
Vol.:(0123456789)1 3

Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2021) 43:385  
https://doi.org/10.1007/s40430-021-03097-z

TECHNICAL PAPER

An algorithm to minimize errors in displacement measurements 
via double integration of noisy acceleration signals

José Geraldo Telles Ribeiro1 · Jaime Tupiassú Pinho de Castro2 · Marco Antonio Meggiolaro2

Received: 19 June 2020 / Accepted: 1 July 2021 
© The Brazilian Society of Mechanical Sciences and Engineering 2021

Abstract
This paper presents analyses of noise effects in displacement histories measured by double numerical integration of accel-
eration data. Since such noise-induced errors tend to be highly random, they must be estimated statistically. The noise root 
mean square (RMS) value can be used to estimate its effect on the actual resolution of acceleration measurements, and a good 
low-pass filter can improve this resolution. This RMS value can be estimated by multiplying the noise density by the square 
root of the cutoff frequency of the filter used. However, this information alone cannot estimate the displacement resolution 
directly. To mitigate this problem, this study proposes suitable parameters to estimate the error induced in displacements 
measured by double integration of noisy acceleration data and shares a code that can be used to minimize such errors.

Keywords  Double integration · Acceleration-measured displacements · Noise · Displacement resolution

1  Introduction

The measurement of displacements is a particularly impor-
tant task in many structural engineering applications, from 
monitoring ground motions during earthquakes to structural 
integrity evaluations of huge structures, such as dams and 
stadiums. An emerging area is the monitoring of tall build-
ings [1] and long-span bridges [2], which are very sensitive 
to wind loads. However, it can be difficult or even impossible 
to use non-inertial gauges based on linear variable differen-
tial transforms (LVDT), eddy current, capacitive, or resistive 
sensors, or else on laser Doppler vibrometers or other optical 
sensors to directly measure displacements. All such non-
inertial displacement gauges need a motionless reference, 

which in many if not most cases simply may be unavailable 
in practice.

The double integration of inertial accelerometer signals 
seems a simple natural choice in such common cases, but 
this apparently trivial methodology may introduce many 
error sources that can severely degrade or even spoil the 
calculated displacements, if not properly dealt with. Among 
them, a trend or bias proportional to the measurement time 
t caused by unknown initial conditions, a second trend pro-
portional to t2 caused by zero shifts in the integration circuits 
[3–6], and a third trend proportional to t3∕2 caused by the 
noise associated to the acceleration measurements [7–9].

All these error trends affect the low-frequency com-
ponents of the calculated displacements and can severely 
reduce the accuracy of their peak values, which are most 
important for structural integrity analyses. Indeed, static 
damage mechanisms are driven by peak strains or stresses, 
which are also the second driving force for fatigue damage 
(the other is the strain/stress range). Some instrumentation 
systems use accelerometers and global positioning systems 
(GPS) [10–14] to mitigate this problem, but such a solution 
is not feasible in many practical cases, because the resolu-
tion of commercially available GPS simply is not enough to 
allow accurate strain calculations from the measured dis-
placements in most cases. Therefore, displacement meas-
urement systems based only on inertial acceleration signals 
still are the desired choice in many, if not most, practical 
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applications. Recent works study methods to decrease dou-
ble integration errors of acceleration data without using data 
fusion with GPS [10–20], but all such methods still have 
some limitations [21].

The FFT-DDI (fast Fourier transform—displacement 
double integration) method developed by Ribeiro et al. [22] 
has some promising intrinsic features, which are used and 
further explored in this paper. However, since the FFT-DDI 
development cannot be replicated here, that work should be 
consulted as needed. The FFT-DDI can remove zero shifts of 
integrated signals in the frequency domain, using the infor-
mation of the real part of the first frequency components 
identified on the FFT of the signal. Such components are 
then used to estimate the value of the static or 0 Hz signal 
component, which can much affect displacement peaks and 
is the only frequency component that is modified. In this 
way, this method intrinsically avoids time aliasing induced 
by digital filtering in the time domain [23–25], as well as the 
limitations of least squares data-fitting procedures.

However, since this method does not use a high-pass 
finite impulse response (FIR) filter, it is sensitive to accel-
eration noise. The high-pass filter must be used because the 
integration process is extremely sensitive to low-frequency 
components. The zero mean random walk with a stand-
ard deviation proportional to t3∕2 is removed [24], but the 
remaining frequency components that are not modified can 
introduce random errors that reduce the actual resolution 
of the measured displacements, affecting both their RMS 
and peak values. Aiming to quantify such problems, this 
paper presents an analysis of how acceleration noise affects 
displacement measurements and elaborates suitable param-
eters to estimate this error when using the FFT-DDI. These 
objectives are accomplished in four steps:

•	 In Sect. 2, by deducing a general formula to estimate 
the error introduced by acceleration noise in calculated 
velocities and displacements.

•	 In Sect. 3, by validating the equation deduced in Sect. 2 
through numerical simulations.

•	 In Sect. 4, by testing the general formula in experimental 
measurements.

•	 In Sect. 5, presenting the resulting algorithm to minimize 
displacement errors when using the FFT-DDI method 
detailed in Appendix 2.

2 � Acceleration noise effects

If the noise in the acceleration signal is Gaussian white, its 
variance can estimate its intrinsic error. Therefore, the errors 
in velocity and displacement measurements based on the 
numerical integration of noisy acceleration signals depend 
on their variances too.

The objective of this section is to present an analysis of 
the effect of acceleration noise in the velocity and displace-
ment signals obtained by numerically integrating that signal. 
This effect does not depend on the integration procedure and 
is always present, leading to the necessity of using a high-
pass filter in many practical situations.

Since variances and power spectra are related by Parse-
val’s theorem, it can be used to estimate noise effects, as 
described in the following subsections.

2.1 � Residual noise of the acceleration signal

For simulation purposes, it is necessary to integrate noisy 
acceleration samples, which have been generated in this 
work by using the algorithm shown in Appendix 1. Figure 1 
shows 1000 noise samples, with N = 8192 points each, of 
the acceleration signal filtered using a 2-pole Butterworth 
anti-aliasing filter with a cutoff frequency fc = 250 Hz , 
along with their mean power spectrum. These signals 
have been generated considering an acceleration noise 
density Nd = 190�g∕

√
Hz and a sample frequency 

fs = 1612.9 Hz.
The estimated variance 𝜎̂2

a
 of the accelerometer noise can 

be related to its power spectrum using Parseval’s equality, 
as shown in Eq. (1) [26], where N is the number of samples, 
A(n) is the FFT of the acceleration noise, and Paa(n) is its 
power spectrum.

The accelerometer noise density Nd is the square root of 
the power spectral density in the bandwidth Ba of its noise 
output, which is measured in �g∕

√
Hz and can be estimated 

using Eq. (2).

Then, the RMS value of the accelerometer noise output 
can be obtained by multiplying this value by the square root 
of the measurement bandwidth. This is a good estimate of 
the accelerometer resolution, since accelerations below this 
RMS value cannot be separated from the signal noise. These 
data are (or should be) provided by the accelerometer manu-
facturer. Considering that the original signal noise (before 
filtering) can be considered white Gaussian, its mean power 
spectrum is flat over all frequencies, hence a constant Paa 
value can be estimated using:

Since the value of the power spectrum Paa is not modi-
fied by low-pass filtering of the frequencies below its cutoff 

(1)𝜎̂2
a
=

1

N

N∑

k=1

[a(k)]2 =

N∑

n=1

Paa(n) =

N∑

n=1

A(n) ∗ A(n).

(2)Nd = 𝜎̂a∕
√
Ba.

(3)Paa ≈
𝜎̂2
a

N
= Nd

2
⋅

fs

2N
=

Nd
2

2NΔt
=

Nd
2

2T
.
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frequency, Eq. (3) can be used to estimate the power spec-
trum of the low-frequency noise. For instance, in the power 
spectrum shown in Fig.  1, Paa(1) ≈ 3.6 ⋅ 10−7m2

⋅ s−4 , a 
value that agrees with Eq. (3), since Nd = 190 �g∕

√
Hz.

2.2 � Residual noise in the velocities calculated 
by numerically integrating acceleration signals

The mean value of the noise can be estimated from

Since the noise is a random process, its mean value has a 
Gaussian distribution centered at zero, and the variance of 
its estimation can be estimated using Eq. (5) [26].

In Eq. (5), B is the bandwidth of the signal and T  is its 
acquisition time. The random error of the estimate 𝜇̂a has a 
standard deviation shown in Eq. (6).

Therefore, there is a probability of about 95% that the 
estimate 𝜇̂a falls within the interval [26]

(4)𝜇̂a =
1

N

N∑

k=1

a(k).

(5)Var
[
𝜇̂a

]
≈

𝜎2
a

2BT
.

(6)𝜎
�
𝜇̂a

�
≈

1
√
2T

𝜎a
√
B
.

The integration of this signal will result in a velocity sig-
nal that is a random walk with zero mean and values falling 
inside the interval shown in Eq. (8) [22].

The double integration will result in a random walk signal 
with zero mean and values falling inside the interval shown 
in Eq. (9) [22].

Figure 2 shows a typical result of this double integration 
using the extended trapezoidal rule [22].

The classic methods for double-integrating acceleration 
signals remove this random walk process, but the variance 
around zero persists. Since the objective is to analyze the 
effect of the noise in the resolution of the integration pro-
cess, the mean value of each sample must be removed, as 
shown in Eq. (10), and the variance will be analyzed.

(7)
[
−2 ⋅ 𝜎

[
𝜇̂a

]
⩽ 𝜇̂a < 2 ⋅ 𝜎

[
𝜇̂a

]]
.

(8)

�

−
√
2 ⋅

𝜎a
√
B
⋅ t1∕2 ⩽ vT (k) <

√
2 ⋅

𝜎a
√
B
⋅ t1∕2

�

.

(9)

�

−

√
2

2
⋅

𝜎a
√
B
⋅ t3∕2 ⩽ xT (k) <

√
2

2
⋅

𝜎a
√
B
⋅ t3∕2

�

.

(10)af (k) = a(k) −
1

N

N∑

j=1

a(j) k = 1, … , N.

Fig. 1   Simulation of 1000 noise samples in an acceleration measurement system, using an acceleration noise density Nd = 190�g∕
√
�� , filtered 

at fc = 250 ��



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2021) 43:385 

1 3

  385   Page 4 of 21

The trapezoidal rule used to integrate Fig. 1 data sample 
is shown in Eq. (11), where vT (k)) is the estimation of the 
actual value of v(t) at every tk time of the sample.

For each sample, it is considered that v0 = 0 , but, since 
this is not necessarily true, the calculated velocity signal 

(11)

{
vT (1) = v0
vT (k) = vT (k − 1) +

Δt

2

[
af (k − 1) + af (k)

]
k = 2, … , N

must be corrected removing its mean value as shown in 
Eq. (12).

Figure 3 shows the 1000 velocities samples resulting from 
the integration of Fig. 1 signals.

(12)vT
f
(k) = vT (k) −

1

N

N∑

j=1

vT (j) k = 1, … , N.

Fig. 2   Typical velocities and displacements obtained using the trapezoidal rule on white noise signals

Fig. 3   Residual noise in the velocity obtained by integrating the 1000 samples shown in Fig. 1, and their mean power spectrum
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Figure 4 shows the probability density function of only 
one of the samples shown in Fig. 3, which presents a non-
Gaussian aspect, and the probability density function of all 
samples that presents a clear Gaussian aspect with a standard 
deviation of 𝜎̂v = 0.88 mms−1.

For a non-ergodic signal, the variance can be calculated 
using the values of a specific instant of time of each sample. 

Therefore, Fig. 5 shows the values of each velocity sample 
at an instant t = 2s , with its histogram depicted in blue and 
its theoretical probability density function p

(
vT
f

)
 plotted in 

red, calculated using the estimated 𝜎̂v = 0.88 mms−1. . It can 
be concluded that the velocity signal is a non-ergodic ran-
dom signal with zero mean value and normal distribution 

Fig. 4   Probability density functions of the velocity for one specific sample and for all 1000 samples

Fig. 5   Velocities at t = 2s of each of the 1000 samples shown in Fig. 3
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described by Eq. (13) [26], where p
(
vT
f

)
 is the probability 

density function of the velocity, obtained by integrating the 
acceleration noise.

This formula is valid for any sample time and can be 
particularly useful to estimate its peak velocity, since it is 
expected that 99.994% of these normally distributed val-
ues are between ±4 ⋅ 𝜎̂v. . However, 𝜎̂v is time dependent 
and for this case with T = 5.08s , 𝜎̂v = 0.88 mm s−1 and 
±4𝜎̂v = ±3.52mm s−1..

Table 1 lists some statistical parameters of Fig. 3 velocity 
signals, among them the maximum peak of the calculated 
velocities, which is coherent with the expected maximum of 
±4

[
𝜎̂v
]
. . Therefore, its expected standard deviation 𝜎̂v can be 

used as an estimator of the resolution obtainable from the 
integrated acceleration data.

Clearly, a formula for calculating 𝜎̂v based on the noise 
density of a sample time can be very useful, and it can be 
deduced using the power spectrum of the velocity PT

vv
 com-

bined with Parseval’s equation. However, since the noise 
density is related to Paa , it is necessary to obtain the rela-
tion between them. This relation can be obtained using the 
Z-transform, since they are digital signals. From the defini-
tion of the extended trapezoidal rule, Eq. (14) can then be 
deduced.

After some algebraic manipulations and considering that 
z = ej2�n∕N , Eq. (15) is obtained.

A transfer function GT
vv
(n) between (Δt∕2) ⋅ A(n) and 

VT (n) is defined, as shown in Eq. (16).

(13)p
�
vT
f

�
=

1

𝜎̂v

√
2𝜋

e
−

1

2

�
vT

𝜎̂v

�2

(14)VT (z) − z−1VT (z) =
Δt

2

[
A(z) − z−1A(z)

]
.

(15)VT (n) =
Δt

2

1 + e
−j2�

n

N

1 − e
−j2�

n

N

A(n) n = 1, … , N − 1.

(16)GT
vv
(n)=

1+e−j2�
n

N

1−e−j2�
n

N

n = 1,… ,N − 1.

This transfer function is not defined for n = 0 or for 
n = N , but this is not a problem since the DC component is 
not analyzed. Hence, the relation between the power spec-
tra of the acceleration Paa(n) and of the calculated veloc-
ity PT

vv
(n) for all nonzero frequency components is given by 

Eq. (17).

Equation (17) can be used to estimate the variance 𝜎̂2
v
 of 

the velocity noise using Parseval’s equation once more, as 
depicted in Eq. (18).

A simple computational summation can verify that 
Eq. (19) is valid for large values of N , especially if N ⩾ 128 . 
Since this is the case in acquisition of acceleration signals, 
this equation can be used for practical purposes.

Equation (18) is valid only if Paa is constant for all fre-
quencies, but this is not the case for the low-pass-filtered 
signal used. However, the validity of this approximation can 
be verified analyzing the influence of each frequency com-
ponent in the 𝜎̂v value.

Table 2 shows the accumulation of Eq. (19) summations, 
and it demonstrates that the first 30 components are respon-
sible for 98.04% of the resulting standard deviation and that 
Eq. (18) can be used, since the low-pass cutoff frequency 
is above that band. Therefore, the velocity resolution is not 
influenced by a low-pass filter with a cutoff frequency lower 
than the Nyquist frequency.

Then, using Eqs. (3), (18), and (19), the desired formula 
to estimate the standard deviation of the velocity noise is 
finally obtained in Eq. (20), where T  is the total acquisition 
time.

(17)
PT
vv
(n) =

(
Δt

2

)2|
|
|
GT

vv
(n)

|
|
|

2

Paa(n) n = 1, … , N − 1.

(18)𝜎̂2
v
=

N∑

n=1

PT
vv
(n) =

(
Δt

2

)2

Paa

N∑

n=1

|
|
|
GT

vv
(n)

|
|
|

2

.

(19)
N−1∑

n=1

|||
GT

vv
(n)

|||

2

= 2

N∕2∑

n=1

|||
GT

vv
(n)

|||

2

≈
N2

3
.

Table 1   Summary of the calculated velocity results, in mm/s

Measurement parameter Statistics

Maximum Minimum Mean value

Peak 3.76 0.78 1.86
Valley 4.21 0.83 1.87
Peak-to-valley 7.12 1.65 3.73

Table 2   Effect of low frequencies in the velocity noise for N = 8192

n
�

2
∑n

k=1

���
GT

vv
(k)

���

2
�

× 10
−7 Accumulation %

1 1.36 60.82
2 1.70 76.02
3 1.85 82.78
4 1.94 86.57
30 2.19 98.04
4096 2.27 100.00
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Some important practical conclusions can be drawn 
from this numerical simulation exercise: the resolution of 
the velocities obtained by numerically integrating a (una-
voidably) noisy acceleration signal is reduced by using a 
low-noise accelerometer and short sample times, and it is 
independent of the sample frequency.

2.3 � Residual noise in the displacements obtained 
by double‑integrating acceleration signals

After obtaining acceleration and velocity data, the resulting 
displacements can be estimated by numerically integrating 
the velocity signals using the extended trapezoidal rule once 
again, as shown in Eq. (21), where xT (k) is the estimation of 
the actual value of x(t) at tk.

Figure 6 shows the simulation of 1000 displacements 
samples obtained by double-integrating the signals shown in 
Fig. 1, considering v0 = x0 = 0 and then removing its mean 
value, as shown in Eq. (22).

(20)𝜎̂v ≈ Nd ⋅

√
T∕24.

(21)

{
xT (1) = x0

xT (k) = xT (k − 1) +
Δt

2

[
vT
f
(k − 1) + vT

f
(k)

]
k = 2, … , N

Figure 6 shows the 1000 displacements samples resulting 
from the double integration of Fig. 1 signals.

Figure 7 shows the probability density function of only 
one of the samples shown in Fig. 6, which presents a non-
Gaussian aspect, and the probability density function of all 
samples that presents a clear Gaussian aspect with a standard 
deviation of 𝜎̂x = 0.57mm.

Figure 8 shows the values of each displacement sample 
at an instant t = 2s , with its histogram depicted in blue and 
its theoretical probability density function p

(
xT
f

)
 plotted in 

red, calculated using a value of 𝜎̂x = 0.59 mm for its stand-
ard deviation.

Therefore, it is possible to conclude that the resulting 
signal is a non-ergodic random signal with zero mean value 
and a normal distribution expressed by Eq. (23).

This formula is valid for any sample time and can be par-
ticularly useful to estimate the peak displacement, since it is 
expected that 99.994% of these normally distributed values 
are between ±4 ⋅ 𝜎̂x . But 𝜎̂x is time dependent and for this 
case with T = 5.08 s , 𝜎̂x = 0.57 mm and ±4𝜎̂x = ±2.28mm.

(22)xT
f
(k) = xT (k) −

1

N

N∑

j=1

xT (j) k = 1, … , N.

(23)p
�
xT
f

�
=

1

𝜎̂x

√
2𝜋

e
−

1

2

�
xT

𝜎̂x

�2

Fig. 6   Residual noise in the displacement obtained by numerically double-integrating the acceleration signals shown in Fig. 1 with a noise den-
sity Nd = 190�g∕

√
�� , filtered at fc = 250 �� the 1000 samples shown in Fig. 1, and their mean power spectrum
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Table 3 shows some statistical parameters of the displace-
ment signals shown in Fig. 6, such as the maximum peak 
of the calculated displacements, which is coherent with the 
expected maximum obtained within ±4

[
𝜎̂x
]
. . Hence, a for-

mula for calculating the expected standard deviation 𝜎̂x of 
the displacements can be used as an estimator of the resolu-
tion obtainable from the double integration of acceleration 
data.

Fig. 7   Probability density functions of the displacement for one specific sample and for all 1000 samples

Fig. 8   Displacements at t = 2s of each of the 1000 samples and its probability density

Table 3   Summary of displacements results, in mm

Measurement parameter Statistics

Maximum Minimum Mean value

Peak 2.41 0.16 0.80
Valley 2.19 0.12 0.80
Peak-to-valley 4.28 0.29 1.60
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The procedure applied in the preceding section can be 
used once again to obtain Eq. (24), which shows the relation 
between 𝜎̂x and Paa.

A simple computational summation can verify that 
Eq. (25) is valid for large values of N , specially for N ⩾ 128. . 
Since this is the case in acquisition of acceleration signals, 
this equation can be used for practical purposes.

An observation is necessary here concerning the valid-
ity of Eq. (24), since the acceleration signal is low-pass-
filtered and then its Paa is not constant for all frequencies. 
Table 4 shows the accumulation of Eq. (25) summations, and 
it demonstrates that the first 4 components are responsible 
for 99.67% of the resulting standard deviation 𝜎̂x . Therefore, 
Eq. (24) converges much faster than Eq. (18), since it basi-
cally depends on its first five frequency components.

Finally, using Eqs. (3), (24), and (25), the desired formula 
to estimate the standard deviation of the displacement noise 
(resulting from the double numerical integration of a noisy 
acceleration signal) can be obtained, see Eq. (26).

The same conclusions obtained in the preceding section 
for the velocity signals are valid for the displacement sig-
nals as well. That is, the noise present in the displacement 
signal depends on the sample time, and it is in order of T3∕2 , 
independent of the sample frequency and the integration 
method used. If it is necessary to attenuate this displace-
ment noise avoiding a high-pass filter, it is then necessary 

(24)

𝜎̂2

x
=

N∑

n=1

P
T

xx
(n) =

(
Δt

2

)4
N∑

n=1

|
|
|
G

T

vv
(n)

|
|
|

4

P
aa(n)

=
(
Δt

2

)4

P
aa

N∑

n=1

|
|
|
G

T

vv
(n)

|
|
|

4

.

(25)
N∑

n=1

|
|
|
GT

vv
(n)

|
|
|

4

= 2

N∕2∑

n=1

|
|
|
GT

vv
(n)

|
|
|

4

≈
N4

45
.

(26)𝜎̂x ≈ Nd ⋅

√
T3∕1440.

to use a shorter sample time and/or an accelerometer with a 
low noise density.

3 � Numerical simulations

This section verifies the utility of Eq. (26) through numeri-
cal simulations of the double integration of a noisy accel-
eration signal. Figure 9 shows a displacement signal with 
5 mm peak level and a frequency of 4.1 Hz, as well as its 
corresponding acceleration signal that has been corrupted by 
a noise with the characteristics shown in Fig. 1.

Figure 9 shows the double integration results of this noisy 
acceleration signal using the FFT-DDI method. For compari-
son purposes, Fig. 9 also shows the results obtained using 
a traditional technique called time domain trend removal 
(TDTR), which is the base of most numerical double inte-
gration methods [3–6]. The TDTR method is based on the 
adjustment of the acceleration, velocity, and displacements 
signals using the least square method, and can be combined 
with other processes, such as a high-pass filter [19–21].

According to Eq. (26), the double integration of this sig-
nal results in 𝜎̂x = 4.58 mm , hence the error in displace-
ments can be as high as 18.34 mm. This can be verified in 
Table 5, which summarizes the results obtained from the 
FFT-DDI method. The lower error presented by the TDTR 
is due to the usage of the least square methods (Fig. 10).

Since the error introduced by the noise can be reduced 
using lower time integrations, it is worth to double-integrate 
this signal using piecewise integration with a time interval 
of T = 5.079s , dividing the total sample of T = 20.316s in 
four samples, which are integrated separately. It reduces the 
expected error of the displacement to 4𝜎̂x = 2.28 mm , but 
introduces jumps between consecutive samples.

Figure 11 shows the result of the numerical double inte-
gration of this acceleration signal using the FFT-DDI and 
the TDTR. Table 6 summarizes the results and presents a 
maximum absolute error of 3.37 mm, which is coherent with 
the expected error. The error of the TDTR is reduced signifi-
cantly, as expected by Eq. (26).

Figure 12 shows the results of the double integration 
using this interval, T = 2.54s , which has an expected error 
in displacement of 4𝜎̂x = 0.80 mm . Table 7 summarizes the 
results and presents a maximum absolute error of 1.13 mm 
for the FFT-DDI method and 0.56 mm for the TDTR.

When using the FFT-DDI method detailed by Ribeiro 
et al. in [22], this minimum possible data acquisition interval 
is dependent on the minimum signal frequency fmin.  present 
in the acceleration signal, as shown in Eq. (27).

(27)Tmin = 5∕fmin

Table 4   Effect of the low frequencies in the displacement noise for 
N = 8192

n
�

2
∑n

k=1

���
GT

vv
(k)

���

4
�

× 10
−13 Accumulation %

1 9.25 92.40
2 9.82 98.17
3 9.94 99.31
4 9.98 99.67
5 9.99 99.82
4096 10.01 100.00
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Fig. 9   Displacements and corresponding noisy acceleration generated from numerical simulations

Table 5   Summary of the results 
shown in Fig. 10

Parameter Actual (mm) FFT-DDI TDTR

Calculated Error Calculated Error

mm % mm %

Peak 4.95 22.14 17.19 347.27 8.08 3.14 63.43
Valley  − 4.95  − 6.97  − 2.02 40.91  − 8.25  − 3.30 66.78
Peak-to-valley 9.89 29.11 19.22 194.21 16.34 6.44 65.11

Fig. 10   Double integration of the noisy acceleration signal shown in Fig. 9 using the FFT-DDI method and the TDTR
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Since this signal frequency is f = 4.1Hz , the integra-
tion interval can be reduced to T = 1.27s and then expected 
standard deviation is reduced to 𝜎̂x = 0.07 mm according to 
Eq. (26), so that 99.994% of the displacement noise is in the 
range ±0.28 mm . This result is shown in Fig. 12. Table 8 
summarizes the results and presents a maximum absolute 
error of 0.21 mm for the FFT-DDI method and 0.69 mm for 
the TDTR. The error of the TDTR remains at 14%.

The most important conclusion at this point is that, 
by reducing the sample time, the error is reduced in both 

methods. But the reduction of the TDTR is limited to about 
14%, since least square method used depends on larger sam-
ple times. Therefore, for lager reductions, it depends on a 
high-pass filter. However, the FFT-DDI does not have this 
limitation, and thus, it can get a smaller error of about 4%.

Fig. 11   Double integration of the noisy acceleration signal shown in Fig. 9 using the FFT-DDI method and the TDTR using a time interval of 
T = 5.079 s

Table 6   Summary of the results 
shown in Fig. 11

Parameter Actual (mm) FFT-DDI TDTR

Calculated Error Calculated Error

mm % mm %

Peak 4.95 6.85 1.91 38.61 5.63 0.69 13.84
Valley  − 4.95  − 8.32  − 3.37 68.16  − 5.70  − 0.76 15.31
Peak-to-valley 9.89 15.18 5.28 53.39 11.33 1.44 14.58

Table 7   Summary of the results 
shown in Fig. 22

Parameter Actual (mm) FFT-DDI TDTR

Calculated Error Calculated Error

mm % mm %

Peak 4.95 6.08 1.13 22.86 5.50 0.56 11.24
Valley  − 4.95  − 5.28  − 0.33 6.74  − 5.59  − 0.65 13.08
Peak-to-valley 9.89 11.36 1.47 14.80 11.10 1.20 12.15
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4 � Experimental validation

The next step is to validate Eq. (26) experimentally, using 
a resistive accelerometer model AS-1 GB from Kyowa 
Electronic Instruments, connected to a signal conditioner 
model NI 9237 from National Instruments, measuring 

displacements using the FFT-DDI and the TDTR techniques. 
This accelerometer sensor is chosen because it is based on 
strain gauge sensors; therefore, it is sensitive to static accel-
eration components. The acquisition system is connected to 
a desktop using Windows 10 and Labview 2014.

The displacements have been generated in an Instron 
8501 servohydraulic testing machine equipped with a LVDT 

Fig. 12   Double integration of the noisy acceleration signal shown in Fig. 9 using the FFT-DDI method and the TDTR using a time interval of 
T = 2.54 s

Fig. 13   Double integration of the noisy acceleration signal shown in Fig. 9 using the FFT-DDI method and the TDTR using a time interval of 
T = 1.27 s
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transducer, which can be used to acquire directly the ref-
erence displacement signals, without any need to numeri-
cally treating them. The Kyowa accelerometer was mounted 
directly on the head of the hydraulic machine jack. Figure 13 
shows the system used in such tests.

Figure  14 shows ten measurement samples with no 
dynamic acceleration, made to evaluate their noise level, 
as well as their power spectrum. This acceleration meas-
urement system has an intrinsic noise standard deviation 
�a = 55 mm∕s2 . Its power spectrum is not flat, but since 
its low-frequency components are the main responsible 
for x̂ , the noise density can be estimated using the values 
of Paa(1) in Eq. (3), leading to an effective noise density 
Nd = 55.2 �g∕

√
Hz , since this value is not provided by 

the accelerometer manufacturer.

Figure 15 shows a sinusoidal displacement signal with 
2 mm amplitude and frequency 4.1 Hz. The displacements 
are acquired from the LVDT, and the acceleration from the 
accelerometer. The acquisition sampling time has been set 
as Δt = 0.00062s.

Figure 16 shows the displacements calculated from the 
double integration of the acceleration signal using a time 
interval of T = 20.32s , resulting in 𝜎̂x = 1.33 mm . Table 9 
summarizes the results and presents a maximum absolute 
error of 4.42 mm for the FFT-DDI method and 3.89 mm for 
the TDTR.

Figure 17 shows displacements resulting from the dou-
ble integration with piecewise integration at time intervals 
T = 5.079s , resulting in 𝜎̂x = 0.17 mm . Table 10 summa-
rizes the results and presents a maximum absolute error of 

Table 8   Summary of the results 
shown in Fig. 12

Parameter Actual (mm) FFT-DDI TDTR

Calculated Error Calculated Error

mm % mm %

Peak 4.95 5.16 0.21 4.21 5.64 0.69 13.92
Valley  − 4.95  − 5.14  − 0.20 4.03  − 5.68  − 0.73 14.83
Peak-to-valley 9.89 10.30 0.41 4.12 11.32 1.42 14.38

Fig. 14   System used to generate the displacements and to acquire the acceleration signals
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−2.73 mm for the FFT-DDI method and 1.09 mm for the 
TDTR.

Figure 18 shows results of the double integration with 
piecewise integration at time intervals T = 2.54s , result-
ing in 𝜎̂x = 0.06 mm . Table 11 summarizes the results and 
presents a maximum absolute error of 0.31 mm for the FFT-
DDI method and 0.22 mm for the TDTR.

Figure 19 shows results of the double integration with 
piecewise integration with time interval T = 1.27s , result-
ing in 𝜎̂x = 0.02 mm . Table 12 summarizes the results and 
presents a maximum absolute error of 0.04 mm for the FFT-
DDI method and 0.25 mm for the TDTR.

Figure 20 shows a sinusoidal displacement signal with 
2 mm amplitude and frequency 1.1 Hz. Since this frequency 
is low, the lowest time interval possible is T = 5.079s.

Fig. 15   Ten samples of the noise level measured in the acceleration measurement system

Fig. 16   Displacement of 2 mm and 4.1 Hz signal and the corresponding measured acceleration
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Fig. 17   Double integration of the noisy acceleration signal shown in Fig. 15 using the FFT-DDI method and the TDTR

Table 9   Summary of Fig. 17 
results

Parameter LVDT (mm) FFT-DDI TDTR

Calculated Error Calculated Error

mm % mm %

Peak 2.04 6.46 4.42 216.98 3.89 1.85 90.93
Valley  − 2.04  − 3.75  − 1.71 83.59  − 3.60  − 1.56 76.53
Peak-to-valley 4.08 10.21 6.13 150.22 7.50 3.41 83.72

Fig. 18   Double integration of the noisy acceleration signal shown in Fig. 15 using the FFT-DDI method and the TDTR using a time interval of 
T = 5.079 s
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Figure 21 shows results of the double integration with 
piecewise integration with time interval T = 5.079s , result-
ing in 𝜎̂x = 0.17mm . Table 13 summarizes the results and 
presents a maximum absolute error of −1.30 mm for the 
FFT-DDI method and of −0.39 mm for the TDTR.

The results shown above validate Eq. (26) as a reference 
for estimating the expected error in the measurement of 
displacements using the double integration of acceleration 
signal.

5 � Steps to minimize displacement errors 
in FFT‑DDI algorithm

This section presents the procedures implemented in the 
algorithm used in this work to measure displacements by 
numerically double-integrating noisy acceleration signals. 
First, it is necessary to know the noise density of the meas-
urement system. If it is not known, these three steps must be 
followed to estimate it:

Table 10   Summary of Fig. 17 
results

Parameter LVDT (mm) FFT-DDI TDTR

Calculated Error Calculated Error

mm % mm %

Peak 2.04 2.74 0.71 34.67 2.62 0.58 28.54
Valley  − 2.04  − 4.78  − 2.73 133.86  − 3.13  − 1.09 53.32
Peak-to-valley 4.08 7.52 3.44 84.31 5.75 1.67 40.94

Fig. 19   Double integration of the noisy acceleration signal shown in Fig. 15 using the FFT-DDI method and the TDTR using a time interval of 
T = 2.54 s

Table 11   Summary of Fig. 18 
results

Parameter LVDT (mm) FFT-DDI TDTR

Calculated Error Calculated Error

mm % mm %

Peak 2.04 2.34 0.31 15.00 2.25 0.22 10.63
Valley  − 2.04  − 2.30  − 0.26 12.50  − 2.26  − 0.22 10.72
Peak-to-valley 4.08 4.64 0.56 13.75 4.52 0.44 10.68
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Fig. 20   Double integration of the noisy acceleration signal shown in Fig. 15 using the FFT-DDI method and the TDTR using a time interval of 
T = 1.27 s

Table 12   Summary of Fig. 19 
results

Parameter LVDT (mm) FFT-DDI TDTR

Calculated Error Calculated Error

mm % mm %

Peak 2.04 2.08 0.04 1.81 2.29 0.25 12.38
Valley  − 2.04  − 2.05  − 0.01 0.30  − 2.29  − 0.24 11.99
Peak-to-valley 4.08 4.12 0.04 1.06 4.58 0.49 12.18

Fig. 21   Displacements with 2 mm amplitude at 1.1 Hz and corresponding measured accelerations
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•	 Acquire at least 10 samples of the signal from the accel-
eration measurement system, when in stationary state, to 
extract its noise.

•	 Calculate the power spectrum of the noise.
•	 With Eq. (3), estimate the noise density Nd of the system 

using the mean value of low-frequency components of 
Paa.

Then, the integration algorithm follows a sequence of six 
steps:

•	 Acquire and digitize the acceleration signal with a con-
venient sample frequency.

•	 Using Eq. (27) with the minimum frequency of the sig-
nal, calculate the minimum necessary sample time to 
double-integrate the signal correctly, when using the 
FFT-DDI method.

•	 Divide the acceleration signal in segments with a sample 
time equal to the time calculated above.

•	 Double-integrate each one of the segments using the 
FFT-DDI algorithm, as detailed in Appendix 2.

•	 Calculate the expected error 𝜎̂x calculated using Eq. (26).
•	 Compare the calculated peak values and 𝜎̂x . The lower 

𝜎̂x , the better the results.

The TDTR presents an ambiguous behavior. The value 
of 𝜎̂x can be reduced using lower sample time, but lower 
sample time increases the error of the TDTR method. In the 
FFT-DDI method, the sample time can be reduced to 5 × the 
lowest period of the signal to reduce the effect the noise. 
This a good reason to choose the FFT-DDI method.

Figure 12 and Table 8 present the result of a simulation 
of the FFT-DDI method. In that situation, 𝜎̂x is 1.4% of the 
peak level and the peak error was 4.21%.

Figure 19 and Table 12 present an experimental result of 
the FFT-DDI method. In that situation, 𝜎̂x is 1% of the peak 
level and the peak error was 2%.

Fig. 22   Double integration of the noisy acceleration signal shown in Fig. 20 using the FFT-DDI method and the TDTR using a time interval of 
T = 5.079 s

Table 13   Summary of Fig. 21 
results

Parameter LVDT (mm) FFT-DDI TDTR

Calculated Error Calculated Error

mm % mm %

Peak 2.04 2.53 0.49 24.04 2.28 0.23 11.48
Valley  − 2.04  − 3.33  − 1.30 63.67  − 2.43  − 0.39 19.39
Peak-to-valley 4.08 5.87 1.79 43.82 4.71 0.63 15.43
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Therefore, it can be concluded that the FFT-DDI method 
can be used with a maximum permissible value for 𝜎̂x equal 
to 2% of the expected peak value to achieve an expected 
error of 4% in peak level. If it is not possible, the solution is 
to use an accelerometer with lower noise density.

Finally, it is worth to mention that, even if the signals used 
in this paper have only one frequency component, the FFT-
DDI method can be used in any periodic and transient signals, 
even when a DC component is present. It can be used for quasi-
periodic signals too, if the first frequency component is known. 
However, if the signal is random it can be more problematic, 
because it can have many very low-frequency components.

6 � Conclusions

The main objective of this work was to formulate an algorithm 
to correctly measure displacements using noisy acceleration 
data, avoiding the need for a FIR high-pass filter and its limi-
tations. A general formula has been introduced, properly esti-
mating the error introduced by acceleration noise in calculated 
velocities and displacements. It has been validated through 
both simulations and experimental results. The resulting algo-
rithm successfully provides improved displacement estimates 
in the presence of noise, with several practical applications.

Appendix 1: Used noise generator algorithm 
in Matlab
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Appendix 2: Proposed FFT‑DDI algorithm 
in Matlab
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