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a b s t r a c t

Although the strains on a given material depend on its properties and, in general, on the

stresses, on the temperature and on the time under load, they may be modeled as a

function of the stresses alone in most practical structural analyses at low service-to-fusion

temperature ratios. Most metallic and ceramic alloys can be modeled in such a simplified

way at room temperatures, but some important materials, among them polymers and

concretes, can creep significantly even at room temperatures. Under relatively low

stresses, they can usually be modeled as linear viscoelastic using simple rheological

models based on springs and dashpots. However, in many practical cases such models

cannot fit well experimental data unless many of those elements are used, a problem that

can much impair their use in structural analyses. Fractional rheological elements based on

fractional calculus techniques have been recently proposed as a promising modeling

technique to avoid this problem, and in this work their performance is evaluated by

comparing their fitting behavior with traditional modeling techniques, using representa-

tive creep data from polypropylene and from a medium strength concrete.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Both in metallic or ceramic crystalline alloys, as well as in

polymers and glasses, creep is a thermo-mechanical failure

mechanism that gradually accumulates inelastic strains in

structural components. Creep can permanently deform and

eventually break such components even under fixed loads

that induce stresses well below their short-term yield

strengths. At high Q/Qf work-to-fusion absolute temperature
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ratios, creep can be the dominant failure mechanism in many

practical applications.

Hence, even though strains may be modeled as a function

ε(s) of the stresses alone in most practical structural analyses

at low Q/Qf ratios, in general they depend on the temperature

and time under load as well, i.e. ε ¼ ε(s, Q, t). Moreover, since

creep strain rates dε/dt tend to increase exponentially with the

service temperature Q, creep strains cannot be neglected in

high-Q applications. Temperatures may be considered low in

most structural analyses typically if Q/Qf < 0.3 in metallic
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alloys, Q/Qf < 0.4 in ceramics, and Q/QG < 0.5 in polymers,

where QG is their glass transition temperature. However,

creep strains may be relevant even at relatively low-Q when

the service stresses are remarkably high, the grains of the

material are too small, and/or the dimensional tolerances are

too tight [1].

Diffusive flow and dislocation movements are the main

creep micromechanisms in crystalline materials. Frost and

Ashby [2] claim that since plastic flow is a kinetic process,

time-independent yield strengths only exist at zero Kelvin.

Otherwise, the resistance to plastic flow depends on strain,

strain-rate, and temperature. They classify the atomic scale

kinetic processes that cause creep into five groups, namely:

(i) Plastic collapse.

(ii) Low-temperature plasticity by dislocation glide,

controlled by discrete obstacles, drag of atomic parti-

cles, or Peierls’ stress.

(iii) Low-temperature plasticity by twinning.

(iv) Power-law creep by dislocation glide or glide-plus-

climb, caused by lattice-diffusion controlled climb

(high-temperature creep), core diffusion controlled

climb (low-temperature creep), power-law breakdown

at the transition from glide to climb-plus-glide, Harper-

Dorn creep (very slow creep rates induced by and pro-

portional to low stresses), and creep accompanied by

dynamic recrystallization.

(v) Diffusional flow, produced by lattice diffusion (Nabarro-

Herring creep), grain boundary diffusion (Coble creep),

and interface-reaction controlled diffusional flow.

Polymers are viscoelastic materials composed of very long

chain-likemacromolecules that containmany repeating units

joined by strong covalent bonds, but in thermoplasticsmost or

all bonds between their chains are weak van der Waals or H-

bridge bonds. Their chains are usually not aligned, and their

microstructure is analogous to an entanglement of long and

sticky strings that can slip without breaking around each

other, eventually with some crystalline regions that can

improve a little but not modify their overall creep behavior.

Polymers are true solids, but relatively low temperatures can
Fig. 1 e Viscoelastic models: (a) Maxwell;
break the weak bonds between their chains and even between

parts of a single chain (the more resistant polymers soften

near 250 �C, but most soften at much lower temperatures).

Albeit thermosets have strong bonds between their chains,

their creep behavior is similar. Structural polymers can be

frequently modeled as linear viscoelastic solids for design

purposes, at least when loaded by typically low service

stresses.

Concrete also creeps even at room temperature, due to

hydration of calcium silicate components in Portland cement,

which bonds its mineral aggregates. Albeit concrete creep

mechanisms are intrinsically different from crystalline

metallic or ceramic alloys, or from polymeric creep mecha-

nisms, its overall behavior is similar to the latter. It tends to be

linearly dependent on the stress if the pore water content is

constant.

Linear elastic materials obey Hooke’s law, sðtÞ ¼ EεðtÞ,
where E is Young’smodulus, whereas linear viscousmaterials

obey Newton’s law, sðtÞ ¼ h,dεðtÞ=dt (both for uniaxial loads),

where h is the dynamic viscosity. Linear viscoelastic mate-

rials present an intermediate behavior and have a time-

dependent stress-strain ratio. They can relax when sub-

jected to constant strains, or else creep under fixed stresses.

To model such behaviors, Maxwell proposed the model

described by Eq. (1)

dsðtÞ
dt

¼E
dεðtÞ
dt

� sðtÞ
l

(1)

where l ¼ E=h. This equation represents the analogous

behavior of a spring and a dashpot in series, as shown in

Fig. 1a. Kelvin-Voigt proposed an alternative linear visco-

elastic model described by Eq. (2), which can be associated

with a spring and a dashpot in parallel, as shown in Fig. 1b.

sðtÞ¼EεðtÞ þ h
dεðtÞ
dt

(2)

Similar simple Zener and Burger rheological models are

shown in Fig. 1c and d. The general stress-strain relationship

for such linear spring/dashpot rheological models is given by

Eq. (3), where pk and qk are material constants measured by

properly fitting suitable experimental data.
(b) Kelvin-Voigt; (c) Zener; (d) Burger.
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Xn
k¼0

pk
dk

dtk
sðtÞ¼

Xm
k¼0

qk
dk

dtk
εðtÞ (3)

Recent studies have shown that rheological models based

on fractional calculus can fit experimental data for visco-

elastic materials [3e6] using a much smaller number of

rheological elements than the number required by the linear

springs and dampers used in traditionalmodels. Recentworks

explore this technique to model concrete creep [7e9], to

evaluate viscoelastic Euler-Bernoulli beams [10], in fatigue

analyses [11], and to describe non-linear viscoelastic behavior

of polymers [12,13].

Based on this fact, this paper sequentially discusses: (i) basic

fractional calculus concepts, as well as the fundamental tech-

niques needed to solve fractional differential equations; (ii) the

fractional representation of viscoelastic materials; and (iii) the

use of fractional elements in rheological models for such mate-

rials. Then ituses suchconcepts tofitbothconcreteandpolymer

creep data using very simple fractional rheological models.

Finally, it compares their predictions with the predictions

generated using traditional rheological models, which require

more elements to fit properly the same experimental data.
2. A brief review of fractional calculus

Fractional calculus is a generalization of the classical calculus

for derivatives of any order [14]. Its first mention was in a 1695

letter written by L’Hôpital and addressed to Leibniz, where he

mentions the notation DnfðxÞ=Dxn and questions about the

possibility that the derivative order be n ¼ 1=2; to which

Leibniz replied, “an apparent paradox from which one day

useful consequences will be drawn.” In 1819, Lacroix obtained

the fractional derivative from the integer derivative using the

function y ¼ xm:
Fig. 2 e Unit step response of the system
dny
dxn

¼ m!

ðm� nÞ!x
m�n ¼ Gðmþ 1Þ

Gðm� nþ 1Þx
m�n (4)

where G is the Gamma function, and from this result, Lacroix

used m ¼ 1 and n ¼ 1=2 to obtain

d1=2y
dx1=2

¼ 2
ffiffiffi
x

pffiffiffi
p

p (5)

Many mathematicians contributed for the development of

fractional derivatives during the following centuries, and

recently it has become a useful tool for engineers and scien-

tists inmany areas. Among themany definitions for fractional

derivatives, the three most widely used are the Riemann-

Liouville, the Caputo, and the Grünwald-Letnikov fractional

derivatives, presented in the following.

2.1. The Riemann-Liouville fractional derivative

Riemann-Liouville’s fractional-order integral results from the

Cauchy formula for multiple integrals:

aI
n
t fðtÞ¼

Zt
a

Ztn�1

a

/

Zt1
a

fðtÞdtdt1/dtn�1 ¼ 1
ðn� 1Þ!

Zt
a

ðt� tÞn�1fðtÞdt

(6)

Eq. (6) can be generalized by replacing n2Z with a2R, as

shown in Eq. (7):

aI
a
t fðtÞ¼

1
GðaÞ

Zt
a

ðt� tÞa�1fðtÞdt ; t > a a2R (7)

where G is the gamma function.

The formula for the fractional order derivative results from

this definition of the fractional order integral. The Riemann-

Liouville definition for zxc the fractional derivative of a order

is obtained by performing a fractional integration of order n�
shown in Eq. (17) for some 0<a � 1.

https://doi.org/10.1016/j.jmrt.2021.03.007
https://doi.org/10.1016/j.jmrt.2021.03.007


Fig. 3 e Fractional models: (a) Hooke; (b) Newton; (c) Scot-

Blair (pot).
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a, where n is the lowest integer larger than a, followed by a

derivation of order n of the resulting function, as shown in Eq.

(8).

RL
a Da

t fðtÞ¼
dn

dxn

�
aI

n�a
t fðtÞ�

¼ 1
Gðn� aÞ

dn

dtn

Zt
a

fðtÞ
ðt� tÞa�nþ1 dt

t > a; n� 1 < a < n (8)

2.2. The Caputo fractional derivative

Riemann-Liouville’s derivative has some issues: it is not null

when applied to constant functions and their initial condi-

tions are expressed in terms of derivatives of a fractional
Fig. 4 e Creep strains under compressive stresses (plotted as po

[15].
order, which do not have physical significance. To avoid such

problems, Caputo defined his derivative C
aD

a
t also from the

Riemann-Liouville fractional integral, but first deriving the

function and then applying n times the fractional integral of

order n� a, which again is the smallest integer larger than a,

as shown in Eq. (9).

C
aD

a
t fðtÞ¼ aI

n�a
t

�
dn

dtn
fðtÞ

�

¼ 1
Gðn� aÞ

Zt
a

f ðnÞðtÞ
ðt� tÞaþ1�n ðtÞdt

t > a; n� 1 < a < n (9)

2.3. The Grünwald-Letnikov fractional derivative

Grünwald-Letnikov’s definition is obtained by approximating

the n-order derivative, assuming f(t) is a well-defined function

and continuous with all the derivatives up n in the interval t2

½a; b�, then its derivative of order n can be well approximated

by:

dnfðtÞ
dtn

¼ lim
h/0

1
hn

Xn
k¼0

ð�1Þk
 
n

k

!
fðt� khÞ (10)

where:

 
n

k

!
¼ nðn� 1Þðn� 2Þ/ðn� kþ 1Þ

k!
(11)

The Grünwald-Letnikov fractional derivative is obtained by

replacing n2N with a2R; as shown in Eq. (12). The notation
GL
a Da

t means Grünwald-Letnikov fractional derivative of order a

calculated using the interval ½a; t�.
sitive for convenience) for a concrete in room temperature

https://doi.org/10.1016/j.jmrt.2021.03.007
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GL
a Da

t fðtÞ ¼ lim
h/0

1
ha

X
�
t� a
h

�

k¼0

ð�1Þr
0
@a

k

1
Afðt� khÞ

t>a a2R

where:

 
a

k

!
¼ Gðaþ 1Þ

Gðkþ 1ÞGða� kþ 1Þ (13)

Eq. (14) shows an alternative form of the Grünwald-Letni-

kov fractional derivative.

GL
a Da

t fðtÞ¼ lim
N/∞

1
Aa

XN�1

k¼0

ð�1Þr
0
@a

k

1
Af ½t�kA�

A ¼
	
t�a
N



t>a a2R (14)

Eq. (11) cancels out for k>n. Hence, the integer derivative is

calculated using values close to the point t, since small values

of h are used, and then the integer order derivative is a local

operator. Eq. (13) does not vanish for k>a. Thus, the fractional

derivative is calculated using all the values of the function in

the interval ½a; t�, therefore, f(t)must be continuouswith all the

derivatives up to the integer part of the fractional order

(including t ¼ 0). This provides the fractional derivative a

memory character.

It can be proven that the Grünwald-Letnikov definition is

equivalent to the Riemann-Liouville and to the Caputo de-

rivatives for some functions. Therefore, it is widely used in nu-

merical methods for solving fractional differential equations.
3. Fractional order systems

The solution of integer order differential equations is based on

exponential equations. Similarly, the solution of fractional

order differential equations is based on a transcendental

function EaðxÞ defined by Mittag-Leffler in 1903, see Eq. (15).

This function is an intermediate function between the expo-

nential for a ¼ 0 and the function 1 =ð1�xÞ for a ¼ 1.

EaðxÞ¼
X∞
k¼0

xk

Gðakþ 1Þ (15)

The Mittag-Leffler equation was generalized by Wilman in

1905 for two parameters, see Eq. (16).

Ea;bðxÞ¼
X∞
k¼0

xk

Gðakþ bÞ (16)

Now it is possible to study the step response of the frac-

tional system of interest. A fractional Kevin-Voigt model will

present a fractional differential equation of the form shown in

Eq. (17).

a1
dayðtÞ
dta

þa0yðtÞ ¼ uðtÞ (17)

Considering uðtÞ a unit step function, the solution of this

fractional order differential equation, considering zero
initial conditions, is shown in Eq. (18). Fig. 2 shows the

resulting y(t) curves for some values of 0<a � 1, when a0 ¼
a1 ¼ 1.

yðtÞ¼ 1
a1
taEa;aþ1

	
� a0

a1
ta



(18)

4. Fractional viscoelastic materials

The suitability of using fractional derivatives to model creep

can be explained using Boltzmann’s stress-strain relation

[3,8], which generalizes Maxwell and Kevin-Voigt relations to

consider that the current stress value depends not only on the

current strain value but also on past values, to include

memory effects. Eq. (19) shows Boltzmann’s JðtÞ creep function

and Eq. (20) his GðtÞ compliance function.

εðtÞ ¼
Zt
0

Jðt� tÞ$dsðtÞ ¼
Zt
0

Jðt� tÞ$s· ðtÞdt (19)

sðtÞ ¼
Zt
0

Gðt� tÞ$dεðtÞ ¼
Zt
0

Gðt� tÞ$ _εðtÞdt (20)

In addition, in the beginning of the 20th century, Nutting

found that the creep and relaxation phenomena are better

fitted by a power-law function, as shown in Eq. (21) for the

creep function [8].

JðtÞ ¼ 1
CbGðbþ 1Þt

b 0 � b< 1 (21)

Cb is a positive real number and depends on the material

properties, such as b. The compliance function is a decreasing

function, given by:

GðtÞ ¼ Cb

Gð1� bÞt
�b 0 � b< 1 (22)

If Eq. (21) is introduced into Eq. (19), it results in:

εðtÞ ¼ 1
CbGðbþ 1Þ

Zt
0

ðt� tÞb$dsðtÞ
dt

dt ¼ 1
Cb

�
0I

b
t sðtÞ

�
(23)

The term 0I
b
t in Eq. (23) is the Riemann-Liouville fractional

integral shown in Eq. (7). Similarly, Eq. (24) results from the

introduction of Eq. (22) in Eq. (20).

sðtÞ ¼ Cb

Gð1� bÞ
Zt
0

ðt� tÞ�b$
dεðtÞ
dt

dt ¼ Cb

�C
0D

b
t εðtÞ

�
(24)

The term C
aD

a
t in Eq. (24) is the Caputo fractional derivative

Eq. (9) for 0<b< 1. Thus, the stress-strain ratio of a viscoelastic

material can be modeled using the fractional derivative, as

shown in Eq. (25).

sðtÞ¼Cb

db
εðtÞ
dtb

0< b<1 (25)

Therefore, viscoelastic materials are intermediate mate-

rials between elastic and viscous, since b ¼ 0 yields Hooke’s

equation with Cb ¼ E, and b ¼ 1 results in Newton’s equation

https://doi.org/10.1016/j.jmrt.2021.03.007
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Fig. 5 e Normalized creep curves from Fig. 4 and their mean curve.
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with Cb ¼ h. Fig. 3 represents suchmaterials. Fig. 3c symbol for

viscoelastic materials is called a springpot or just pot. It is also

called the Scot-Blair model by Mainardi et al. [5], to credit

these scientists who proposed this constitutive equation for

viscoelastic materials in the middle of the last century. Thus,

the rheological models from Fig. 1 can be improved by

replacing the spring and dashpot with the pot.
5. Modelling creep curves using fractional
models

5.1. Modelling creep curves of concrete

Fig. 4 shows experimental creep curves of concrete, obtained

from Leet [15]. Notice how the creep strains are non-
Fig. 6 e Rheological models used
negligible for this material even at room temperatures.

Fig. 5 shows Fig. 4 creep curves after proper normalization

(obtained by dividing them by their applied stresses), which

show that this concrete creep strains are indeed linearly

proportional to the applied stresses. Therefore, their mean

curve can be used as a reference for obtaining its appropriate

rheological model.

Castro et al. [16] tried to use the Kevin-Voigt model shown

in Fig. 6a to simulate these creep curves. However, this simple

model cannot fit the experimental data well. They needed to

use the slightly more complex model shown in Fig. 6b to

obtain a proper data fit. Then, it is interesting to investigate if

the fractional Kevin-Voigt model shown Fig. 6c can do better

in this case.

The Transfer Function of the Kevin-Voigt model is given

by
for the modeling of creep.

https://doi.org/10.1016/j.jmrt.2021.03.007
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Table 1 e Parameters of the concrete calculated using the Matlab function fminsearch.

Parameters Error (%)

E (GPa) h1 (GPa.day) h2 (TPa.day) Cb(GPa.day
b) b

2 elements IO 4.95 282.06 e e e 3.55

3 elements IO 5.61 239.87 16.75 e e 1.75

2 elements FO 4.54 e e 100.33 0.77 0.31

Fig. 7 e Results of the simulations compared to the reference curve.
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εcrðsÞ¼ 1
h1,sþ E

sðsÞ (26)

The Kevin-Voigt in series with dashpot has the Transfer

Function given by
Fig. 8 e Polypropylene (PP) ε £ t creep c
εcrðsÞ¼ ðh1 þ h2Þ,sþ E
h2,s,ðh1,sþ EÞ sðsÞ (27)

Since Laplace Transform rules remain valid for fractional
urves measured at Q ¼ 20 �C [18].

https://doi.org/10.1016/j.jmrt.2021.03.007
https://doi.org/10.1016/j.jmrt.2021.03.007


Fig. 9 e Simulated Polypropylene (PP) ε £ t creep curves measured at Q ¼ 20 �C.

Fig. 10 e Normalized Polypropylene (PP) ε £ t creep curves measured at Q ¼ 20 �C.
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differential equations, the Fractional Kevin-Voigt model has

the Transfer Function shown in Eq. (28).

εcrðsÞ¼ 1
Eþ Cb,sb

sðsÞ (28)

The reference creep curve is the unit step response and the
Table 2 e PP parameters calculated using the Matlab
function fminsearch.

Load (MPa) Parameters Error (%)

E1 (GPa) E2 (GPa) Cb (GPa.dayb) b

1.4 1.37 0.18 1.22 0.22 0.27

2.8 1.37 0.25 1.12 0.26 0.15

4.2 1.34 0.23 1.16 0.24 0.17

5.6 1.32 0.24 1.05 0.25 0.16

7.0 1.30 0.20 0.90 0.22 0.23

8.4 1.28 0.17 0.79 0.20 0.21
identification of the parameters is obtained minimizing the

function shown in Eq. (29) using the Matlab fminsearch

function.

J
ε
¼
XN
i¼1

½εactualðiÞ � εsimulatedðiÞ�2 (29)

The fractional Transfer Function can be simulated using

the FOMCOM [17] toolbox for Matlab. The results obtained for

the proposedmodels are shown in Table 1. These results show
Table 3 e Parameters of the PP in the linear range.

Load (MPa) Parameters Error (%)

E1 (GPa) E2 (GPa) Cb (GPa.dayb) b

1.4 1.36 0.22 1.19 0.24 0.94

2.8 0.29

4.2 0.63

https://doi.org/10.1016/j.jmrt.2021.03.007
https://doi.org/10.1016/j.jmrt.2021.03.007


Fig. 11 e Simulated Polypropylene (PP) ε £ t creep curves in the linear range measured at Q ¼ 20 �C.
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that the fractional Kevin-Voigt presents the better results. The

error has been calculated using Eq. (30). Fig. 7 shows the re-

sults of the simulation of the proposed models, compared to

the reference curve.

E
ε
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
½εactualðiÞ � εsimulatedðiÞ�2XN

i¼1
½εactualðiÞ�2

vuuut � 100 (30)

5.2. Modeling creep curves of polypropylene (PP)

Polypropylene (PP) is a tough and relatively cheap thermo-

plastic polymer used in many applications because of its

typical basic properties and a reputation of good fatigue per-

formance. Fig. 8 shows the creep curves of (PP) atQ¼ 20oC for a

period of 365 days obtained by Crawford [18]. Notice how

much PP can creep under relatively low stresses even at room

temperature.

The deformation of the PP is modeled using the Kevin-

Voigt Transfer Function shown in Fig. 6d, which has a spring

in series to account for the initial deformation and given by Eq.

(31).

εðsÞ¼ ε0ðsÞþ εcrðsÞ¼
	
1
E1

þ 1
E2 þ Cb,sb



sðsÞ (31)

The PP creep parameters are obtained similarly. The re-

sults are shown in Table 2.

Fig. 9 shows the simulated and measured curves, with an

error of about 12% during the first of the 365 days of the

data.

The creep behavior of the PP can be considered linear

viscoelastic under low stress. Fig. 10 shows the normalized

curve where the curves for s � 4:2MPa are equivalent. Table

3 shows the parameters for a linear model calculated using

the mean curve among the curves of s ¼ 1:4;

2:8 and 4:2MPa.
The simulated curves are shown in Fig. 11, compared to the

actual curves. An error of about 12% can be verified during the

first of the 365 days of the data.
6. Conclusions

Structural materials in general exhibit a creep behavior that is

best modeled using a power function. The classical rheological

models used extensively by structural engineers lead to expo-

nential functions, which adjust the real behavior to a limited

extent. Models based on fractional calculus techniques are

potentiallymuchmore suitable, as they naturally lead to power

functions. Despite this, they are still not used in structural

analysis. One of the reasons may be associated with the diffi-

culty of physically interpreting the fractional derivatives of the

quantities involved in the process. Another reason may be the

lack of knowledge on this subject, which normally still is not

addressed in undergraduate or even in graduate calculus

courses. Nevertheless, the various published studies and

computer codes already available for solving fractional differ-

ential equations show that Fractional calculus is a mature

enough subject to be usedmore often in structural engineering

analyses. This work has shown that fractional rheological

models with just one single element can indeed describe the

viscoelastic behavior of two very differentmaterials, a polymer

(polypropylene) and a low strength concrete. In fact, such a

simple fractional model was able to describe their creep data

even better than more complex traditional models that need

several springs and dashpots to properly fit it.
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