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Abstract
Simultaneous Localization and Mapping is a fundamental problem in mobile robotics. However, the majority of Visual
SLAM algorithms assume a static scenario, limiting their applicability in real-world environments. Dealing with dynamic
content in Visual SLAM is still an open problem, with solutions usually relying on purely geometric approaches. Deep
learning techniques can improve the SLAM solution in environments with a priori dynamic objects, providing high-level
information of the scene. However, most solutions are not prepared to deal with crowded scenarios. This paper presents
Crowd-SLAM, a new approach to SLAM for crowded environments using object detection. The main objective is to achieve
high accuracy while increasing the performance, in comparison with other methods. The system is built on ORB-SLAM2,
a state-of-the-art SLAM system. The proposed methodology is evaluated using benchmark datasets, outperforming other
Visual SLAM methods.

Keywords Visual SLAM · Crowded environments · Object detection · Deep learning

1 Introduction

Simultaneous Localization and Mapping (SLAM) is a fun-
damental problem in mobile robotics, especially in
unknown and unstructured environments, being a prereq-
uisite for several tasks, such as navigation. It consists of
creating a map of the environment and, simultaneously,
estimating the pose of the robot in the created map.

A camera is a common choice as the main sensor in a
SLAM system due to its low cost and richness of infor-
mation, allowing accurate visual odometry systems, robust
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loop closure algorithms, and the use of semantic informa-
tion, among other benefits. RGB-D cameras have an extra
advantage of providing dense depth information. Visual
SLAM is the problem of solving localization and mapping
using only a camera as sensor.

There are several Visual SLAM systems in the liter-
ature, with high precision and efficiency, for instance,
ORB-SLAM2 [1], LSD-SLAM [2], RGBDSLAM [3], and
RTAB-Map [4]. However, their majority assume a static
environment, which imposes a limitation of their applicabil-
ity in real-world scenarios.

The main challenges of performing SLAM in dynamic
environments are: to detect dynamic objects in the scene,
to prevent those objects from being tracked, and to exclude
them from the map. Some SLAM systems that work in
dynamic environments rely on purely geometric approaches
to detect moving objects. However, they usually fail to
detect the presence of a priori dynamic objects, e.g., people,
when they are initially static, which can lead to odometry
drifts or long-term wrong loop closures. Computer vision
tasks, such as object detection and instance segmentation,
provide semantic information of the scene that allows the
recognition of such objects.

Our previous work [5] presented the weakness and
strengths of both tasks for Visual SLAM in human-populated
environments. The YOLO object detection proved to be
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more advantageous than the Mask R-CNN instance segmen-
tation for SLAM, in terms of speed and accuracy. However,
despite the higher speed of YOLO, it was not fast enough to
be considered real-time.

There is an increasing number of Visual SLAM systems
relying on deep learning object detectors to filter the
dynamic content of images. However, they are neither
efficient nor suitable for working with crowds. The main
goal of this work is to create a SLAM system capable of
working in crowded environments in real-time, by using a
custom YOLO Tiny network specialized in people detection
in crowds, and an algorithm for keypoint filtering.

Thus, this paper proposes Crowd-SLAM, a new open-
source1 Visual SLAM system for crowded environments
based on ORB-SLAM2. The YOLO object detection is
used to filter people in the scene. The YOLO network is
trained using a dataset for crowded environments, achieving
a real-time performance with high precision. The proposed
methodology is evaluated using multiple datasets and
compared with state-of-the-art systems. As ORB-SLAM2,
Crowd-SLAM works with monocular, stereo, and RGB-
D cameras. The main contributions of this paper can be
summarized as follows:

– A complete open-source real-time Visual SLAM
system for crowded environments with higher accuracy
than other state-of-the-art approaches.

– A new network especially trained to operate in crowded
environments, called CYTi, running in an independent
thread.

– An algorithm to efficiently filter dynamic feature
points, with a system to prevent lost tracks.

The paper is organized as follows. Section 2 presents the
related work, Section 3 details the proposed methodology,
Section 4 shows the results, and finally the conclusions and
suggestions for future work are presented in Section 5.

2 RelatedWork

2.1 Visual SLAM

MonoSLAM [6], developed by Davison et al. was the first
Visual SLAM system for monocular cameras. PTAM [7],
developed in 2007 by Klein et al. was the first Visual SLAM
system based on keyframe bundle adjustment, using two
independent threads of mapping and tracking. Mur-Artal
et al. [8] proposed a system with three threads called ORB-
SLAM, with a second version called ORB-SLAM2 [1] that
works with monocular, stereo, and RGB-D cameras.

1https://github.com/virgolinosoares/Crowd-SLAM

Visual SLAM systems are classified in two main cat-
egories: feature-based and direct methods. Feature-based
methods use image feature extraction and matching to per-
form pose estimation, loop closing, and bundle adjustment.
Examples of feature-based Visual SLAM methods include
RGBDSLAM [3], the method from Henry et al. [9], and
ORB-SLAM [1, 8]. Direct methods, on the other hand,
perform optimization over image pixel intensities. Kinect-
Fusion [10], for instance, uses only depth data to create
a dense volumetric model, and ICP to track the camera
pose. DSO [11] combines photometric error minimization
with a joint geometric and camera motion optimization
to obtain visual odometry. There are also semi-direct sys-
tems such as LSD-SLAM [2], that uses a direct method to
create semi-dense maps, but also uses features to perform
loop closing.

2.2 Visual SLAM in Dynamic Environments

Most state-of-the-art Visual SLAM systems were designed
with a static environment assumption. Therefore, they are
not able to handle dynamic scenarios. The ones that deal
with dynamic content in the scene usually treat it as noise,
and filter it using direct or feature-based methods.

StaticFusion [12] and ReFusion [13], for instance, are
two direct methods for RGB-D cameras. ReFusion com-
bines the TSFD model representation of KinectFusion with
a purely geometric approach to filter the dynamic content.
StaticFusion also uses a geometric approach, but with a
surfel representation.

Dib and Charpillet [14] proposed a dense visual odom-
etry system for RGB-D cameras in dynamic environments
using RANSAC. Alcantarila et al. [15] proposed a dense
scene flow representation to detect moving objects using
stereo cameras. Sun et al. [16] combined image differencing
and a Maximum-a-posterior estimator to perform motion
removal. In another work [17], Sun et al. proposed another
method for motion removal using dense optical flow. Other
direct approaches include the works of Wang and Huang
[18], and Kim et al. [19]. Feature-based methods include the
work of Cheng et al. [20], who proposed a system based on
ORB-SLAM that uses optical flow to distinguish dynamic
feature points.

The previously cited approaches, however, are unable
to detect a priori dynamic objects in the scene, such
as people or cars, when they remain static. The DS-
SLAM [21] system deals with dynamic objects combining
the optical flow method with a semantic segmentation
network, which allows the detection of people. SOF-
SLAM [22] is a feature-based method, built on ORB-
SLAM2, that combines semantic segmentation and epipolar
geometry to filter dynamic features. Sun et al. [23] proposed
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a weakly-supervised semantic segmentation network to
provide a binary mask to ORB-SLAM2 indicating movable
objects, without the need for expensive annotations in the
training process. However, their semantic segmentation step
required 1.27 seconds to process a single image.

DynaSLAM [24] uses the Mask R-CNN [25] instance
segmentation to obtain the pixel-wise information of people
in the scene, using it to filter a priori dynamic features.
Despite its high accuracy and robustness, DynaSLAM
cannot perform real-time due to the high computational
requirement of the Mask R-CNN technique.

On the other hand, Object Detection is a task that can be
performed in real time, depending on the technique used. In
our previous work [5], we proposed a comparison between
Instance Segmentation and Object Detection for filtering
a priori dynamic features from the scene, evaluating
which one is most advantageous in terms of speed and
accuracy. The Mask R-CNN and YOLO frameworks
were used for instance segmentation and object detection,
respectively. The object detection proved to be the most
advantageous one.

2.3 Object Detection

Object detection is the task of determining the location,
bounding box, and class of objects in an image. There
are different types of deep learning-based object detection
algorithms. The R-CNN detectors, for example, such as
Fast R-CNN [26] and Faster R-CNN [27], use an algorithm
to find potential regions to contain objects and then use
a convolutional neural network (CNN) in those regions.
Therefore, they are known as two-stage detectors.

Despite being accurate, these algorithms do not work in
real time due to their complex pipelines. On the other hand,
single-stage detectors, such as YOLO (You Only Look
Once) [28] and SSD (Single Shot Multibox Detector) [29],
are much more efficient as they use only one convolutional
network to obtain both bounding box and object class
without the need of generating candidate regions, as
opposed to the R-CNN detectors. The YOLOv3 [30],
proposed by Redmon et al. can run at 20 FPS in a computer
with GPU, with 57.9 mAP, trained with the MS COCO
dataset [31].

2.4 Visual SLAM in Dynamic Environments with
Object Detection

Deep learning-based object detection has been widely
applied in SLAM systems to filter dynamic features. In
Detect-SLAM [32], Zhong et al. used SSD object detection
only on keyframes to overcome the slow inference time of
0.31 s. Despite only happening when a new keyframe is
inserted, this still can disturb the process.

Liu et al. [33] used YOLOv3 combined with optical flow
for dynamic feature point removal. However, their method
does not remove a priori dynamic objects, potentially caus-
ing wrong loop closures and odometry drifts in a scene
with initially static people. Xiao et al. [34] proposed the
Dynamic SLAM, which also uses SSD object detection
to filter dynamic features. They proposed a semantic cor-
rection module to create a mask with the same size of
the image, to map static and dynamic points, and a selec-
tive tracking algorithm to eliminate the dynamic objects.
However, the mask creation can be demanding in images
with high resolution. Furthermore, they need the additional
step for dynamic object filtering that highly depends on the
number of objects in the scene.

None of the mentioned works consider the crowded envi-
ronment scenario, which can lead to a drop in performance
or accuracy.

3Methodology

Figure 1 shows an overview of the proposed methodol-
ogy, composed of four threads: Object Detection, Tracking,
Local Mapping, and Loop Closing. The four threads run
in parallel. The RGB images are processed in the object
detection and tracking threads simultaneously. The tracking
thread extracts ORB features [35] and waits for the bound-
ing boxes provided by the object detection thread. The
feature points and bounding boxes are sent to the dynamic
keypoint filter and feature number update system inside
the tracking thread. The dynamic keypoint filter removes
the keypoints inside the bounding boxes, and the fea-
ture update system changes the feature number propor-
tionally to the total filtered area, in order to prevent lost
tracks.

3.1 SLAM

This work uses ORB-SLAM2 as the global SLAM solution.
ORB-SLAM2 has three main threads: tracking, loop clos-
ing, and local mapping. Crowd-SLAM uses the same loop
closing and local mapping threads of ORB-SLAM2. How-
ever, the tracking thread was modified to include the outlier
removal algorithm and the feature number update system.
Also, a new thread was added for Object Detection.

ORB-SLAM2 works using a keyframe-based methodol-
ogy. The tracking thread decides whether every new frame
is a new keyframe. The loop closing system compares the
information of every new keyframe with past keyframes,
searching for new closed loops using a bag-of-words place
recognition module based on DBoW2 [36]. Once a loop is
detected, the graph is optimized with the g2o framework
[37] to assure a consistent trajectory. ORB-SLAM2 outputs
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Fig. 1 Framework of Crowd-SLAM

a sparse point cloud map, and the optimized trajectory of the
camera.

3.2 People Detection

YOLOv3 provides the classes of the detected objects, 2D
bounding boxes with their corresponding positions, and
a confidence number for each box. Figure 2a shows a
detection in an image from the MOT Challenge 2020 [38],
using a YOLOv3 framework trained with the COCO dataset
[31]. YOLOv3 Tiny is a version of YOLO with fewer
layers and filters, that has 10 times higher inference speed.
However, it has a lower accuracy. Figure 2b shows an
example of a YOLOv3 Tiny detection, also trained with the
COCO dataset.

The MS COCO [31], used in YOLOv3, has 80 different
object classes. However, only the people class is needed
in this work. We propose the Crowdhuman YOLO Tiny
(CYTi), a specialization of YOLO-Tiny that is more
accurate in crowded environments with people.

CYTi is trained with the Crowdhuman dataset [39],
composed of more than 20000 pictures of people in crowded
environments, with 470000 humans and an average density
of 23 people per image, much more than other people
datasets. Figure 3 shows one image of the used training
data. 15000 images were used for training and 4370 for
validation. The training and validation were performed
on an NVIDIA Quadro P2000 GPU using the Darknet
framework [40]. The batch size was set to 24 with a learning
rate of 0.001.

Fig. 2 Object detection output
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Fig. 3 YOLO detection in an image from the Crowdhuman Dataset

The Multiple Object Tracking (MOT) Challenge dataset
[38, 41] is used to evaluate the improvements of the
newly trained network in crowded environments. Several
metrics are used to measure the detection capabilities. The
precision, stated in Eq. 1, is the rate between true positives
(TP) and the total number of detections, which is the sum of
true positives and false positives (FP).

Precision = T P

(T P + FP)
(1)

The recall, stated in Eq. 2, is the rate between true
positives and the sum of true positives and false negatives
(FN).

Recall = T P

(T P + FN)
(2)

The Multiple Object Detection Precision (MODP) is
stated by Eq. 3.

MODP =
∑Nf rames

t=1
OverlapRatio

Nmapped (t)

Nf rames

(3)

where Nf rames is the total number of frames, Nmapped(t) is
the number of mapped objects in the frame t , and the overlap
ratio is the sum of the intersection over union of every object
for every frame.

According to Stiefelhagen et al. [42], the Multiple Object
Detection Accuracy (MODA) is defined by Eq. 4.

MODA = 1 −
∑Nf rames

i=1 (mi + fpi)
∑Nf rames

i=1 Ni
G

(4)

where mi and fpi are, respectively, the missed detections
and false positives in the frame i, and Ni

G is the number of
objects in the frame i.

Two sequences of the MOT17 and MOT20 challenges
were selected: MOT20-01, MOT20-02, MOT17-09, and
MOT17-11. The first two are crowded scenes in an indoor
train station with a static camera. The MOT17-11 is a

sequence in a crowded shopping mall with a forward-
moving camera. The MOT17-09 is an outdoor crowded
scene, with a static camera close to the people.

Table 1 shows the detection results using the YOLO Tiny,
YOLOv3, and CYTi for the MOT challenge sequences.
Besides the previous metrics, they also show the total
number of true positives, false negatives, and false positives.
The down and up arrow symbols next to the metric names
means that the lower or higher the number, the better is for
the overall detection performance, respectively.

CYTi outperforms the YOLO Tiny network in every
metric of every sequence. YOLO Tiny has a poor
performance in these sequences, especially in MOT20-01,
not finding a single true positive. The results of YOLOv3 are
also compared as reference. CYTi maintained the inference
speed of YOLO Tiny, being more than ten times faster than
YOLOv3, while increasing the detection accuracy.

Figures 4a and 4b show, respectively, the object detection
output in a crowded scene from the MOT Challenge
2020 [38] using the YOLO Tiny network and CYTi. The
improvement in both precision and accuracy is noticeable.

3.3 Outlier Removal

Once the images pass through the people detector, the
keypoints that belong to people are removed from the image.
The Dynamic keypoint filtering algorithm is as follows. The
point (x, y) ofDFk corresponds to the coordinates of the top
left corner of the bounding box. w and h are the width and
height of the box, respectively.

Unlike other systems, this algorithm does not need
a mask of the frame with information about static and
dynamic regions. It uses directly the bounding boxes to
perform the filtering, therefore it does not depend on the
image size.

Figures 5a and 5b show the keypoint detection of ORB-
SLAM2 and with the proposed object detection filter,
respectively. The filters successfully erased all keypoints
in the regions with people. The keypoints appearing in the
left chair are also erased, due to becoming merged with the
person bounding box, resulting in an indirect filtering of
potential dynamic objects.

3.4 Feature Number Update

If a large number of keypoints are filtered from a single
frame, the information available for the SLAM system may
not be enough to perform tracking. Two main problems can
occur simultaneously or independently. First, there can be
too many people in the scene. Secondly, one person can be
too close to the camera, occupying most of the image. In
both situations, the problem is not the number of people, but
the total filtered area of the image.
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Table 1 Detection results for
YOLO Tiny, YOLOv3 and
CYTi

Sequences Method MODA ↑ MODP ↑ TP ↑ FN ↓ FP ↓ Prec. ↑ Recall ↑

MOT20-01 Tiny –69.4 0.0 0 8924 6192 0.0 0.0

YOLOv3 4.6 70.0 6851 2144 6437 51.6 76.2

CYTi 11.4 73.2 6609 2441 5575 54.2 73.0

MOT20-02 Tiny –67.4 64.2 78 20001 13612 0.4 0.6

YOLOv3 8.1 69.7 15971 4279 14324 78.9 52.7

CYTi 14.0 73.4 14872 5356 12037 73.5 55.3

MOT17-09 Tiny –71.8 75.4 856 2184 3040 22.0 28.2

YOLOv3 1.8 77.4 2722 398 2665 50.5 87.2

CYTi 60.6 77.2 2528 559 657 79.4 81.9

MOT17-11 Tiny –35.6 74.9 2064 3666 4104 33.5 36.0

YOLOv3 29.5 80.3 4917 1062 3156 60.9 82.2

CYTi 52.4 78.4 4786 1169 1665 74.2 80.4

The bold entries are the best results for the respective sequences

Algorithm 1: Dynamic keypoint filtering algorithm.

Data: Frame Fk , bounding box list DFk (x,y,w,h),
keypoints pFk

new keypoints
for pi in Frame Fk do

bool key = false;
for people in DFk size do

box = D[people];
if pi inside box then

bool key is true;
break;

end
end
if bool key is false then

new keypoints append pi ;
end

end
pFk = new keypoints;

Even with the robust relocalization system of ORB-
SLAM2, specifically designed to recover from a lost track,
a crowded scene can prohibit the SLAM process. To over-
come this issue, we propose a module to check the filtered

area and update the number of detected ORB features,
instead of setting a static high number. The number of fea-
ture points starts with a given initial value, and increases
300 for 30% of filtered area, 500 for 60%, 700 for 90%,
and 1200 for more than 95%. This method benefits the per-
formance, because more features extracted implies more
computational effort, and simply defining a high static value
would slow down the tracking without need, in the case of
no people in the scene.

Figure 6a-c shows three scenes with (a) no people, (b)
one person, and (c) two persons. The number of detected
keypoints is increased in the third image due to the increased
filtered area.

4 Results

4.1 TUMDataset

Crowd-SLAM was numerically evaluated using the TUM
RGB-D dataset [43]. It contains sequences of RGB
and depth images obtained from a Microsoft Kinect
camera, with their corresponding ground truth trajectories.
The data was recorded at 30Hz with a 640 x 480
resolution.

Fig. 4 People detection
comparison between YOLO tiny
and CYTi in a crowded scene
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Fig. 5 Feature detection
comparison

Two types of sequences were used in this evaluation. In
the fr3 w sequences, two people are walking in the room,
moving behind a desk, passing in front of the camera, and
sitting on chairs. These sequences are, therefore, highly
dynamic. The fr3 s sequences can be considered low-
dynamic, as people are sitting, making movements mainly
with their hands. Both types are used in this evaluation.

There are four types of camera motion considered: xyz,
rpy, half, and static. For the motion xyz, the camera is moved
along the three axes, keeping the same orientation. In the
rpy sequence, the camera is rotated over roll, pitch, and yaw
axes. In the half sequence, the camera follows the trajectory
of a half-sphere. In the static sequence, the camera is
manually kept at the same position and orientation. Table 2
shows the duration, trajectory length, average translational
velocity, and average rotational velocity of the camera for
every sequence.

The Absolute Trajectory Error (ATE) [43] is used to
evaluate the global consistency of the estimated trajectory,
comparing the absolute distances between the translational
components of the estimated and ground truth trajectories.
Equation 5 shows the computation of the ATE at a time
step i:

AT Ei = E−1
i T Gi (5)

where E is the estimated trajectory, G represents the ground
truth, and T is the transformation that aligns the two
trajectories. For a sequence of N poses, the RMSE of ATE
is given by Eq. 6.

RMSE(AT E1:N) =
√
√
√
√ 1

N

N∑

i=1

‖trans(AT Ei)‖2 (6)

The Relative Pose Error (RPE) is used to evaluate the
translational and rotational drifts of the trajectory over a
fixed interval Δ. The RPE at a time step i is shown in Eq. 7.
The RMSE of RPE is given by Eq. 8.

RPEi = (G−1
i Gi+Δ)−1(E−1

i Ei+Δ) (7)

RMSE(RPE1:N, Δ) =
√
√
√
√ 1

m

m∑

i=1

‖trans(RPEi)‖2 (8)

where m = N − Δ.
All tests were performed five times and the median

results were used for the evaluation, as proposed by Mur-
Artal and Tardós [1], to consider the non-deterministic
nature of the system.

Figures 7, 8, 9, 10 and 11 show the ATE plots
from ORB-SLAM2, Soares et al. [5] (OD approach), and

Fig. 6 ORB feature detection
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Table 2 Details of each TUM dataset sequence

Sequence Duration [s] Length [m] Vel. [m/s] Vel. [deg/s]

fr3 s static 23.63 0.259 0.011 1.699

fr3 s xyz 42.50 5.496 0.132 3.562

fr3 s rpy 27.48 1.110 0.042 23.841

fr3 s half 37.15 6.503 0.180 19.094

fr3 w static 24.83 0.282 0.012 1.388

fr3 w xyz 28.83 5.791 0.208 5.490

fr3 w rpy 30.61 2.698 0.091 20.903

fr3 w half 35.81 7.686 0.221 18.267

Crowd-SLAM for the fr3 w static, xyz, rpy, halfsphere, and
fr3 s xyz sequences.

In the fr3 sitting xyz sequence, all three trajectories
are close to the ground truth. The low-dynamic nature of
this sequence allows ORB-SLAM2 to eliminate the few
dynamic features through its outlier detection methods, such
as RANSAC. In the walking sequences, on the other hand,
ORB-SLAM2 is not able to detect the highly dynamic
features and the estimated trajectories deviate from the
ground truth.

Table 3 shows the Root Mean Square (RMSE) and Mean
of the ATE comparison between Crowd-SLAM and four
direct methods for dynamic environments: ReFusion [13],
StaticFusion [12], and the works of Sun et al. [16, 17].
ReFusion and StaticFusion results were obtained in the
work of Palazzolo et al. [13]. Our system outperformed the
direct methods in all evaluated sequences.

Crowd-SLAM was also compared with ORB-SLAM2
and three feature-based methods for dynamic environments
based on ORB-SLAM2: DS-SLAM [21], DynaSLAM [24],
and SOF-SLAM [22]. The results are shown in Table 4.
DynaSLAM has the best RMSE results in four sequences.
However, the difference between their results and Crowd-
SLAM is between 1mm and 9mm, depending on the
sequence. As DynaSLAM is an offline method, our results
are satisfactory.

Crowd-SLAM was also compared with three Visual
SLAM systems that use object detection to filter dynamic

content: Liu et al. [33], Detect SLAM [32], and Dynamic
SLAM [34]. The results are shown in Table 5. Our system
achieved better results in two sequences, Dynamic SLAM
achieved better results in four sequences, and Liu et al.
in two sequences. Overall the results of the four methods
are similar, except in the fr3 w rpy result of Detect-SLAM
which had a higher error.

Tables 6 and 7 show the RMSE and Mean of translational
and rotational drifts (RPE), respectively, of Crowd-SLAM
against ORB-SLAM2, DS-SLAM, and two works of Sun
et al. [16, 17], in m/s and deg/s. In the translational drift
analysis, Crowd-SLAM outperformed the other works in
five sequences, achieving values similar to the best results
on the other three sequences. In the rotational drift analysis,
Crowd-SLAM achieved the best results in six sequences.
For instance, in the fr3 w rpy sequence, Crowd-SLAM
achieved nearly half the error of DS-SLAM.

4.2 Bonn RGB-D Dynamic Dataset

Another evaluation was made using the Bonn RGB-D
Dynamic Dataset [13]. It is a dataset with highly dynamic
sequences, with people walking and performing different
tasks. It was recorded with an Asus Xtion Pro Live Sensor
and an Optitrack Prime 13 motion capture system for the
ground truth. It also has the same evaluation metrics of the
TUM dataset.

Five sequences of the dataset were chosen for the eval-
uation: crowd1, crowd2, crowd3, synchonous1, and syn-
chronous2. Despite having less abrupt camera movements
in comparison with the TUM sequences, for example roll
spin, the sequences of the Bonn dataset have more chal-
lenging scenarios. Figure 12 shows a frame where most
of the keypoints are filtered by the presence of 3 people
close to the camera. Even so, the system is able to perform
tracking.

As done in the TUM sequences, all tests were performed
five times and the median results were used for the
evaluation. Figures 13, 14, 15 and 16 show the ATE
plots from ORB-SLAM2 and Crowd-SLAM for the crowd
and synchronous sequences. All ORB-SLAM2 trajectories

Fig. 7 Ground truth and estimated trajectory in the sequence fr3 walking static
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Fig. 8 Ground truth and estimated trajectory in the sequence fr3 walking xyz

Fig. 9 Ground truth and estimated trajectory in the sequence fr3 walking rpy

Fig. 10 Ground truth and est. trajectory in the sequence fr3 walking halfsphere

Fig. 11 Ground truth and estimated trajectory in the sequence fr3 sitting xyz



   50 Page 10 of 16 J Intell Robot Syst          (2021) 102:50 

Table 3 Comparison of the
RMSE and Mean of ATE [m]
of Crowd-SLAM against Sun
et al. StaticFusion and
ReFusion using the TUM
dataset

Sun et al. [16] Sun et al. [17] StaticFusion ReFusion Crowd-SLAM

Sequence RMSE / Mean RMSE / Mean RMSE / Mean RMSE / Mean RMSE / Mean

fr3 s static – / – – / – 0.014 / – 0.009 / – 0.008 / 0.007

fr3 s xyz 0.048 / 0.039 0.051 / 0.043 0.039 / – 0.040 / – 0.018 / 0.017

fr3 s half 0.047 / 0.040 0.066 / 0.054 0.041 / – 0.110 / – 0.020 / 0.017

fr3 w static 0.065 / 0.038 0.033 / 0.026 0.015 / – 0.017 / – 0.007 / 0.007

fr3 w xyz 0.093 / 0.076 0.066 / 0.055 0.093 / – 0.099 / – 0.020 / 0.017

fr3 w rpy 0.133 / 0.103 0.073 / 0.065 – / – – / – 0.044 / 0.031

fr3 w half 0.125 / 0.087 0.067 / 0.061 0.681 / – 0.104 / – 0.026 / 0.022

The bold entries are the best results for the respective sequences

Table 4 Comparison of the
RMSE and Mean of ATE [m]
of Crowd-SLAM against
ORB-SLAM2, DS-SLAM,
DynaSLAM, and SOF-SLAM
using the TUM dataset

ORB-SLAM2 DS-SLAM DynaSLAM SOF-SLAM Crowd-SLAM

Sequence RMSE / Mean RMSE / Mean RMSE / Mean RMSE / Mean RMSE / Mean

fr3 s static 0.008 / 0.008 0.006 / 0.006 – / – 0.010 / – 0.008 / 0.007

fr3 s xyz 0.009 / 0.008 – / – 0.015 / – – / – 0.018 / 0.017

fr3 s rpy 0.019 / 0.016 – / – – / – – / – 0.015 / 0.013

fr3 s half 0.021 / 0.017 – / – 0.017 / – – / – 0.020 / 0.017

fr3 w static 0.409 / 0.367 0.008 / 0.007 0.006 / – 0.007 / – 0.007 / 0.007

fr3 w xyz 0.724 / 0.621 0.024 / 0.019 0.015 / – 0.018 / – 0.020 / 0.017

fr3 w rpy 0.781 / 0.676 0.444 / 0.377 0.035 / – 0.027 / – 0.044 / 0.031

fr3 w half 0.374 / 0.303 0.030 / 0.026 0.025 / – 0.029 / – 0.026 / 0.022

The bold entries are the best results for the respective sequences

Table 5 Comparison of the
RMSE and Mean of ATE [m]
of Crowd-SLAM against Liu
et al. Detect SLAM, and
Dynamic SLAM using the
TUM dataset

Liu et al. Detect-SLAM Dynamic SLAM Crowd-SLAM

Sequence RMSE / Mean RMSE / Mean RMSE / Mean RMSE / Mean

fr3 s static 0.006 / 0.005 – / – – / – 0.008 / 0.007

fr3 s xyz – / – 0.020 / – 0.006 / 0.006 0.018 / 0.017

fr3 s rpy – / – – / – 0.034 / 0.032 0.015 / 0.013

fr3 s half – / – 0.023 / – 0.015 / 0.013 0.020 / 0.017

fr3 w static 0.010 / 0.007 – / – – / – 0.007 / 0.007

fr3 w xyz 0.016 / 0.014 0.024 / – 0.013 / 0.011 0.020 / 0.017

fr3 w rpy 0.042 / 0.030 0.296 / – 0.060 / 0.054 0.044 / 0.031

fr3 w half 0.031 / 0.026 0.051 / – 0.021 / 0.018 0.026 / 0.022

The bold entries are the best results for the respective sequences

Table 6 RMSE and Mean
values of the Translational Drift
(RPE) in m/s of Crowd-SLAM
against ORB-SLAM2,
DS-SLAM, and Sun et al.
using the TUM dataset

ORB-SLAM2 DS-SLAM Sun et al. [16] Sun et al. [17] Crowd-SLAM

Sequence RMSE / Mean RMSE / Mean RMSE / Mean RMSE / Mean RMSE / Mean

fr3 s static 0.009 / 0.008 0.008 / 0.007 – / – – / – 0.009 / 0.008

fr3 s xyz 0.011 / 0.010 – / – 0.033 / 0.024 0.036 / 0.028 0.020 / 0.018

fr3 s rpy 0.025 / 0.020 – / – – / – – / – 0.021 / 0.018

fr3 s half 0.024 / 0.017 – / – 0.046 / 0.037 0.055 / 0.044 0.022 / 0.019

fr3 w static 0.234 / 0.099 0.010 / 0.009 0.084 / 0.045 0.031 / 0.023 0.010 / 0.009

fr3 w xyz 0.384 / 0.297 0.033 / 0.024 0.121 / 0.089 0.067 / 0.056 0.025 / 0.022

fr3 w rpy 0.373 / 0.262 0.150 / 0.094 0.175 / 0.136 0.097 / 0.082 0.065 / 0.047

fr3 w half 0.323 / 0.188 0.030 / 0.026 0.167 / 0.108 0.061 / 0.055 0.037 / 0.031

The bold entries are the best results for the respective sequences
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Table 7 RMSE and Mean values of the Rotational Drift (RPE) in deg/s of Crowd-SLAM against ORB-SLAM2, DS-SLAM, and Sun et al. using
the TUM dataset

ORB-SLAM2 DS-SLAM Sun et al. [16] Sun et al. [17] Crowd-SLAM

Sequence RMSE / Mean RMSE / Mean RMSE / Mean RMSE / Mean RMSE / Mean

fr3 s static 0.289 / 0.261 0.273 / 0.245 – / – – / – 0.261 / 0.235

fr3 s xyz 0.483 / 0.406 – / – 0.983 / 0.806 1.036 / 0.890 0.478 / 0.413

fr3 s rpy 0.784 / 0.667 – / – – / – – / – 0.508 / 0.446

fr3 s half 0.598 / 0.538 – / – 2.375 / 1.893 2.268 / 1.795 0.653 / 0.565

fr3 w static 4.207 / 1.830 0.269 / 0.242 2.049 / 1.055 0.900 / 0.625 0.265 / 0.237

fr3 w xyz 7.302 / 5.652 0.826 / 0.584 3.235 / 2.256 1.595 / 1.366 0.658 / 0.524

fr3 w rpy 7.229 / 5.169 3.004 / 1.919 4.375 / 3.360 2.593 / 2.232 1.519 / 1.130

fr3 w half 5.960 / 3.615 0.814 / 0.703 5.010 / 3.288 1.900 / 1.740 0.820 / 0.725

The bold entries are the best results for the respective sequences

deviate from the ground truth. Our system, on the other
hand, was able to achieve low errors.

Table 8 shows the ATE comparison between Crowd-
SLAM and DynaSLAM, ReFusion [13], and StaticFusion
[12]. Their results were obtained in the work of Palazzolo
et al. [13]. Our system outperformed all methods in three
sequences, including DynaSLAM. In all three crowd

sequences, Crowd-SLAM outperformed ORB-SLAM2,
StaticFusion, and ReFusion by a high margin.

4.3 ETH Stereo Dataset

Despite being broadly used as a benchmark for Visual
SLAM systems, the TUM Dataset is not ideal for a good
evaluation of crowded environments, as their dynamic
sequences only contain at maximum two people in the
scene. Also, the Bonn RGB-D Dynamic Dataset sequences
contain a maximum of three people. The ETH Loewen-
platz sequence [44] was used to test the system in more

Fig. 12 Keypoint filtering in Bonn Crowd scene

crowded scenarios. It consists of an autonomous robot,
SmartTer [45], traveling through a road with people along
the sidewalks and crossing the streets, with a stereo camera
pair recording images at 13 FPS. It provides the cam-
eras calibration and odometry. Figure 17a shows an image
of the sequence, together with the people detection in
Fig. 17b, and the corresponding Dynamic Feature Removal
in Fig. 17c.

The provided odometry was made with visual feature
tracking using the static background and offline bundle
adjustment. An ATE comparison was made between
Crowd-SLAM and the provided odometry, and between
ORB-SLAM2 and the provided odometry. Crowd-SLAM
achieved a RMSE of 33.90 m, and ORB-SLAM2 achieved
a RMSE of 41.35 m. As there were no major loop closures
in the trajectory, this improvement is due to the tracking
system of Crowd-SLAM. Figure 18 shows the trajectories
estimated by Crowd-SLAM and ORB-SLAM2 compared to
the provided odometry. With an absence of loop closures,
an eventual gradual deviation was expected. However, the
trajectory of ORB-SLAM2 immediately deviates from the
odometry due to the presence of people.

4.4 Feature Number Update Improvements

The objective of the feature number update (FNU) step
is to prevent lost track due to keypoint filtering. Table 9
shows the percentage of successfully tracked frames in six
sequences, with and without the update, using the standard
ORB-SLAM2 feature number.

Using the standard number of features without update,
the system is not able to recover from lost track in the
fr3 s half sequence. Using the proposed approach, the
system is able to track more frames. In other sequences, the
FNU also provided a considerable improvement. The low
percentage of tracked frames in the f r3 s half sequence
is caused by two main reasons: (i) this sequence has
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Fig. 13 Ground truth and
estimated trajectory in the
sequence crowd1

Fig. 14 Ground truth and
estimated trajectory in the
sequence crowd2

Fig. 15 Ground truth and
estimated trajectory in the
sequence crowd3
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Fig. 16 Ground truth and
estimated trajectory in the
sequence synchronous2

Table 8 Comparison of the
RMSE of ATE [m] of
Crowd-SLAM against
ORB-SLAM2, StaticFusion,
ReFusion, and DynaSLAM
using the Bonn Dataset

Sequence ORB-SLAM2 StaticFusion ReFusion DynaSLAM Crowd-SLAM

crowd1 0.963 3.586 0.204 0.016 0.018

crowd2 1.372 0.215 0.155 0.031 0.030

crowd3 1.262 0.168 0.137 0.038 0.034

synchronous1 1.121 0.446 0.441 0.015 0.009

synchronous2 1.507 0.027 0.022 0.009 0.012

The bold entries are the best results for the respective sequences

Fig. 17 Crowd-SLAM steps in ETH Loewenplatz sequence

Fig. 18 Trajectory results from
Crowd-SLAM and
ORB-SLAM2 compared with
the provided odometry for the
Loewenplatz sequence
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Table 9 Percentage of successfully tracked frames

Sequence Without FNU With FNU

fr3 s static 73.09 99.41

fr3 s xyz 73.83 90.97

fr3 w static 71.27 95.67

fr3 w xyz 83.31 99.88

crowd2 82.46 85.47

fr3 s half 0.0 23.09

several frames with the camera close to one person, causing
depletion of features; and (ii) it has several large roll camera
movements. However, the system was able to correctly
relocalize in all situations.

4.5 Implementation and Run-time Analysis

All tests were performed on a notebook with an Intel Core
i7 6700 HQ 2.60 GHz and 16 GB of RAM running Ubuntu
Linux 18.04 LTS. The system is implemented in C++, and
the object detection is performed with OpenCV, using only
CPU. Table 10 shows the mean frame rate in FPS of ORB-
SLAM2 and Crowd-SLAM for every sequence of Bonn and
TUM datasets used for evaluation. Crowd-SLAM achieved
an average frame rate of 26.22 FPS, while ORB-SLAM2
achieved 21.50 FPS. For comparison, Detect-SLAM, which
also uses object detection, spends 0.34 seconds per frame
just for moving-object removal. Dynamic-SLAM achieved
a mean performance of 22.2 FPS on f r3 w xyz with GPU.
Also, the achieved frame rate of Crowd-SLAM is higher
than those of other systems that use GPU, for instance,

Table 10 Mean tracking time [FPS] of ORB-SLAM2 and Crowd-
SLAM in the TUM and Bonn sequences

Sequence ORB-SLAM2 Crowd-SLAM

fr3 s static 24.260 28.765

fr3 s xyz 27.894 25.953

fr3 s rpy 24.343 30.049

fr3 s half 21.886 30.206

fr3 w static 17.361 25.893

fr3 w xyz 18.416 23.960

fr3 w rpy 21.218 28.432

fr3 w half 18.487 28.211

crowd1 18.702 28.216

crowd2 18.318 26.492

crowd3 17.721 28.293

synchronous1 25.189 35.534

synchronous2 25.773 29.330

Average 21.505 26.223

The bold entries are the best results for the respective sequences

Fig. 19 Bounding box occupying a large portion of the image

DynaSLAM (1.35 FPS on f r3 w half sphere), and DS-
SLAM (13.08 FPS).

4.6 Limitations

Our approach suffers from two main drawbacks. Although
the FNU was able to prevent lost track in many scenarios,
there is a limitation. Figure 19 shows a frame of the
f r3 s half sequence where the bounding box of a person
occupies a large portion of the scene, due to the pose
of the person and the proximity of the camera, which
may cause the depletion of features, even with the FNU
system. To overcome this issue, it would be necessary to
use the static features detected inside the bounding box.
A possible approach to this problem is to use epipolar
geometry, matching the current frame with past frames, and
selecting features inside the bounding box using a geometric
constraint.

Secondly, our approach does not filter other moving
objects besides people. However, in the considered crowded
environment scenarios, the main source of movement
indeed came from people.

5 Conclusion

This work presented Crowd-SLAM, a new open-source
Visual SLAM system designed to perform in crowded
human environments. The system is based on ORB-
SLAM2, with four main threads: tracking, object detection,
local mapping, and loop closing. An efficient dynamic
keypoint filtering algorithm was proposed, together with a
newly trained network for object detection, and a feature
number update system.

The effectiveness of Crowd-SLAM was evaluated on
challenging dynamic sequences of the TUM, Bonn, and
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Loewenplatz datasets. The results indicate that the proposed
methodology was successful, with a lower computational
time and a better accuracy compared to state-of-the-art
methods. To our knowledge, the proposed system has the
best results in the crowd2, crowd3, and synchronous1
sequences of the Bonn dataset.

There are several open problems to explore for future
works. For instance, to allow filtering other moving objects
without jeopardizing the performance, and to use the static
features inside the bounding boxes in order to prevent
more lost track cases. Other promising works include the
integration of tracking and loop closing modules, and the
extension of the methodology to work with long-term
dynamic changes. Moreover, we aim to test our system in a
real robot in a crowded environment.
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