(cos ) 0.38I

0.921 2.03 (7)

= − + +α β β β0.8 2.53 1.66 0.54II
3 2 (8)

= − +δ β β2.85 6.4 5.1II
3 2 (9)

= −
−γ β β1.2·(cos ) 0.15II

0.3 (10)

The geometric parameters and SIFs used in this work under modes I
and II, see Eq. (1), are presented in Tables 2 and 3, where W = 50 mm
and L=2W. Six values for the crack inclination angle β are considered:
0° (pure mode I), 20°, 40°, 50°, 55°, and 60°. Six a/W ratios are ex-
amined as well, namely 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. Three equivalent
SIF Keq are also studied, 10, 50 and 100 MPa√m, as well as three W/B
ratios, 2, 4, and 6.25.

Before all submodel simulations, a study of compatibility conditions
between the global model and submodel is performed. In addition, a
mesh convergence study is also carried out, based on evaluations of the
pz volume Vpz.

Fig. 1. Some characteristics of the global models and sub-models used to ana-
lyze mixed mode I–II single edge tension SE(T) specimens.

Table 1
Materials and properties [19].

Material E (GPa) ν (–) SY (MPa) H (MPa) h (–)

API 5L X80 207 0.3 560 892 0.08
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2.2. Compatibility and convergence studies

As the FE calculations involve two-step solutions (first a global
model and then a submodel), to assure their compatibility and con-
vergence it is necessary to find how (coarse/refined) the FE mesh
should be in the (global/sub) model. The appropriate mesh size must
present geometric and stress compatibilities between both the global
model and the submodel. To do so, three kinds of analyses are per-
formed. First, both models are solved using 3D LE FE. Second, the
global model is solved with 3D LE FE and then its submodel is solved
with 3D EP FE. Finally, both models are solved with 3D EP FE, a
computationally costly procedure just to verify the quality of the results
from the efficient submodeling technique. All these analyses are per-
formed considering the values Keq = 100 MPa√m, β= 0° (pure mode I),
a/W = 0.5, W/B = 2 and σn/SY = 0.23. The results are presented in
terms of plastic zone volume Vpz (Fig. 2), as well as vertical v(y) and
transversal w(z) displacements along the crack plane (y = 0) on the
surface of the specimen (z = B/2), see Figs. 3 and 4, respectively.

Fig. 2 shows that Vpz depends on the element type/size, as is re-
ported elsewhere [6]. Likewise, it depends on the kind of analysis
performed in this work. For instance, the LE global model with four
elements along the modeled half-thickness B/2, combined with the EP
submodel with thirty elements along its half-thickness (G4/S30-LE/EP),
shows Vpz converging to 148 mm3. The G4/S30-LE/LE model converges
this Vpz to 182 mm3, while the G4/S30-EP/EP converges to 326 mm3, a
huge difference between them. However, the Vpz on these three models
converges using at least 15–20 elements along B/2, as is reported in [6].

When the number of elements on the global model increases to 6, 8, 10
and 12, the Vpz converges to a value between 380 and 390 mm3. Hence,
these results suggest that the best model to be used in other simulations
is the G6/S20-EP/EP.

Fig. 3 shows the vertical displacement results for five different cases.
The displacement of the crack face is more pronounced when both
models use EP FE analyses. The results of the global model with six
elements along B/2 are also included. The same trend is noted when the
transversal displacement is evaluated in Fig. 4.

Finally, Fig. 5 presents the evaluation of the transversal constraint

Table 2
Evaluated cases for Keq = 100 MPa√m, and W/B = 6.25.

β (°) a/W = 0.2 a/W = 0.3

KI (MPa√m) KII (MPa√m) KII/KI (–) σn/SY (–) KI (MPa√m) KII (MPa√m) KII/KI (–) σn/SY (–)

0 100 0 0 0.73 100 0 0 0.50
20 98 18 0.19 0.71 98 18 0.19 0.49
40 96 28 0.29 0.72 96 28 0.29 0.52
50 95 31 0.33 0.79 95 31 0.33 0.59
55 94 33 0.35 0.88 95 33 0.35 0.66
60 93 36 0.39 1.04 93 36 0.39 0.80

a/W = 0.4 a/W = 0.5

0 100 0 0 0.34 100 0 0 0.23
20 99 18 0.19 0.34 99 17 0.17 0.24
40 97 27 0.28 0.38 97 27 0.27 0.27
50 95 30 0.32 0.45 96 30 0.31 0.35
55 95 32 0.34 0.52 95 32 0.34 0.41
60 94 36 0.39 0.64 93 36 0.38 0.52

a/W = 0.6 a/W = 0.7

0 100 0 0 0.14 100 0 0 0.09
20 99 16 0.16 0.16 99 15 0.15 0.10
40 97 26 0.26 0.21 97 25 0.25 0.15
50 96 29 0.30 0.27 96 28 0.29 0.21
55 95 31 0.33 0.33 95 31 0.33 0.26
60 94 35 0.37 0.42 94 34 0.37 0.35

Table 3
Evaluated cases for W/B = 6.25 and a/W = 0.2.

β (°) Keq = 10 MPa√m Keq = 50 MPa√m

KI (MPa√m) KII (MPa√m) σn/SY (–) KI (MPa√m) KII (MPa√m) σn/SY (–)

0 10 0 0.07 50 0 0.36
20 9.8 1.8 0.07 49 9 0.35
40 9.6 2.8 0.07 48 14 0.36
50 9.5 3.1 0.08 47 15 0.39
55 9.4 3.3 0.09 47 16 0.44
60 9.3 3.6 0.10 46 18 0.52

Fig. 2. Analysis of Vpz for 7 different cases.
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factor Tz, defined by the ratio between the transversal stress σz and the
sum of the two in-plane stress components σx and σy, namely Tz = σz/
(σx + σy). Fig. 5 shows Tz along the crack front and along the rear
border of the submodel for 5 different cases. The constraint factor Tz
gradually decreases from its maximum value (Tz → ν) at the plate mid-
plane (z/B = 0) to Tz = 0 on the free surface. All submodels analyzed
by EP FE present Tz near ν = 0.5 at the mid-plane. When the submodel
is evaluated by LE FE, the constraint factor Tz is slightly below ν = 0.3.
The global model analyzed by EP FE presents an intermediate value of
0.4. To maintain compatibility between the global model and the sub-
model, the sizes of the last one must be chosen so that the Tz dis-
tribution along the thickness is near zero on its border, as reported
elsewhere [20]. These results show that compatibility is achieved for all
submodels.

3. Numerical results for differently constrained specimens

To evaluate differently constrained specimens along the crack front,
calculations using different σn/SY ratios are performed for a given value
of Keq, see Figs. 6 and 7, where Keq

2 = KI
2 + KII

2. As it can be seen in
the figures, when the crack angle β increases for each crack size-to-
width ratio a/W, the σn/SY ratio also increases. However, the σn/SY ratio
decreases for long cracks a/W and low values of Keq. These analyses are
performed considering the cases presented in Tables 2 and 3. An in-
crease of the σn/SY ratio induces large volumes Vpz of plastic zones
ahead of the crack front, as discussed elsewhere [6].

Table 4 summarizes the shapes and sizes of the EP pz frontiers nu-
merically calculated on the surface of the modified SE(T), considering
the properties listed in Table 1 and some cases presented in Table 2.
Plastic zone frontiers are evaluated for W/B = 6.25 and
Keq = 100 MPa√m, a value well below the toughness of the API 5L X80
steel, so they can be directly compared without any crack tearing
concern. Note that the ratio σn/SY and the volume Vpz vary significantly
between crack inclination angles 40° and 60°. The EP pz frontiers are
properly scaled to allow the direct comparison among the various cases
that have the same a/W. Table 5 shows Vpz and Upl values calculated
using 3D EP EF for both global models and submodels, to avoid any
eventual numerical error from an elastic analysis of the global model.
Figs. 8–11 show the calculated Vpz and Upl for several β and Keq values.

As the fracture resistance depends on geometric parameters, loading
conditions, and transversal constraints, which much affect pz sizes and
shapes, so does the Upl spent inside the pz. The results presented in this
paper reinforce the idea that the ratios σn/SY and a/W can much affect
the plastic zones sizes and shapes, as well as the plastic work Upl dis-
sipated inside them. Since it is reasonable to assume that the toughness
of most metallic cracked structural components primarily depends on

Fig. 3. Numerical vertical displacement (v(y)) fields at the crack plane.

Fig. 4. Numerical transversal displacement (w(z)) fields at the crack plane.

Fig. 5. Transversal constraint factor distribution along the crack front (x = a/
W) and along the rear border of the submodel, both on the crack plane (y = 0).

Fig. 6. Analysis of the σn/SY ratio for Keq = 100 MPa√m.

Fig. 7. Analysis of the σn/SY ratio for a/W = 0.2.
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the Upl spent inside the pz, a proposal to validate the 3D EP FE calcu-
lations through suitable fracture toughness measurements has been
published elsewhere [6]. This idea states that the ratio of fracture
toughness measured at the threshold of crack tearing for different
constraint levels (JIC,σ-pl/JIC,ε-pl or δIC,σ-pl/δIC,ε-pl) could be correlated
with the ratio of the values of plastic work per pz volumes (Upl/Vpz)
developed around crack fronts. In other words, it is suggested that EP
fracture toughness should be controlled by Vpz and Upl. Experimental
fracture toughness under mixed-mode KI-KII conditions should be
measured in future works to extend this idea to multiaxial loadings.

Figs. 12–14 present the predicted variation of Upl/Vpz for different
geometries (a/W, W/B and β) and load (Keq and σn/SY) combinations.
For the smallest thickness B (W/B = 6.25), Fig. 12 shows that the
parameter Upl/Vpz behaves like the parameters Vpz and Upl when ana-
lyzed separately (see Figs. 10 and 11). In these cases, all evaluated
parameters are maximized at β = 60°. However, for larger thicknesses
(W/B = 2), the parameter Upl/Vpz is maximized at β = 40° for
Keq = 100 MPa√m and a/W = 0.7. Figs. 13 and 14 show the behavior
of the parameter Upl/Vpz as a function of a/W and Keq, respectively.

Finally, Fig. 15 shows details of the plastic zone around the crack
front for Keq = 100 MPa√m, β = 50°, a/W = 0.6, W/B = 2 and σn/
SY = 0.27. It can be seen that the plastic zone size and shape vary along
the specimen thickness (z-axis) from the surface to the mid-plane. Note,
however, that the maximum width of the plastic zone (size along
the x direction) is found in the interior of the specimen, closer to the
surface than to the mid plane. The same behavior was observed in other
works for mode I [1,2,21]. Note that this behavior depends on the

thickness of the specimen.

4. Conclusions

Three-dimensional elastic and elastoplastic finite element analyses
have been performed to generate numerical predictions of plastic zone
sizes, shapes, frontiers and volumes in modified cracked SE(T) speci-
mens under standard pure mode I (crack inclination angle β = 0°) and
under mixed mode I–II (β > 0°). Validations based on displacements
and transversal constraint factors show that compatibilities are

Table 4
Shape and size of the pz on the surface of the specimen.

β (°)\a/W 0.3 0.4 0.5 0.6 0.7

0

20

40

60

Table 5
Plastic zone volumes Vpz and plastic work Upl for Keq = 100 MPa√m and W/B = 6.25.

β (°) a/W = 0.2 a/W = 0.3 a/W = 0.4 a/W = 0.5 a/W = 0.6 a/W = 0.7

Vpz (mm3) Upl (mJ) Vpz (mm3) Upl (mJ) Vpz (mm3) Upl (mJ) Vpz (mm3) Upl (mJ) Vpz (mm3)

0 – – – – 452.12 525.21 181.47 177.07 79.95
20 – – 1221.05 1384.06 370.79 460.59 161.78 152.64 75.76
40 – – – – 370.75 389.03 174.60 165.22 88.05
50 – – – – – – – – 155.98
55 – – – – – – – – 256.04
60 – – – – – – – – 681.70

Fig. 8. Plastic zone volumes Vpz for Keq = 100 MPa√m and W/B = 6.25.
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achieved between global FE models and submodels. For a given
equivalent stress intensity factor Keq

2 = KI
2 + KII

2, as the crack in-
clination angle β increases, the plastic zone size increases and becomes
non-symmetrical about the crack length/front. The variations of the
ratio σn/SY and of the plastic zone volume Vpz are significant between
crack inclination angles 40° and 60°. Moreover, the plastic zone size is
much affected by the nominal stress-to-yield strength σn/SY ratio, and
decreases while increasing the crack length-to-width ratio a/W. The
presented calculations of plastic zone sizes and shapes, as well as the
associated plastic work dissipated inside them, can be useful for fatigue
and fracture mechanics assessments, not to mention fracture toughness
evaluations, replacing unreliable combinations based solely on K or J

and even on their combinations with T-stress-like constraint para-
meters.
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