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Abstract

Fredrich, Cecilia Maria Buarque; Feitosa, Raul Queiroz; Meggio-
laro, Marco Antonio. A Parallel Method For Object Tracking.
Rio de Janeiro, 2009. [93p. MSc Thesis — Department of Electrical
Engineering, Pontificia Universidade Catdlica do Rio de Janeiro.

Computer Vision-based techniques are powerful tools for designing efficient
control systems. Cameras provide information, through which an industrial
manipulator can, for instance, have its trajectory corrected with respect to
the target object. Computer imagery might even be used to fully implement
a controlling device for such manipulators.

This thesis proposes a real-time object tracking method robust and adapt-
able to different environment circumstances and scenarios, as well as to the
quality of the camera available and the interest object’s nature itself.
Image points are the features chosen for the object recognition procedure.
The method relies on parallel processing for building the model that is best
suited to the current scenario, thus dismissing heuristics for selecting the
most adequate features. Although, the parallelism also contributes to the
computational speed that allows real-time operation, the trade-off between
algorithm complexity and quality of match is most responsible for achieving
this particular goal.

Two variants were devised to cope with a number of different scenarios, as
well as equipments, which accounts for the likeness of the method to succeed

in a great deal of applications.

Keywords
Point Matching. Image Matching. Object Tracking. Object Recog-
nition. Normalized Cross Correlation. Least Squares Matching. SIFT.

Pose Detection. Camera Calibration. Parallel Processing.



Resumo

Fredrich, Cecilia Maria Buarque; Feitosa, Raul Queiroz; Meggi-
olaro, Marco Antonio. Um Meétodo Paralelo para Rastrea-
mento de Objetos. Rio de Janeiro, 2009. [03p. Dissertagao de
Mestrado — Departamento de Engenharia Elétrica, Pontificia Uni-
versidade Catélica do Rio de Janeiro.

Técnicas em Visao Computacional sao excelentes ferramentas para imple-
mentagao de sistemas de controle eficientes. Usando cameras, é possivel
corrigir a trajetéria de um manipulador para que este chegue ao seu des-
tino com maior exatidao. Imagens adquiridas através de cameras podem,
inclusive, ser dados de entrada para sistemas de controle auto-suficientes.
Esta dissertacao apresenta um método paralelo para rastreamento de obje-
tos, que opera em tempo real e é adaptavel a diferentes condigoes de ambi-
ente, equipamento e, também, a prépria natureza do objeto em questao.

O rastreamento inicia-se com a coleta de pontos relevantes das imagens
de entrada. Processamento paralelo garante que os pontos contidos no
modelo do objeto sejam consistentes com aqueles coletados em determinada
cena, sem necessidade de heuristicas. Apesar de o paralelismo contribuir
para a velocidade de execucao, esta é primordialmente conseqiiéncia do
compromisso estabelecido entre complexidade e qualidade dos algoritmos
envolvidos no processo.

Duas variantes foram propostas para lidar com uma vasta gama de cendrios
e, também, equipamentos, tornando o método ser eficaz em diferentes

aplicagoes.

Palavras—chave

Correspondéncia entre Pontos. Correspondéncia entre Imagens. Ras-
treamento de Objetos. Reconhecimento de Objetos. Correlagao Cruzada
Normalizada. Correspondéncia por Minimos Quadrados. SIFT. Deteccao

de Pose. Calibracao de Cameras. Processamento Paralelo.
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To see a World in a grain of sand,
And a Heaven in a wild flower,

Hold Infinity in the palm of your hand,
And Eternity in an hour.

William Blake, Auguries of Innocence.



1
Introduction

The majority of today’s industrial robots are programmed to follow a
predefined trajectory. Such controlling technique suffices when the robot is
working in a fixed environment where all objects of interest are situated in a
predetermined position relative to the robot’s base. If, however, the robot’s
target position needs altering, all the trajectories have to be reprogrammed
for the robot to be able to perform its tasks.

Another option is teleoperation, whereby a human operator conducts all
the movements during the operation in a master-slave architecture. Since any
positioning errors can be visually compensated, this configuration does not
demand that the robot has a high absolute accuracy. The drawback, in this

case, is the low speed and accuracy inherent to the human operator.

Figure 1.1: Hydraulic Manipulator Slingsby TA-40.

The manipulator considered in this research is the Slingsby TA-40,
depicted in Figure[L.1], attached to a Remote Operating Vehicle (ROV), which
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is brought to its working environment by the ROV operator. Every time
the robot is repositioned, it needs to estimate its position and orientation
relative to the work environment. The ROV operates at great depths and
there are only a few sensors that can operate at such environments. This is
the incentive for the use of Computer Vision to estimate the relative position
of the manipulator. Through cameras, the differences between the actual and
desired position of the manipulator can be estimated from pose detection,
using either feature or appearance matching. This information is then sent to
controllers to correct the pre-programmed trajectories. Due to their inherent
higher accuracy, these methodologies can also be merged to perform in-situ
calibration of the manipulator base.

This project originally addressed the recognition of an underwater target
object, namely valve panels, which would be used as a secondary fine-tuning
aid for a control system to correct the manipulator’s trajectory. The main
concern of the pose detection issue lies in the quality of the correspondences
between the image pairs. Especially as the manipulator moves closer to the
interest object, i.e., one of the valve panels. In such cases, if the matching
lacks accuracy, the robot could fail to properly operate the valves or even
collide against the panel, potentially damaging one another.

Computational efficiency is also of crucial importance, since the object
tracking must be performed in real-time. Hence, the quest for a suitable trade-
off between a fair enough match and an admissible processing time should be
the primary aim of this research. So is the statement itself of what exactly
can be considered as “fair enough” and “admissible”, regarding the operation
conditions.

Feature matching, namely interest points across image sequences, is the
approach adopted to tackle the problem. Poor image quality and high levels of
radial distortion, as well as the operation environment itself, where occlusion
may occur quite often, are the greatest obstacles to obtaining a proper match.

The study comprises determining what algorithms can be used, or
possibly adapted, to achieve the aforementioned trade-off, with respect to a
diversity of scenarios. These vary from one another, for instance, according to
the relative distance from the robot to the panel or by considering the frame
sampling rate, as occlusion - or noise - might force to discard considerable
pieces of the image sequence from time to time.

Since efforts are steered to both quality assessment and processing time
of the matching procedure(s), a more straightforward algorithm is initially
intended to implement the actual pose detection step of the control system.

The particular application concerning the valve operation by the Slingsby
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TA-40 was, as mentioned, the main incentive for this research. However, the
method proposed herein was not yet implemented to work with the manipu-
lator itself. Tests were conducted in different environments, which eventually

allowed to attest the method’s ability to function in various conditions.

1.1
Objectives

The contributions of this thesis are manifold and can be assembled
into two distinct objectives. The main purpose was to devise a novel real-
time method for object tracking, based upon parallel processing and feature
correspondence. The secondary goal entailed evaluating and ultimately electing
point matching algorithms that could in fact make feasible the implementation
of such tracking procedure.

Thus, both secondary and primary contributions, which are, respectively,
the exhaustive tests on performance assessment of the matching techniques and

the novel method for object tracking itself, are depicted next.

1.11
Secondary objective

As said, the greatest motivation of this project was the particular
valve control application. Hence, the underwater environment was chosen for
assessing the point matching procedures at an early stage.

At first, exhaustive tests were conducted, using underwater video se-
quences (some with quite poor quality), so as to evaluate a variety of matching
techniques to decide which could be adopted. Later, a video sequence shot in a
pool was used to stress the algorithms eventually selected as the most suitable.

Although such algorithms were to be implemented into a routine, which
would function as a vision-based aid to help correct the trajectory calculated
by the master control system and that would be called only eventually, the
ability of working in real-time would be crucial to its success. Thus, different
tests were conducted to address both accuracy and processing time.

Besides serving their purpose in this project, these experiments indeed
provide insights on the performance of the algorithms tested that can be used
as a knowledge tool in future related researches, as what regards how they
are expected to behave under stressful conditions. However, they faded into a
secondary contribution of this work, as they led to a step forward. Needless
to say, the primary goal set on this research would have never been attained,

unless its secondary objective was successful.
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1.1.2
Primary objective

The knowledge extracted from the previous experiments allowed the
implementation of a real-time object tracking method, that not only is self-
sufficient, i.e., can be adopted as the control system itself, but is also adaptable
to varying environment circumstances. Naturally, the method may still be
used as the underwater vision-based aid discussed before. The key to its
successfulness is parallel processing, as will be made clear in further chapters.

Nevertheless, once implemented, it would be desirable for the method
to be capable of functioning in various conditions, other than the one that
motivated its devising. Several other video sequences were used for further
tests to address this matter. Being of different natures - regarding not only the
environment, but also equipment and interest object - they provide ground for
attesting the method’s efficiency in various applications and explain the reason

for proposing two variants.

1.2
Thesis outline

The remainder of this document is organised as follows. Chapter
presents general concepts of feature-based and appearance-based models for
object tracking, a.k.a. identification or recognition, as well as a discussion
of several other tracking methods, pointing the differences between their
approaches and the one adopted in this work.

Chapter |3| briefly describes the point matching techniques used in the
method’s implementation. The method itself is presented in chapter {4 which
contains the ideas underlaying its devising, as well as the details of both of its
variants.

Finally, chapter [5| addresses the performance assessment of the point
matching techniques and the method itself, in its two variants. Those were
divided into two separate sections. The different assessment measures and their
outcomes are displayed and discussed, as well as are presented a few hints on
how each method’s variant is best suited to a particular application. All of
which followed by chapter [fs concluding remarks and directions to future
works.

The appendix is divided into four chapters. Chapters [A] and [B| contain
straightforward techniques of camera calibration and pose detection and
present their basics. Chapter [C] contains the full records referring to the
experiments conducted for assessing the overall performance of the point
matching algorithms depicted in section [5.1}



A Parallel Method For Object Tracking 16

At last, a visual aid for assessing the performance of the object tracking
method is available in chapter|[D] The four videos show how each interest object

was tracked in the respective sequences presented in section [5.2]



2
Related research

The vision-based object tracking issue derives a multitude of research
lines compatible with the relevance of the matter. This chapter narrows its
survey down to the main focus of this thesis: object recognition, presenting
both feature-based and appearance-based mainstreams. The study of descrip-
tors of image points and methods for object tracking from such features are
also briefly introduced, as well as the camera calibration and pose detection

issues.

2.1
Object identification

Object recognition is indeed a twofold issue. That is, provided there is
(at least) one model of the interest object, the matter of recognising it entails
identifying this object in an image and, then, locating its position in 3-D space.
This section addresses the first problem.

Object identification can be perceived as determining which model in the
database matches the data in the input image. In other words, it is essentially
a matter of comparing input data to a model to decide whether they match
and, thus, the successfulness of an identification algorithm relies a great deal
on how effective is a model at describing a given object.

Namely, strategies for finding a match are divided in two basic categories,
according to the model’s nature: feature-based methods and appearance-based
methods.

2.1.1
Feature-based methods

Features are instances extracted from numerical image data, whether
related to a global property, e.g. a pixel’s value, or a region having a special
property, like edges. A feature must therefore be described by a collection of
characteristics, so that it can be identified, assessed and compared with. Such

collection is referred to as feature descriptor.
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Thus, feature-based methods are applied to problems, where the goal
is to either find instances of a given object in the input image(s); determine
what object is there in a particular scene, or describe what exactly is a certain
image region. Consequently, it becomes a matter of - given a model database
of features and a set of features detected in an input image - implementing an
algorithm for mapping the descriptors of the latter into the ones belonging to
the first.

This thesis presents a method for object tracking that is based upon
features, namely points. Several different descriptors are used, as will be clear
from chapter [3] on.

As said, the ability of a descriptor in representing a feature is crucial
for devising an effective object recognition method. Reference (20)) surveys the
performance of several feature descriptors. They were evaluated, compared to
one another and finally ranked by the authors, who attest that the ones based
upon image region perform best. Indeed, the method proposed herein uses only
this kind of descriptors, with varying degrees of complexity.

As the descriptors based on the scale invariant feature transform (18)),
or SIFT, obtained the best results according to reference (20)), this was the
technique adopted for detecting points in the object tracking method proposed
herein. An alternative detector, invariant to scale and affine transformations,
may, however, be found in (19). For further readings, reference (21) reports
a comparison of the performance of a few affine covariant region detectors,
from which the authors have established a reference test set of images and
performance software, so that other detectors can be evaluated in the same

framework.

2.1.2
Appearance-based methods

Appearance-based identification uses images instead of features as mod-
els. The problem, thus, becomes determining whether a part of an input image
is, in fact, an instance of the interest object. In such cases, the model is a set
of images that represent several views of the tridimensional object and also
different illumination conditions, or rather, a set of possible appearances.

Identifying an object would then be equivalent to comparing an input
image to the set and deciding whether it contains an image that is similar
enough to be regarded as the same object.

Appearance-based methods compare the input data directly with the
model, since they are both images. At first, this may seem an obvious advantage

over their counterparts, which require that features be detected and described
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before the match process can actually start. However, in a great deal of
applications, the database usually grows extremely large to become really
representative of the interest object. In such cases, the memory usage can

be unmanageable to the point that the method becomes unfeasible.

2.2
Object location

Locating objects in space equals determining their position and orienta-
tion - or rather, their 3-D translation and rotation - provided their model is
known. In other words, object location is, in fact, a pose estimation problem.

The structure of the location algorithm depends on how the camera
was modelled. If the projective model is adopted, it becomes the problem
of handling a system of non-linear equations, which can be done by applying
Newton’s iterative method. In case of an affine model, the algorithm translates
into solving a linear system, a quite simpler task.

Both variants are engaged in determining the extrinsic camera param-
eters, a major part of the camera calibration problem, which are ultimately
used for estimating the object’s pose.

Since the method for object recognition proposed herein uses image
points as features, the matched conjugates themselves become the inputs of
the standard camera calibration and pose detection routines. Straightforward
techniques and basic theory on both issues are available at the appendix
(chapters [A] and [B], respectively) and (26) describes a method for calibrating
high-distortion cameras. However, a deeper discussion on such matters falls

outside the scope of this document.

2.3
Other works

Two fundamental issues present the greatest difficulties, as far as the
problem of object recognition based on image points is concerned: processing
time and exactly what are the most suitable points to use as both input data
and model.

The first is a stumbling block for real-time applications, due to the
computation cost involving the state-of-art algorithms for point detection and
matching. The latter concerns the quality of the tracking algorithm more
directly. Not only all object views must be modelled by a single set of image
points - so that it can be identified (or tracked) at all times - but also
the tracking system must account for problems regarding the environment

conditions - e.g. occlusion, varying illumination patterns and view angle - and
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be robust to them. This means that the input features have to be equally
well representative and furthermore less subjected to a false match. Some real-
time procedures are presented next, and eventually compared to the method
introduced in chapter [4]

A vision-based localisation and mapping procedure, reported in (24),
devised to work in unmodified dynamic environments, uses SIFT features for
estimating a robot’s pose, from a three-camera stereo system. Here, a major
concern was to implement an algorithm for deciding which features were most
suitable for being part of the object’s model as the robot moved around.
Additionally, there was the safeguard of relying on odometry information to
predict the feature characteristics for each model point in the next frame and
to eventually estimate the pose, in case no sufficient matches were available.

From the same authors, (25) describes a method for global localisation,
where the robot localises itself, without any prior estimate. This is achieved by
matching features in the current frame to a model map. Se et al. have proposed
two different, and costly, approaches, namely the Hough Transform (§) and the
Random Sample Consensus (L10]), or RANSAC, that proved to yield the best
results and through which global localisation is performed by finding the robot
pose supported by most image points.

Another method for object tracking is based on a different, alternative,
descriptor. Described in (29), it uses Fern-based classification to match im-
age points. The descriptors, named ferns, are non-hierarchical structures for
classifying image patches. They consist of small sets of binary tests and re-
turn the probability that a patch belongs to any one of the classes that have
been learned during the training phase, which consists of synthesising many
views of points extracted from a training image. These responses are then
combined in a Naive Bayesian way. This is actually an open source, available
at http://cvlab.epfl.ch/software/ferns/index.php, and, thus, it was in-
tended as a benchmark. However, despite showing satisfactory results in face
detection applications, it failed to track the objects in all four sequences used
to test the method described in [l


http://cvlab.epfl.ch/software/ferns/index.php

3
Fundamental algorithms for point matching and underlaying
theory

This chapter presents a description of the three matching techniques
adopted for the implementation of the proposed object tracking algorithm.
The theory concerning the pose estimation, for determining the actual object
location, is also discussed in[B] Nevertheless, as what regards the pose detection
and camera calibration issues - these last presented in [A] - only standard
techniques are described, since investigating these matters falls outside the
scope of this thesis.

The contents of this chapter suffice to fully understand the functioning of
the proposed method. However, by no means are they thorough to the extent
of exhausting these subjects.

As presented in chapter [4] three algorithms for matching are combined
into a keypoint tracking process with a decaying degree of complexity. Namely,
the normalised cross correlation (NCC), least squares matching (LSM) and
the scale invariant feature transform (SIFT). The theory that underlay these

algorithms is discussed next.

3.1

Normalised cross correlation

The cross correlation function measures the degree to which two signals
are similar (or correlated). In image processing applications, these are matrices
representing patches of each image.

Since their brightness may vary and to allow the pattern recognition to be
independent of scale and offset, the images should be normalised. This is done
by subtracting the mean at each position and then dividing by the product of
the standard deviations of the patches, in a computation that can be perceived
as the dot product of two normalised vectors.

Patches cropped around an image point are defined as area-based de-
scriptors as what concerns the feature matching matter. The normalised cross
correlation (NCC) of two windows of size W built around points p; and p,,

in the template and matching images, respectively, is then given by eq. (3-1)),
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whereby I(p) denotes the image intensity value at location p.

Z [(It (pe) — m) ) <Im (pm) — [mwpmﬂ
\/Z (100 T ) 32 (B (o) = T )

NCC =

(3-1)

The image of NCC falls within [—1, 1] and, for identical patches, it equals
1. Patches that have no similarity to one another incur a 0 correlation factor. A
value of -1 would indicate two inversely correlated patches, as, e.g., a template-
matching pair formed by the diapositive and the negative of an image.

Naturally, if the matching image is merely a shift transformation of the
template, the perfect match is easily found by sliding the matching window
around the search space, provided its wide enough to actually include the
correspondent coordinate. Otherwise, the match is to be considered as the
point within the search space, whose window yields the maximum correlation

factor.

3.2
Least squares matching

The least squares matching (LSM) (1, [13) is another area-based technique
for finding conjugate points in a pair of images. The underlaying idea is to
minimise the intensity level differences between the template and matching
patches. In LSM, however, both the centre and the shape of the matching
window are to be determined, which is done by small incremental adjustments
in an iterative process of a sub-pixel resolution. An initial guess for the location
of the matching point is, therefore, needed to launch the procedure, as well as
starting values for the transformation parameters.

In other words, LSM iteratively searches for the best parameter values
of a pre-determined geometric transformation that maps the matching image
into the template, by computing the grey level differences between the windows
around the template points and the ones built and transformed around their
respective conjugates. Thus, it is necessary to first define what transform is
more likely to map one image into the other: projective, affine or shift. The
projective transformation includes the other two, as the affine includes the
shift. Nevertheless, having to adjust a larger set of parameters not only reduces
the convergency rate, but can also potentially lead to stability problems. Thus,

the appropriate geometric transformation for a particular problem is the one
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able to do the mapping, with the required accuracy and the lowest possible
complexity.

Additionally, it may be necessary to introduce a radiometric transfor-
mation 7, to model eventual differences in contrast (r) and brightness (r;)
between the two images. Eq. shows the transformation applied to a given

matrix M.

T,(M)=ro-M+m (3-2)

Although it is possible to add the radiometric transformation to the LSM
process, this computation is generally done as a pre-process for the reasons
presented above. In this work, only the affine and shift transformations were
applied to the LSM routine, as will become clear through the next two chapters.

The affine transformation, defined by the six t; terms, of a pixel

|7 in the initial matching window M at each iteration is given by

to t t o

Xr 0o U1 U2

= | Yo (3‘3)
yr t3 14 s ]

The transformed window M - at each iteration step - can then be
approximated by eq. 1) where the Atf term would denote the adjustment

of the i*" parameter at iteration j.

Po = [$07?J0

OM <= 0
M~ M, + 252 N2
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2 At; 4
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The LSM procedure then searches for the parameter values that yield
the residual matrix R having the minimum variance estimative. Matrix R is

written as the difference between the template window T and M, as defined

in eq. (53).
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Merging eq. (3-4) and eq. (3-5)) yields

OM Oy OM <~ dyr
=T — My — — - t—— -y =L
r (995T i—0 8151 (9yT i3 8752

At (3-6)

Writing eq. for all pixel pairs in 7" and M yields a linear system,
where the unknown At; coefficients are calculated at each iteration, until
convergence, or the maximum number of iterations is reached. The final
transformation coefficients are given by the sums of all /At;, and the conjugate
point, by the centre of the matching at the last iteration. The quality of
the match can be assessed by computing the variance of the residuals or,
alternatively, the NCC between the template and the final matching windows.

Applying the LSM technique to the shift transformation is analogous as
described, only taking ty = t; = t3 = t4 = 0. Notice that such a case would
be equivalent to a sub-pixel resolution NCC. For simplicity, from hereon, both
NCC and Shift-LSM will be referred as the former, whereas LSM will denote
the Affine-LSM routine.

3.3
Scale invariant feature transform

The scale invariant feature transform (SIFT) (16, 18], devised by D.
Lowe, is a powerful point detector that rely on an orientation-histogram-
based descriptor. Such keypoints are invariant to image scaling and rotation,
and partially invariant to changes in illumination and 3-D camera viewpoint.
Their distinctiveness allows each of them to be robustly matched against large
databases built from many images.

The steps to recognise a feature as a reliable keypoint are:

1. Scale-space extrema detection: use of a Difference-of-Gaussian (DoG)
Pyramid (5) to search for features that are invariant to scale and

orientation;

2. Accurate keypoint localisation: keypoints considered stable have their

location scale determined down to a sub-pixel resolution;

3. Orientation assignment: orientations based on local gradient directions

are assigned to each keypoint location;

4. Keypoint descriptor: built from local gradient measures at the selected

scale around the keypoint.
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The point matching is done by running the algorithm to identify the
keypoints of an individual image and then compare each one against the SIFT
feature database previously built from a set of model images.

The SIFT code that has been implemented for this work is a modi-
fied version of the one written by R. Hess, available at http://web.engr.
oregonstate.edu/~hess/index.html.

The four stages of the SIF'T algorithm are discussed in some detail next.

3.3.1
Scale-space extrema detection

At first, keypoint candidates are detected and roughly located using
cascade filtering. A set of scales is produced by repeatedly applying the
continuous scale space function (28) to the input image. This function uses

the Gaussian function, given by eq. (3-7)), as kernel.

1 e+

et (3-7)

G(z,y,0)

2mo?

That is, the space L(x,y, o) of the image I(z,y, o) is defined by

L(z,y,0) = G(x,y,0) x I(x,y,0) (3-8)

The entire set of scales, or rather, the pyramid of scale-space images is searched
for invariant features.

Actually, feature stability can be more efficiently assured by detecting
scale-space extrema in the Difference-of-Gaussian function D(x,y, o), rather
than in L(z,y,0). The DoG is defined as the difference of two adjacent scales,
separated by a constant multiplicative factor k (see eq. ) Since the
computation of L(z,y, o) is mandatory for scale-space feature description, no

significant additional cost is incurred from calculating D(z,y, o).

D(z,y,0) = L(z,y, ko) — L(z,y,0) (3-9)

The local spaces for extrema detection consist of triplets of DoG image
patches, as depicted in Figure The central patch is cropped around each

LAll figures used as visual aids in the description of the SIFT algorithm were cropped
directly from (I8).
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point in the inner pyramid scales and the two others located at the same -y
coordinates in the upper and lower adjacent levels. If the centroid of each cubic
region corresponds to its maximum or minimum, then it is a extrema location,

i.e., a keypoint candidate.

A T T T T T
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P

Figure 3.1: Searching region for scale-space extrema detection.

3.3.2
Accurate keypoint localisation

The keypoint candidates have their x-y localisation and scale adjusted
down to sub-pixel resolution to improve stability even further. This fine tuning
is done by drawing a 3-D quadratic curve calculated by Taylor expansion of

D(z,y,0) and then shifted, so that its origin is at the candidate’s location, as
given by eq. (3-10)), whereby x = [z,y, o]T.

oDT 1 ,0°D

The derivatives are approximated by finite differences, thus the samples
for the calculation of each accurate keypoint position are the candidate itself
and its immediate neighbours in all three dimensions (z, y and o). In eq.
, D and its derivatives are taken at the sample point that is considered to
be the closest to the accurate location, i.e., the central sample point (initially,
the keypoint candidate) and x is the offset from this point. Determining the
magnitude of the fine adjustment is equivalent to finding the values of x that
correspond to the extremum point of the curve, here denoted by x.

Deriving eq. with respect to x and setting it to 0 yields the 3 x 3

system
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for whose coefficients the linear approximations by finite differences are:
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An absolute value greater than 0.5 in any direction of X means that the
accurate keypoint location is actually closer to another sample. In such cases,
the central point must shift to the respective sample coordinates. This process
is repeated until x has all its values below 0.5 and the accurate position of
the keypoint is then obtained by adding the adjustment X to the central point
location.

For stability reasons, the keypoint candidate has to pass a contrast filter.

Namely, if | D(x)| is below an user-defined threshold (reference (I8) suggests a
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bound of 0.03, for normalised image pixel values), the correspondent keypoint
is eliminated.

The remaining candidates have to go through yet another filter to be
considered stable enough to enter the keypoint list. The DoG function is typ-
ically quite responsive to edges, even if a candidate location is fuzzy around
it. Such features can be detected by using the ratio between the trace and

the determinant of the Hessian matrix H computed at their position (see eq.

(3-12))).

= (3-12)

whereby r is the ratio between the largest and the smallest eigenvalue of H
(r = 10 is the ratio used on tests reported in (18)).

Candidates that pass both filters are elected SIF'T features, or keypoints,
and will undergo the last two steps of the algorithm.

3.3.3
Orientation assignment

Invariance to image rotation is achieved by representing the keypoints
relative to their orientation. The computations are made at the L(z,y,0)
that is closest to each keypoint scale, so that the features remain invariant to

changes in this dimension. The magnitude m(z,y) and orientation 6(x,y) of
VL(x,y,o) are calculated by eq. (3-13|) and eq. (3-14]), respectively.

m(e,y) = \/[L@@+Ly) - Lz — Ly + [La,y+1) - Liz,y - D (3-13)

(3-14)

0(x,y) = arctan (L@ +1,y) — Lz — Ly))

L(z,y+1) — L(z,y — 1)

An histogram of orientation is built for each keypoint and the pixels
that surround it. The entries are weighted by their magnitudes and a gaussian
window with a standard deviation typically 1.5 times greater than the feature
scale. Each bean of the histogram covers a 10° range.

The highest peak in each histogram, plus any other that eventually is

within 80% of it, are selected to be feature orientations. Since there can be
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more than one peak, spin-off keypoints having the same (x, y, o), but a different
orientation, may be created. The orientations are also adjusted by fitting a

parabola to the three histogram values closer to each peak.

3.3.4
Keypoint descriptor

Up to this stage, the resulting features are invariant to scale and orien-
tation. A descriptor for the area around the keypoint must then be computed
to achieve robustness regarding illumination changes, 3-D view point and even
non-rigid deformations. Figure [3.2] provides an example of the entire process.

The approach for building the keypoint descriptor was inspired by the
idea that had been introduced in (9)). The first step is to sample the gradient
magnitudes and orientations around the keypoint, whose scale defines the level
of gaussian blur for the gradient image. Rotating both gradient orientations
and descriptor coordinates relative to the feature orientation assures invariance
to this parameter. Then, the magnitude of each sample point around the
feature is weighted by a gaussian function with standard deviation equal to
half the width of the descriptor window.

T %
"AREE LR f; ‘::_’
H,A”T_y--v
| R a
A Ny
N AN

Image gradients Keypoint descriptor

Figure 3.2: A 2x2 descriptor, on the right, computed from four 4x4 subregions, on
the left, where the gaussian window is indicated by the overlaid circle. The length of
each descriptor arrow corresponds to the sum of the weighted gradient magnitudes
near that direction within the respective subregion.

The sample area is divided into sub-regions, each represented by an
orientation histogram. Their entries are the sum of all weighted sample
magnitudes within the sub-region, in the respective orientation range. Before
the summation, however, these samples are multiplied by yet another weighting
factor, which is inversely proportional to the gap between their orientation and

the centre of their respective bins.
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The histograms are assembled and then normalised to form the keypoint
descriptor. Finally, to favour the contribution of orientation over magnitude, all
descriptor entries are limited to a given upper bound and then re-normalised.

Experiments reported in (18) use 16 x 16 sample areas and 4 x 4 sub-

regions, represented by 8-bin histograms, as well as an upper bound of 0.2.

3.3.5
Matching

Euclidean distance between two descriptors is the measure assessed to
identify a conjugate pair of keypoints. The database feature within the closest
distance from a given keypoint descriptor is its match, which must then be
validated.

For every false match, there is likely a number of other ones within similar
distances, due to the high dimensionality of the descriptor space. Therefore, a
match is considered valuable, if the difference between the closest and second-
closest distances is wide enough.

Exhaustive search for the conjugate pair would incur a tremendous
computational cost. Thus, the match searching engine is KD-tree-based (12).
An alternative procedure, the Best-Bin-First (BBF) algorithm (4)), returns the
closest descriptor with high probability by searching the bins in the order of

their closest distance from the query location.



4
Proposed methods for keypoint tracking

This chapter introduces two algorithms devised for tracking keypoints
in a video sequence. The following sections describe in details each one
individually, but the general guidelines given in this preamble will help
understanding their broad functioning, for they may actually be perceived
as two variants of the same method, rather than different approaches to tackle
the same problem.

In fact, the choice of which to adopt should be problem-driven, i.e.,
regarding the particular characteristics of a sequence, whose terms will be
discussed in the forthcoming chapter. Both variants are a potpourri of the
algorithms for point matching presented in [3[- or a variation of some of them
- and the contents of each mix are what makes one brand more suitable for
dealing with a specific kind of movie.

Generally, in a video sequence, two subsequent frames are converted into
the image pair for tracking each keypoint position. The processing time of the
matching procedure determines the frame sampling rate; that is, the faster the
procedure, the closer (in time scale) the two frames.

Consecutive frames that are closer in time tend to be more similar to one
another, making keypoints easier to trace. Thus, in such cases, the robustness
demanded of the matching technique may drop, to a certain degree, without
corrupting the tracking progress. That said, one is left with the circular trade-

off dilemma depicted below, in Figure 4.1

‘a drop in robustness\‘
leads to a
‘ simpler algorithm ‘

faster the robustness

(simpler algorithms}
may be even feebler

| tend to be faster

if the algorithm is 1
J

Figure 4.1: Scheme that drove the devising of the object tracking method.
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Leaving the relation between robustness, speed and complexity of the
matching procedures for a later discussion, there is still the matter of initialis-
ing - and maintaining - a keypoint collection, so that the tracking process may
actually be carried on, to be taken under consideration. Typically, matching
procedures that are less robust are also more likely to lose track of a greater
number of keypoints during the process. Thus, such collection must be updated
to either replace lost keypoints, refresh their coordinates, or even add new ones
that are more suitable to the current scene.

Moreover, environmental problems, such as occlusion and change in
illumination, make the selection of the initial keypoints even less trivial and in
fact suggest such collection should not be statical. Which brings on the matter
of how to assess the suitability of a keypoint to the current scene, as addressed
in (24) and (25)), for instance.

The method proposed herein makes needless to implement any heuristics
in such assessment. The adequacy of the collection is automatically assured by
the fact that its entries are the keypoints found as close in time as possible to
the sequence frame being processed at a given instant, and thus they have a
higher chance of being consistent with the upcoming scene. This is achieved
by parallel processing, i.e., separate threads for the tracking and updating
processes.

The block diagram depicted by Figure illustrates the overall process
throughout time.

Prior to running the tracking algorithm, an object model must be built
off-line. This model consists of a keypoint list - which may be analyst-selected,
to assure stability - containing the features’ x-y coordinates, associated to a
particular descriptor, and their correspondent world coordinates, for the object
pose detection calculations, which can be performed, for instance, by a third
thread. Since the SIFT algorithm was adopted at the early tracking stage in
both variants, the descriptor used is exactly as described in (I8)). The collection
must contain keypoints corresponding to all views of the object.

The updating strategy is as follows. Using the past matching sequence
frames, a thread should be held responsible for carrying on the collection
update. New features, in these last fames, are matched to the original model
image(s) to assemble a new starting list, i.e., the keypoint collection to be
processed by the next tracking thread. Finally, a mask matrix is associated
to the starting list. These keypoints are the ones most likely to be consistent
with the scenes from this moment on - since they were spotted at frames
corresponding to immediately past time instants - therefore making them the

best candidates for tracking. They must be matched against the original model,
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Figure 4.2: Block diagram of the object tracking process.

as to assure they fall in the area defined as being stable at the off-line training
stage.

As soon as an update is ready (and the current tracking thread is idle),
the keypoint coordinates corresponding to the template image, or rather, the
template coordinates, are refreshed - or replaced by others - and the matching
process continues. The old tracking thread dies as another update thread starts.
All these new keypoints are flagged as “fit” in the mask matrix. During the
matching process, whenever the algorithm fails to keep track of a feature,
its template coordinates are tagged as “unfit” and cease being part of the
tracking process at the subsequent frames, remaining latent until the current
thread dies, but remembering that they may still be members of the next list
delivered by the following update.

The keypoint updating process is kept indefinitely ongoing. The only
requirement is that there must be a new set of keypoints ready, whenever the
number of fit pairs falls beneath a certain threshold, which may be around the
minimum points required for the 3-D reconstruction (pose detection). If, by
any chance, the list is entirely lost before the update process has delivered the
next one, the object will remain untraceable for that period.

Having introduced the kernel of the object tracking process, let us present

in details the two variants devised for running in the matching thread.
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4.1
Variant 1

As previously stated, the matching algorithms implemented for the actual
object tracking that are fast enough to keep a high frame sampling rate,
are also less robust, due to their simpler nature. This lack of complexity
demands keypoints that are themselves both inherently easy to match and
consistent with the upcoming scene, which is achieved by the updating
procedure described in the previous section. Having addressed the point
stability matter, let us discuss how the matching techniques presented in
chapter 3| can be used to take full advantage of the keypoint collection quality.

At the very beginning of the tracking process, there is hardly any
knowledge about the camera position, in relation to the pose of object model
(or the keypoint collection). Hence, the point correspondence in the template-
matching frame pair at this stage is rather more difficult, in relation to the
ones hereafter. Therefore, a more robust procedure should be adopted.

From hereon, as to assure keypoint stability and pairing consistency, an
algorithm that can not only provide a match, but also eliminate false initial
matches is desirable. As the video sequence moves further in time and the
camera movements have stabilised, as well as the false matches have been
eliminated, the tracking process will not require a great filtering ability nor a
wide image transformation coverage. Consequently, the matching algorithm as
the current tracking thread advances in time can be even simpler.

Based upon the discussion above, the mix proposed for this variant is as

follows. Figure 4.3 shows the object tracking scheme.

— apply the SIFT algorithm and match the starting frame against the

model

— whenever the former step is completed, grab the incoming frame and
use LSM to adjust the coordinates of all keypoints, using their present
values, i.e., the SIFT output, as initial guesses and with the last

processed frame - the SIFT-frame - as the template

— consecutively apply NCC from now on to refresh the still fit keypoints;

the initial guesses and template are analogous to the LSM-step

This procedure restarts every time a collection update is released. The
update processes are in fact analogous to the first step and replace it as the
scheme goes further in the time line. Notice that the number of frames lost, i.e.,
left unprocessed during each match calculation drop significantly from stage to

stage, since the procedures themselves get faster and faster and, additionally,
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more keypoints become unfit (and no longer adjusted), although the latter
aspect is a direct consequence of adopting this procedure rather than properly
an advantage.

Chapter 5| provides quantitative information to buttress the strategy
devised for this variant.

timeline
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the last and current
frames and filter

use NCC to carry on
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A\ 4

tracking thread
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Figure 4.3: Block diagram of the object tracking method: variant 1, also called the
SLN wvariant.

In the remaining of this document, variant 1 will be designated by the
initials of the algorithms that compound the mix (namely, SIFT, LSM and
NCC), that is, by the SLIN abbreviation.

4.2
Variant 2

Both the LSM and the NCC algorithms have matrices of neighbouring
image pixel values as descriptors. Hence, not only they behave rather poorly
in cases where the geometric difference between the pairs of frames is too
significant - like in high movement sequences - but they also may become
quite unstable when processing severely compressed video sequences, namely
those where the quantisation blocks are noticeable and a pixel’s neighbours
- and even location - are far from corresponding to the ones in the original
uncompressed frames.

This second variant was devised to deal with such sequences and its func-

tioning is very similar to its peer’s. Here, the LSM-NCC routine is replaced by
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a SIFT-based matching technique. Figure depicts the alternative matching
strategy.

Running the SIFT algorithm as implemented in the first step throughout
the whole sequence would incur a massive loss of image frames, due to its
processing time. Again, if the subsequent frames used as template-matching
pairs are kept close enough in time to one another, it is fair to admit
that a keypoint location will not wander off, in terms of absolute image
coordinates, regardless the significancy of the geometric transformation it went
through. Therefore, processing only a patch of the matching frame, around the
coordinates of each template keypoint, should be enough to determine the new
location.

Regarding this variant, the matching technique consists then in consecu-
tively applying the SIFT algorithm to each keypoint individually, considering
the image to be only a small area around it (in other words, locally applying

the algorithm), until the update process is completed.
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Figure 4.4: Block diagram of the object tracking method: variant 2, also called the
SLS variant.

Evidently, this second variant can be successfully applicable to all natures
of video sequences, including the ones best suited to the one presented in the
previous section. However, since the SIFT algorithm, even when applied locally,
is slower than both LSM and NCC procedures, the frame sampling rate would
be lower, leaving more frames unprocessed. In fact, if applying both methods to

the same low movement, not severely compressed, sequence and then playing
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only the processed frames as a movie, the video made using the frames output
by the second variant would appear rather jerky, when compared to the other.
Analogously, this variant will be referred to as the SLS variant from

hereon.

4.3
General remarks on performance

Commenting on the overall method in terms of programming code, there
are two identical structures that carry keypoint collections, one referred as
the updating list and the other, as the tracking list. Whenever an update is
ready, they simply switch their memory addresses, which makes the refreshing
of the tracking keypoints virtually instantaneous. Moreover, since multi-core
processors have become quite dominating, the parallelism of the method
proposed herein is easily implemented.

In addition, the greatest stumbling block, regarding the method’s per-
formance in both variants, is the processing time of the matching procedures.
Thus, as the CPU clock frequency increases, so does the quality of the results
achieved by the object tracking algorithm presented in this chapter, both in
number of frames processed and location accuracy, the latter being a direct
consequence of the former. Moreover, faster machines also lead to an increase
in the collection updating rate, hence the consistency of the keypoint lists with
the changing scene escalates, as well, which further contributes to the method’s

accuracy.



5
Performance assessment

This chapter is organised as follows. The first section provides a discussion
on the quality assessment of all the point matching algorithms addressed
in chapter [3| which founded the theory behind the object tracking method
previously discussed.

The last section presents the performance evaluation of the method itself.
General guidelines on which variant to use, are given as well, according to the
nature of a sequence, in terms of environment, video quality and compression
characteristics.

All tests reported herein were conducted in a Pentium Quad-Core Q6600
Processor (2.40 GHz — 3.23 GB RAM).

5.1
Performance evaluation of the matching techniques

The quality assessment of the algorithms were made considering both
accuracy, as defined in section [5.1.1] and processing time. Different databases

were used to cover each aspect.

5.1.1
Accuracy measures

The database used for measuring the accuracy of both the SIFT and
LSM procedures was built from a single 640x479 image, which underwent
five different affine transformations. These transformations had to be applied
artificially, so that the ground truth would be known.

This is actually an intensity level image correspondent to a frame of a
video sequence shot underwaterl| which is the source of various test data used
in the experiments reported herein. The fact that it was shot with a camera
that is most likely to be used in the valve control application, described in
section [I] is the main reason why the experiments resorted so much to it.
Additionally, the environment is as close as possible to the real conditions of

such application, when compared to the rest of the test data available.

IThis source also engendered the “Pool” video sequence and, therefore, its properties are
fully addressed in section
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Building the database

The five affine transformations (/-V'), defined by the 3x2 matrix in eq.
(5-1) and used to assess the accuracy of the point matching algorithms, are

listed next.
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The results of applying each of the transformations above to the original

image are shown below.

-
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»

Figure 5.1: Original image. Figure 5.2: Affine transformation I.
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Figure 5.3: Affine transformation II.

Figure 5.5: Affine transformation IV. Figure 5.6: Affine transformation V.

Experiment setup
The experiments were conducted as follows:

1. the SIFT algorithm, up to the keypoint localisation stage, was applied

to all six images, original plus its five affine spin-offs

2. the original image was matched against each spin-off individually (for
the LSM assessment, the coordinates output by SIFT in each image

were taken as the initial guesses)
3. all false matches were eliminated

4. the ground truth (GT) of the five matching procedures was obtained by
computing the known affine transformations of all remaining keypoints

on the original image, in each case

5. accuracy was assessed by measuring the distance, in pixels, between:

— GT and SIFT outcome
— GT and LSM outcome
— SIFT and LSM outcomes
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As what regards the NCC algorithms, both pixel and sub-pixel versions,
tests were conducted in a similar fashion. Only, in this case, the test points
were chosen manually. However, for true shift transforms are of a quite simple

nature, in all cases the outcomes matched the ground truth exactly.

Results

All five transformations were joined into single tables and charts, while
the three distance measures - x-y coordinates and euclidean - were kept
separate.

The tables and charts referring to the fifth item listed in the experiment
setup are presented consecutively and followed by a comparative discussion

over the results.

T y | euc.
mean | 0.34| 0.32 | 0.51
stddev | 0.42 | 0.51 | 0.63
min 0 0 0

max 4.55 1] 6.81 | 8.04

Table 5.1: Difference in pixels between the SIFT outcome and the ground truth.

x y | euc.
mean | 0.67| 0.82 | 1.17
stddev | 0.80 | 0.99 | 1.16
min 0.01 | 0.01 | 0.06
max 4.49 1 7.09 | 8.39

Table 5.2: Difference in pixels between the LSM outcome and the ground truth.

z y | euc.
mean | 0.53 | 0.60 | 0.91
stddev | 0.49 | 0.57 | 0.61
min 0.01 0 |0.1

max 2.47 | 2.76 | 2.76

Table 5.3: Difference in pixels between the SIFT and the LSM outcomes.

Manually eliminating false matches, whose coordinates in the trans-
formed image are not far from the correct location, can be rather difficult
for some of the affine transformations. This may explain the higher values ob-
served in the charts and tables that refer to the comparisons with the ground

truth(Tables and and Figures and . Especially considering the
much lower values observed when the two algorithms were compared with one
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True Affine Transf. versus SIFT Outcome
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Figure 5.7: Euclidean distance between the SIFT outcome and the ground truth.
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Figure 5.8: Euclidean distance between the LSM outcome and the ground truth.
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LS refinerment of SIFT localisation
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Figure 5.9: Euclidean distance between SIFT and LSM outcomes.

another (Table and Figure . These lower values, along with the quite
similar patterns of the histogram distributions seen in Figures and [5.8]
point that both procedures indeed output equivalent results.

Moreover, the procedure adopted for the ground truth computation is
subjected to truncation and therefore not 100% accurate, thus adding residual
error to the resulting coordinates, as indicate the high standard deviation
levels. The average values, however, attest the robustness of both procedures
and the disparity between their outcome and the ground truth can indeed be

attributed a great deal to the residues.

5.1.2
Hit rate and processing time

The results presented herein are summarised. Complete records are
available in the appendix.

This section addresses a comparative study of the SIFT and the LSM
procedures, regarding their ability to match keypoints in two consecutive
frames of a video sequence. Performance measures assessed were hit rate, rather

than the accurate point location, and processing time.
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The hit rate percentage is defined as

(5-2)

l tch
hit rate = <1 — 7 Jalse matc 68) - 100

# total matches

Object tracking in real-time video sequences can be translated into repet-
itively matching a set of its keypoints in two consecutive frames throughout
time. Thus, if an algorithm can not only match a reasonable number of key-
points in two views of an object - keeping a low incidence of false positives -
but also run fast enough, so that not many frames are left unprocessed, then it
is fit for object detection. The actual pose detection from such keypoint record
is a simple straightforward procedure, provided the camera parameters and
the correspondent coordinates in the model, relative to a given World system,
are both known. In this case, the total of matched keypoints required is also
very low (about 3 should be enough), although a greater number is desirable
for robustness, as it tends to rule out the effects of small location errors or

even eventual surviving false positives.

Database

The database used in this study was a 401-frame uncompressed video
sequence, with a frame rate of 40.00 fps, shot underwater. Another piece was
saved for the quality assessment of the method itself (section [5.2.1fs “Pool”

sequence).

Experiment setup

The experiment was designed as follows:

1. taking 2 consecutive frames at the time, the complete SIFT algorithm
was applied to find keypoint matches between the images, resulting in

400 pairs
2. total of matches and processing time of each pair were recorded

3. the LSM algorithm was then applied, using the SIFT outcome as its

template (first image) and initial guess (second image) coordinates
4. the same performance measures were recorded

5. finally, each one of the 800 (400 from SIFT and 400 from LSM) pairs
was individually examined, match-by-match, to manually count all false

positives, whereby the criteria were strictly visual
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Filtering false matches in two consecutive frames of a video sequence is
a much easier task, in comparison to the case reported in section [5.1.1] since
they are very similar to one another. Thus, the false positives elimination is

most likely to have been 100% accurate.

Results

Complete records of the results presented in this section are available in
the appendix (chapter |C]).

The tests conducted show the ability of the LSM procedure in filtering
false matches from the SIFT outcome. Overall, the hit rate improvement, after
running LSM, was quite substantial.

Tables and present the overall performance of the SIFT and
LSM algorithms, respectively. Although SIFT had an already low average
of less than two mismatches per frame, the number of false matches after
running LSM is nearly 10 times smaller and its worst hit rate score is just
below 99%. Comparing only the worst absolute behaviours, SIFT output at
most 6 false positives against LSM’s 2. There was an increase of 245 frames
with only correct matches (over 60%) and in only 7.5% of cases the hit rate
dropped after applying LSM, even so always below 0.5% (Tables and
. However, its somewhat instable nature caused a considerable reduction
(in average almost 27%) of the original SIFT matches (see Table[5.6)), meaning
that the model must contain an either long or, preferably, stable list of points.

For instance, model points near homogeneous areas should be avoided.

mean | stddev max min total
# matches 561.45 | 186.16 | 1073 99 224581
# false matches | 1.49 1.26 6 0 297
hit rate 99.68 0.34 100 96.71 X
time 0.82 0.17 1.84 0.23 X

Table 5.4: Overall performance of SIFT.

mean | stddev mazx min total
# matches 410.42 | 197.50 903 9 164170
# false matches | 0.16 0.39 2 0 64
hit rate 99.94 0.17 100 98.94 X
time 0.74 0.22 1.44 0.14 X

Table 5.5: Overall performance of LSM.

2The symbol “#”, seen in Tables to denotes quantity.
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mean | stddev max min total
# matches -151.02 | 47.24 -70 -332 -60411
# false matches | -1.33 0.39 0 -6 -533
hit rate 0.26 0.17 3.29 -0.48 X

Table 5.6: Comparative table of SIF'T and LSM overall performances; negative values
denote a decrease from the former to the latter.

highest drop in false matches | 6
highest decrease of hit rate 0.48
highest increase of hit rate 3.29

Table 5.7: Comparative table of SIFT and LSM overall performances: absolute
values.

Tables |5.8(a..c) to provide further information on the ability of
LSM to improve a SIFT outcome. They list the outcome of both algorithms
in terms of mean and standard deviation, as well as direct comparison of their
performance regarding the total of matches. These were built by assembling
pairs of consecutive frames into groups, whose labels are depicted below. The
hit rate metric was also used as a comparative measure. Tables to [5.12]
along with Table [5.13] provide the ground for the discussion presented in the
remainder of section (5.1.2]

IP: template-matching image pairs

PM: pairs with no false matches

HR: hit rate
(a) SIFT (b) LSM (¢c) LSM to SIFT
# IP | 400 # IP | 400 # IP 400

# PM | 95 # PM | 340 # increase i PM | 245
# decrease in HR | 30
# increase HR 275
# same HR 95

Table 5.8: Comparing SIFT and LSM performances: total of pairs.

# PM
# matches | 618.83
time 0.82

Table 5.9: SIFT pairs: comparison by mean.
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# PM
# matches | 197.47
time 0.20

Table 5.10: SIFT pairs: comparison by standard deviation.

# PM
# matches | 417.94
time 0.75

Table 5.11: LSM pairs: comparison by mean.

# PM
# matches | 196.70
time 0.23

Table 5.12: LSM pairs: comparison by standard deviation.

According to Tables and [5.11 both procedures, when considering
only frames with no false positives, yielded an average number of matches
even (a little) higher than the one obtained with respect to all frames (the
standard deviation values also remained about the same, as show Tables [5.10
and , and are much lower than the respective mean records). This helps
speaking for the robustness of the matching algorithms, since they are capable
of performing with 100% accuracy, even when processing a high number of
conjugate pairs.

Processing time was much longer than that obtained when embedding
both algorithms to the object tracking method, but so was the list of keypoints
found, which are in a considerably smaller number in practical object tracking
applications. Keypoints were located in the entire images to increase the
number of samples for robustness purposes. Additionally, this also allowed a
more comprehensive analysis regarding the investigation of feature stability. In
fact, all false matches observed in this video sequence involved points located
in a restrained area of the scene. This strongly suggests that post-processing
the object model created for the tracking to look for such “instability” areas
may contribute a great deal to the improvement of the method’s performance.
Moreover, a considerably higher contrast threshold and a shorter pyramid were
used, severely reducing the number of keypoints.

In addition to the aforementioned performance measures, another as-
sessment of the keypoint location accuracy is presented next. Naturally, the

ground truth, as defined in section [5.1.1] could not be computed. However,
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the results provide further information about the similarity between the SIF'T
and LSM outcomes. This calculations were done automatically, i.e., without
filtering the false positives, which nevertheless, due to the high levels observed
for the hit rate, are unlikely to have contaminated the results to a degree

that would invalidate the conclusions drawn. Tables[5.3]and are analogous.

T Y euc.
mean | 0.23 | 0.19| 0.34
stddev | 0.37 | 0.34 | 0.48

Table 5.13: Difference in pixels between the SIFT and the LSM outcomes: total of
164170 samples.

The mazimal and minimal assessments were suppressed from Table |[5.13]
because of the presence of false matches. The average difference stays around
1/5 of a pixel in each direction, which may be solely attributed to truncation
errors, as further suggest the much higher levels of standard deviation. Since
replication of error patterns are extremely rare, especially considering that
both algorithms are of complete different natures, these results offer yet another
indication of the accuracy of pixel localisation achieved by adopting such

procedures.

5.2
Performance evaluation of the object tracking method

This section presents the results of applying the method for object
tracking described in chapter [ to different video sequences; each having its own
idiosyncrasies, regarding compression, environment and degree of movement.
The method’s performance quality assessment was chiefly visual-aided and,
therefore, of a more qualitative nature, rather than quantitative. Numerical
data were nevertheless produced and are made available, as well.

Discussions are followed by a few guidelines on which variant is more

likely to yield the best results, given the characteristics of a sequence.

5.2.1
Database

Four sequences, from three different cameras, were used for evaluating

the method’s performance. They are:

Surgical Procedure: JPEG-compressed sequence, of an extremely high
degree of movement. Environment and object blend; the human body

being the scene, and the prostate the specific target to track. The
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geometrical transformations the object undergoes throughout this video
may be remarkably difficult to model, even between consecutive frames,

due to the rubbery consistency of animal tissues.

Figure 5.10: Surgical procedure: frame sample.

Fast Pre-Amp.: High movement JPEG-compressed sequence, specially shot
for testing the method’s behaviour. The interest object, an ancient pre-
amplifier unit, placed in a dry environment, is the only one appearing
in the scene. World coordinates of the keypoints are easily measurable,
due to the nature of the interest object. However, the background is still
not perfectly neutral and illumination changes and incidence cause it to

incur perceptible alterations in contrast.

Figure 5.11: Fast Pre-Amp.: frame sample.
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Slow Pre-Amp.: Very similar to the previous one, only differing as regards
the degree of movement; low, is this case. The former observations made

on illumination conditions apply here, as well.

Figure 5.12: Slow Pre-Amp.: frame sample.

Pool: Low movement uncompressed sequence, shot underwater in a (rather
dirty) pool. The object is a sort of tank, located in a fairly more
interesting environment, i.e., full of potential keypoint candidates, to

be recognised by the SIFT algorithm.

Figure 5.13: Pool: frame sample.
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5.2.2
Experiment setup

The degree of movement was the main criterion for dividing the sequences
among the two method variants. Applying the SLN and SLS variants to the sur-
gical procedure and pool sequences, respectively, was a considerably straight-
forward choice. The geometrical changes of the former go completely against
the SLN fundamentals, quite the opposite of the latter, a low movement se-
quence, with no compression, meaning that the relations between neighbouring
pixels remained intact, which provides a more reliable keypoint descriptor for
the two last procedures.

Matter resolved, two extra videos were made for testing:

— SLN’s performance in cases where (JPEG) compression is present, and

— SLS’s behaviour in less extreme environmental conditions.

However, the incidence of keypoints is significantly low, due to the object’s own
nature (i.e., its appearance that is remarkably uniform), which adds difficulty
to the tracking conditions.

Thus, all four sequences present some characteristic that affects the level
of difficulty for testing an object tracking procedure. Indeed, they are intended
to assess the robustness of the method, ultimately speaking for the likelihood
of its success in real applications.

The four sequences were processed by their respective variants, whose

performance was assessed from:

— charts of the total of keypoints throughout time that show the cyclical
routine of continuous drops - as frames are processed - and sudden

increases - whenever an updated is released;

— histograms of the keypoints in each frame, which offer the complementary

view of how many frames hold a particular number of features, and

— records of the actual keypoint locations in all processed frames, merged
into an output movie, in which each one eventually lost was replaced by

the last processed frame.

5.2.3
Results

This section reports the results of the performance measures previously
described. A further analysis on the behaviour of the SLN variant, when applied

to the “Pool” sequence, regarding the update process, is also presented.
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Figure 5.14: Surgical procedure: Incidence of matched keypoints throughout time
(SLS variant).
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Figure 5.15: Surgical procedure: Matches per frames histogram (SLS variant).



A Parallel Method For Object Tracking 53

Total of matches throughout time
T T T T

20 3

# matches

<
-
[y}
w
.
[8,]
[s2]

timeline

Figure 5.16: Fast Pre-amp: Incidence of matched keypoints throughout time (SLS
variant).
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Figure 5.17: Fast Pre-amp: Matches per frames histogram (SLS variant).
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Figure 5.18: Slow Pre-amp: Incidence of matched keypoints throughout time (SLN
variant).
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Figure 5.19: Slow Pre-amp: Matches per frames histogram (SLN variant).
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Figure 5.20: Pool: Incidence of matched keypoints throughout time (SLN variant).
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Figure 5.21: Pool: Matches per frames histogram (SLN variant).
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All charts and histograms are depicted in Figures to [5.21} Time
elapsed during the starting step of the object tracking (the “START” block
on Figure was excluded from these records. The remaining unprocessed
frames, however, contribute with a 0 entry in the histograms.

The SLN and SLS variants are instantly recognisable from their general
response depicted in the charts (Figures|5.14} [5.16} [5.18/ and [5.20]). They show

that SLN is able to track more keypoints, missing less frames, as indicate the

series of short steady periods, during which the total of keypoints remains the
same. The update and tracking processes are more easily identified on the SLS
charts, for subsequent scenes - further apart in time - hardly ever have the
same number of keypoints. The overall duration of a tracking chain is bound
by the time needed for the next update release. However, in SLN’s tracking
chain (“thread #1” on Figure , each link is faster, which is crucial to
the effectiveness of the area-based keypoint descriptors in this case and hence
accounts for the steadier behaviour of this variant, in terms of match losses.

Comparing both SLS sequences, the lower degree movement of “Fast Pre-
Amp”, in comparison to “Surgical Procedure”, cause the variant’s behaviour to
somewhat resemble the standard SLN’s, despite of the average total of matched
keypoints being lower, for the reasons given in section [5.2.2]

Regarding the SLN sequences, the appearance of the interest object in
“Slow Pre-Amp”, which hampers the matching process, helps to explain the
rather more erratic behaviour of the method, depicted by the high frequency
of fluctuations on Figure [5.18] when compared to ones on Figure [5.20L

The histograms show that the total of matched keypoints varies signif-
icantly among the frames, especially in the SLN sequences, which may be
explained by the fact that the tracking procedure actually consists of several
independent processes, started by an update event that has no memory of the
past ones and whose relation to them is solely the resemblance - or lack of it
- borne by the scenes such frames depict.

Different keypoints may have the same x-y coordinates, but differ in the
o dimension. This explains why the number of matches is greater than the one
perceived on the images.

As visual aid for the performance evaluation, mosaics showing the dif-
ferent localisations of some keypoints throughout a few frames, i.e., describing
how the object moves along the scene, are presented next. A change of colour
denote that an update has taken place, and, in this case, kept the feature in
the tracking list. Table lists the time elapsed between the first and last
frames in Figures to [5.26] where keypoint locations were rounded for the
display.
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time (s)
Surgical Procedure 1 1.40
Surgical Procedure 2 3.48
Fast Pre-Amp 1.50
Slow Pre-Amp 0.53
Pool 1.23

Table 5.14: Time elapsed during the processes of tracking the keypoints in the
examples given.

Figure 5.22: Surgical Procedure: a keypoint moving throughout time (row-wise, from

top left to bottom right).

Figure 5.23: Surgical Procedure: another keypoint moving throughout time (row-
wise, from top left to bottom right).
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Figure 5.24: Fast Pre-Amp: a keypoint moving throughout time (row-wise, from top
left to bottom right).

Exception made to the two “Surgical Procedure” figures, consecutive
frames on the mosaics do not necessarily correspond to consecutive processed
frames. They followed, nevertheless, the time line. The object’s appearance is
likely to be the main reason of the more dynamic keypoint turn out at updates
in the “Surgical Procedure” sequence.

Conversely, for a sequence like “Pools”, where the scene changing rates
are much lower and the interest object is rigid, consecutive updated collection
releases are expected to be quite similar to one another - with respect to the
distribution of keypoints - since the SIF'T response is deterministic. However,
during some intervals, the tracking list changed quite remarkably after an
update event. As said, due to its high stability standards, LSM eliminates a
fair amount of the matched point entries in the list delivered by SIFT. In

addition, varying environmental conditions cause changes from one frame to
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Figure 5.25: Slow Pre-Amp: a keypoint moving throughout time (row-wise, from top
left to bottom right).

another, even if the scene remained stationary. This is particularly significant
in a sequence shot underwater, since the medium is subjected to refraction
and movement. Thus, the keypoints that meet those stability criteria may be
different at each update process, even if the original starting lists are similar.

As to verify this hypothesis, six frame triplets were analysed. Figures
and depict, respectively, three samples representing cases, in which
the matched keypoints list released by the update:

— is similar to the one before, and

— changed considerably in comparison with the previous one.

Each triplet contains the SIFT outcomes - up to the keypoint localisation

stage - in the following frames:

1. frame used for a given update event (left patch; keypoints in red)
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Figure 5.26: Pool: a keypoint moving throughout time (row-wise, from top left to
bottom right).

2. last frame processed by the tracking thread originated by the update

(central patch; keypoints in green)

3. frame used for the next update event (right patch; keypoints in blue)

All triplets yielded very similar keypoint distribution patterns - especially
the last two items in each triplet, which are, in fact, closer in time - and, thus,
corroborate the previous statement.

At first, in the cases of sequences processed by the SLN variant it
might seem like both versions of the proposed method could actually be used
interchangeably. In fact, the SLS variant would work well with all sequences.
However, the former produces a greater average number of matches. Thus,
the decision for one or the other is essentially a trade-off between match
incidence and range of transformation mapping. There are yet other factors
that contribute to the suitability of one variant over the other, a matter

addressed in the next section.
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Figure 5.27: Samples that yielded similar matched keypoint lists. Left: at an update
event; centre: last frame in the tracking phase; right: at the next update event.
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Figure 5.28: Samples that yielded significantly different matched keypoint lists. Left:
at an update event; centre: last frame in the tracking phase; right: at the next update
event.
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5.2.4
General guidelines

63

In this section, the overall characteristics of the four test sequences,

regarding environment, compression, nature of the interest object and degree
of movement, are assembled into Table |5.15. Hopefully, it will help selecting

between the two variants for a future application, given a particular set of

conditions.

frame rate (fps) 25.00 29.97 | 29.97 40.00

compression JPEG JPEG | JPEG NONE

degree of movement | EXTREM. HIGH | HIGH | LOW LOW
environment || HUMAN BODY | DRY | DRY | UNDERWATER

interest object | DEFORMABLE | HARD | HARD HARD

| VARIANT | SLS | SLS | SLN | SLN

Table 5.15: Summary table for case-driven determination of the most suitable

variant.
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Concluding remarks

This work aimed at the development of a novel method for tracking a
target object in real-time. By determining the locations of several keypoints
throughout a video sequence, the object’s pose can then be estimated. Exhaus-
tive tests on point matching algorithms provided the information required for
devising a method that is adaptable to different conditions of environment, the
nature of the interest object, quality of the camera(s) and degree of movement.
Although it was meant for self-sufficient use, the proposed algorithm may also
be embedded in a control system to function as the visual-based fine tuning
stage, where it would be triggered occasionally. That was, in fact, the original
project.

Parallel processing automatically assures that the set of keypoints is al-
ways consistent to the current scene, thus discarding algorithms for monitoring
or controlling these features’ incidence. Two variants of the method were de-
signed to increase its robustness and, thus, widen its applicability in the face
of the diversity of working conditions that may be encountered. Indeed, the
procedure proved to be case-driven, for the inherent qualities of some sam-
ple sequences violated the very principals, in which bed the original variant’s
functioning.

Future works include adding the pose detection step to a demo version.
If the camera parameters and the correspondent world coordinates are known,
the procedure is rather simple and only requires one camera. For analogous
reasons to what exposed herein, an independent third thread should perform
the pose computation, allowing the processing time of the two existing ones to

remain unchanged.
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A
Camera model and calibration overview

This chapter describes the physical parameters that relate World and
camera coordinates, as well as the derived general perspective projection

equation.

A.l
Model

The parameters that relate a camera to the World are divided into
intrinsic and extrinsic categories. The former models the camera’s actual
coordinates to the idealised system (see eq. and the latter relates the
device’s coordinate system to a fixed World point, determining its position
and orientation.

The coordinates of a point P = [z,v, 2]7 and its image P’ = [2/,¢/, 2|7

are related by

o =22

z

; (A1)
y/ — 7

z

Since P’ lies in the camera plane, its z’ coordinate is equal to the focal
distance f’.

If normalising the image plane, a point p = [@, 0, 1
by related to the World coordinates by

|7 in this system can

15:%[1 o}-[ﬂ (A-2)

Let us consider the pinhole camera model, which can be perceived as a
light-proof box with a small hole in one side. When light from a scene passes
through this pinhole, it projects an inverted image on the opposite side. For

instance, cameras using small apertures act like such box.
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Assuming that the physical retina of a camera is located at a distance f
from the pinhole and its centre is not at the origin of the camera system, the
coordinates of an image point p[u, v, 1|7, in pixel units, are given by eq. (A-3)),

where

— g, vg are the offset from the retina centre;

— «, (# are the magnification parameters, defined by the ratio between the
distance f and the size of a pixel in the camera frame (expressed in the

same length units as f);

— 6 is the angle between the image axes, introduced to account for the

skew caused by eventual manufacturing errors.

T T
U= a— — acotl— + ug
z z

A-3
.. (A-)
sinf z 0
Substituting (A-3)) into (A-2)) yields
a —acotfd wug
p=10 .ﬁ v | P (A-4)
sin 6
0 0 1
K
or rather,
.1 A
p= ;MP, where M = [ K 0 } (A-5)

In eq. (A-5), M represents the perspective projection that maps P into

p.
Furthermore, the camera and World frames may be distinct from one

another, thus M can be rewritten as

M:/C[R T] (A-6)
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whereby R and 7 are, respectively, the rotation matrix and the transla-
tion vector from the World to the camera system. Eq. still applies
and, in this case, is known as the general form of the perspective projection
equation.

The depth z in eq. is not an independent parameter and, in fact,
equals ms - P, where mj is the third row of M.

Explicitly writing the projection matrix as a function of its intrinsic («,

B, ug, vp and ) and extrinsic (R and 7") parameters yields the following 3 x 4

matrix
ar? — acot Ork + uerl  at; — acot Oty + upts
M = .ﬁ rl 4+ verd _ﬁ to + vots (A-7)
sin 0 sin 6
Tg tg
A.2
Calibration

Camera calibration is the process of estimating the parameters intro-
duced in last section.

Camera lenses are always subjectable to some degree of radial distortion,
which are generally quite significant in underwater applications, for instance.
To account for such phenomenon, the general perspective projection equation

becomes

(m; — Aumg) - P =0
(A-8)
(mg —)\Um3) -P=0

where the parameter A\ is a polynomial function of the distance between

the image centre and the image point p, given by
q
A=1+) rpd™ (A-9)
p=1

where the k, term stands for the radial distortion coefficients. Assuming

the image centre is known, both uy and vy can be set to 0, thus the distance
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d expressed as a function of p yields

w?  v? uv
B Al
d \/a2+ﬁ2+ aﬁCOSQ (A-10)

which turns the calibration matter into a non-linear system of order ¢ + 11.
Alternatively, it can be broken into two steps. The first consists in
solving eq. (A-5) for nine camera parameters and the second, in estimating

the remaining ¢ 4+ 2 by solving a simpler non-linear system.



B

Pose detection overview

In robotics, pose detection is the ultimate goal of a vision-based position
control system. Through cameras, the differences between the actual and
desired position of the manipulator can be estimated from pose detection,
using, e.g., point matching. This information is then sent to controllers to, for
instance, correct the pre-programmed trajectories. In other words, the aim is
to determine the rotation matrix R and the translation vector 7 that map
the position of an object in an image frame into its real location in the World
system.

This chapter addresses the geometric and algebraic constraints that link
two views of a scene, as well as the 3-D reconstruction of a scene from a
set of point projections taken from two different cameras. In addition, a brief

comment on the monoscopic variant of the pose detection issue is also included.

B.1
Monoscopic pose estimation

Assuming the intrinsic camera parameters are known, the calibration
matrix K is constant and the pose estimation issue translates into the simplified
calibration problem of finding the extrinsic camera parameters, provided that
the correspondent World coordinates of each point in the database are also

known.

B.2
Stereoscopic pose estimation

The depth of a image point along its projection ray cannot be directly
assessed from a single image. However, if (at least) two views are available, it
can be calculated through triangulation, for an image point lies, necessarily,
in the pane formed by the other image and the camera centres. This is called
the epipolar constraint, which is represented by a 3 x 3 matrix, named the
essential matrix £ (15) or the fundamental matrix F, depending on whether

the intrinsic camera parameters are known or unknown.
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define the epipolar plane

virtual image
plane IT’

virtual image
plane II

P

epipolar lines

e

epipoles

o o’
Figure B.1: Epipolar geometry.

Figure depicts the epipolar geometry. It shows that the point P and
its images p and p/, taken by a pair of cameras - i.e., a conjugate point - whose
centres are O and O’ all belong to the epipolar plane defined by OP and O’P.
The epipole €’ is the projection of the optical centre O of the left camera in
the image taken by the right camera, and vice-versa and, since p and p’ are
images of the same point, p'(p) lies on the epipolar line [(I') associated with
p)-

Again, let us assume that the intrinsic camera parameters were previ-
ously computed and are, therefore, known. In such case, the homogeneous and
normalised image coordinate vectors are perfectly equivalent. That is, p = p.
It should have been made clear from Figure that

Op - [To’xﬁﬂ —0 (B-1)
which can be rewritten as
p-[7 x(Rp)]=0 (B-2)

The two projection matrices M and M’ with respect to the left camera,

are given by
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M=[10]
(B-3)
M = RT -R'T |
Rewriting eq. (B-2|) in terms of the essential matrix £ yields
pT [T xR]p' =0 — p EP'=0 (B-4)

The nine coefficients of £ are only defined up to scale and can be

parametrised by the three degrees of freedom of R and the two of 7.

R’ R

normalised
frames

Figure B.2: 3-D reconstruction by triangulation.

The 3-D reconstruction can be performed by triangulation, as depicted

in Figure . In eq. 1' the product Ep’ represents the epipolar line I
associated to p/. Furthermore, from Figure [B.2

OP, + PPy + P,0' = 00 (B-5)

which can be rewritten, with respect to the left image plane, as
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D —di(px R'P) — 2R —T=0 (B-6)

where d; is the euclidean distance between the origin and [ (see Figure |B.1).
Finally, if that is the case, the World coordinates P of the conjugate

pair can then be calculated by combining the projective projection equation

(see eq. (A-5))) and eq. to yield eq. [B-7

(b X R'P)

PIZf)—dl 9
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Match quality assessment: full tables

C.1

This chapter contains full records of the results summarised in section
B.1.21

SIFT records

pair

tnatches

tHalze m.

hit rate

tirme

195

e

0

100

0,234

Figure C.1: SIFT: lowest incidence of matches.

pair

#rmatches

tHalse m.

hit rate

tirme

204

1073

0

100

0 965

Figure C.2: SIFT: highest incidence of matches.

pair #natches | #alse m. | hit rate time
29 418 3] 98 57 0,844
47 443 5] 88 55 0,875
142 a0 3] 93 42 0,766
414 3] 93 54667 | 0,828333 |Mean
31,79623 a 0116762 | 0056153 | Std Dev

Figure C.3: SIFT: worst hit rate behaviour.
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H#matches | #alse m. | hit rate time

H18,5316 1]

hit rate

100

0821537

EEFE

0

| 0200052

Figure C.4: SIFT: best hit rate behaviour.

7
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Seq. Pair |# Matches|[# False Matches| Hi i i
1 = - H|11 DRDSTE Tl1mae[|§) Seq8.3P3|r # Matches[# False Matches] Hit Rate | Time (s)
2 399 2 995 1594 84 L - i
3 559 0 100 1313 85 gid : e i
4 592 1 9986 | 093 % ??g ; gg ?i e
5 381 1 : ' i
B 587 0 919 D'_Ed g 'gﬂ g; gg; 1 . |
7 718 5 993 0938 83 G828 g 55 0 504
8 420 3 59 29 0797 80 399 1 25,75 0797
9 B22 2 9968 | 0859 G ol o o | oo
10 767 2 59,74 0,965 92 703 1 919030 =
11 430 2 99,53 0843 23 345 1 99 I?'? 0813
12 572 0 10| 067 - o ) s | 0o
13 701 2 5971 1078 el bEE ! 9968 | O IQBB
14 406 3 9926 | 028 56 B B 9950 | 0 Iazg
12 ?gg 1 o | o g; F93 0 100 0965
Pl |t | || n | m | i |En e
: 8512 4 G5 11 0528
. e L it sy 100 579 3 o9 56 0 969
b 2] 1 R ) 101 A5 1 99fE | 1047
o o : i it 102 428 4 5907 0 906
= e : i o 103 Bu3 2 99 71 0922
- 48 : G o 104 955 3 95 9 1,094
- o . i i 105 450 4 99 13 0922
24 B5S5 2 55,69 0937 e i ; da il
G 2 4 . i 107 855 4 99 53 1078
= . : s e 108 443 ] 100 0,507
- - : e e 109 B70 1 99 85 0953
- - ; . i 110 922 3 o8 67 1082
- - 5 - . 111 433 3 99 31 1047
4 o : e o 112 B2 3 95 56 0575
o . : e . 113 1010 i 100 1,046
- - : o e 114 776 2 o9 74 1015
- - ; . i 115 341 1 99 71 0,798
34 709 1 59 56 0,959 e o . - 0.8
e s : - - 17 877 1 59 59 1,047
. o . i i 118 407 2 59 51 0875
. e : o s 119 B50 3 59 54 0891
- - 1 o il 120 799 3 59 52 1031
- i 1 s T 121 387 0 100 0.953
e ol . o e 122 B45 1 95 65 087
11 128 3 99 3 0,906 123 855 o 100 i
42 555 3 9954 | D75 124 42 3 89 27 o7
13 778 2 5974 | 0969 125 537 1 59 53 0B
24 424 4 59,06 0875 126 BES g 100 e
45 537 3 59 53 0 A1 127 361 1 e
4 837 2 9976 | 1047 128 £09 0 il
47 443 B 96 55 0875 129 k&S o 100 0553
pe oy 5 w7 | oo 130 33 5 918059 g g?g
49 922 3 99,67 .1 131 a3 a 100 '
50 858 2 93,77 1,109 132 774 2 0508
&1 437 4 59,08 0,969 133 3 1 o8 53 075
52 547 2 59 59 0922 134 535 1 22 01 s
53 431 2 9954 | 0828 135 B&7 0 oo | obse
54 BE1 3 59 55 0,906 136 L 2 54 0703
&5 991 1 5999 1063 137 551 1 e 0715
56 766 0 100 1078 138 796 0 o | o
57 444 1 93,77 0859 139 373 2 54 0731
55 630 2 g9 :53 0 :344 140 o043 1 gg gg g ;gg
54 413 1 99 76 0526 141 588 1 9 3 '
B0 B71 2 997 0907 142 3a0 & ' 075
&1 1061 2 93 81 1079 143 585 o o0 0768
£2 777 0 100 0,964 144 751 o 100 0508
B3 439 1 99,77 1094 145 407 3 o c
B4 B41 1 9984 | 089 146 E45 1 2m | o7
B5 891 1 59,89 1062 147 g38 o o0 1 063
B6 454 3 59 34 0875 148 766 1 55 52>
&7 539 0 100 0859 149 398 1 75 | o7or
B8 410 3 93,27 093 180 575 2 o5 58 0751
59 663 1 59,85 ' 151 o0 07
. @9 379 ] 100 0,765
70 1051 1 99 9 1,125 152 597 3 '
71 760 2 9974 | 0969 153 973 1 ®5 | 186
72 413 3 99,27 0628 154 781 1 o 053
73 559 0 100 0936 155 383 1 o5 74 0765
74 391 4 98,98 0,650 156 492 1 A e
75 BED 1 9985 | 0965 157 763 1 i | 0983
76 1063 ] 100 1063 158 373 1 o573 075
77 826 1 93,88 1018 159 522 1 o5 01 7
78 435 1 9977 | D92 160 762 0 o | o
75 505 1 59 73 ' 161 o 0734
. 0628 305 2 G5 49 0734
g? gg; 5 9976 | 0984 162 557 0 100 0734
il - é 99 5 1125 163 722 i] 100 0,875
100 0844 164 339 2 95 41 0,766
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Seq. Pair |# Matches|[# False Matches| Hit Rate | Time (g) Seg. Pair |[# Matches [# False Matches| Hit Rate | Time (5]
165 494 1 983 0g72 247 417 2 95 52 0,703
166 740 ] 100 0937 248 453 2 9559 06858
167 313 2 95 36 0g72 249 626 1 95 64 0922
168 438 1 9877 0594 250 437 1 9877 0,703
162 540 2 95 69 0,781 251 524 1 95 81 0718
170 337 3 95,11 0,703 252 738 1] 100 0,844
171 445 1 93,78 0B25 253 438 2 93 54 0718
172 659 1 939 85 086 254 567 2 93 65 0a13
173 332 1 987 0g72 285 &0 2 987 0,781
174 443 0 100 0,703 256 451 2 95 56 0735
175 700 0 100 0828 287 528 2 93 B2 0,734
176 344 5 95 .55 0683 258 747 2 9873 0797
177 469 1 93,79 0g72 259 431 2 95 54 0718
178 604 0 100 012 260 551 2 95 64 0718
179 349 < 99,14 0g72 261 565 2 93 65 0813
180 471 2 95 58 0g72 282 152 a 96,71 0625
181 7583 0 100 0529 263 380 1 9574 0,453
182 360 2 939,44 0,735 264 320 2 93 35 0,408
183 453 0 100 056 265 204 1 99 51 0437
184 705 ] 100 0,86 266 427 a 100 0594
185 762 0 100 0591 267 640 1] 100 0828
186 315 1 99 68 056 268 266 1 93 62 0625
187 527 1 95 81 0,656 269 a83 0 100 0,734
188 735 1 95 86 0797 270 559 1 95 g2 0718
189 331 2 99 4 06aa 271 401 1 9874 0828
190 477 1 9379 0pa7 272 517 2 99 61 0735
19 622 1 95 84 0&13 273 714 2 9572 1047
192 299 3 95 0g72 274 442 3 93 32 n0r1g
193 445 0 100 0594 275 518 1 99 81 0734
194 677 0 100 0782 276 443 3 95 33 0718
195 118 1 95,15 0594 277 601 a 100 0828
196 227 0 100 025 278 796 1 98 87 0828
197 21 0 100 025 279 739 a 100 0813
198 95 0 100 0,234 280 954 0 100 0875
199 405 0 100 0Aa16 281 751 1 95 57 0875
200 615 0 100 0687 282 995 1] 100 0g9
201 267 1 99 63 0594 283 820 a 100 0.8/
202 453 3 95 39 0,703 264 1073 a 100 09658
203 641 2 95 69 14 285 G54 1 95 89 0,89
204 313 1 99 B8 0593 286 1066 1] 100 0938
205 460 2 98 57 0g72 287 934 1 9589 0906
206 600 1 9583 0,703 288 1054 a 100 0937
207 340 2 95 41 0671 289 730 1 95 g6 0g12
208 453 1 9379 0B25 290 634 1] 100 0,781
209 o7 1 95 86 0,781 29 354 1 9872 0687
210 350 2 9543 0Ba7 292 440 2 95 55 0594
21 437 0 100 0g1 293 634 1 93 84 0704
212 619 0 100 0g28 294 432 2 9954 0656
213 360 3 9817 0g72 285 a1 1 933 06858
214 517 0 100 07a 296 640 1 99 64 0,765
215 7268 1 99 86 0797 297 464 1 9375 0656
216 330 0 100 0641 298 521 ] 100 0687
217 524 1 95 81 0641 299 708 1 95 86 0,781
218 714 0 100 1125 300 454 3 95 34 0687
219 387 2 99,48 0719 301 540 2 93 63 0,703
220 530 2 95 62 0,703 302 7 2 9572 0,797
21 650 3 95 54 0797 303 438 4 9509 o0r1g
222 389 2 939,49 0gaa 304 536 3 93 44 0,766
223 504 2 995 056 305 775 3 99 61 0858
224 756 1 95 87 0g12 306 457 4 9512 0735
225 335 3 991 0g72 307 a74 2 95 B4 074
226 454 1 9378 0B25 308 709 1 99 86 0797
227 551 0 100 0,734 309 403 2 985 074
228 735 0 100 0813 310 524 2 95 62 0718
229 209 1 95 52 0g25 3In 679 1 95 84 0797
230 412 1 9376 05 312 840 1 93 84 1
23 228 0 100 0,468 313 392 3 9523 0,781
232 615 1 95 84 0797 314 485 1] 100 0718
233 703 1 99 86 0g12 315 427 2 93 53 0734
234 694 0 100 0875 316 513 a 100 0,703
235 333 2 95 .4 0g72 317 718 3 95 A5 0,544
236 477 0 100 0g72 318 874 1 95 59 0,906
237 714 2 9872 0797 319 41 3 93 27 075
238 399 3 9525 0,704 320 a1g 1 95 81 0685
239 501 2 95 6 0Ba7 321 422 3 9529 0,734
240 626 1 95 84 0,766 322 a1g 1] 100 0718
241 413 0 100 0,735 323 712 a0 100 0,781
242 502 1 983 064 324 645 1 95 84 0844
243 730 1 95 86 0g12 325 352 3 95 21 06858
244 405 2 95 51 0ga7 328 459 1 933 0,703
245 526 3 95,43 0ga3 327 715 1 95 86 0858
246 549 2 95 63 0,781 328 428 1 9877 0,828
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Seq. Pair |# Matches|[# False Matches| Hit Rate | Time (g) Seg. Pair |[# Matches [# False Matches| Hit Rate | Time (5]

329 510 2 95 61 0718 365 316 3 95,00 074
330 673 2 957 0g12 366 414 2 95 52 0626
331 380 1 98,74 07a 367 733 1 95 86 0,888
332 492 1 958 0pas 368 307 2 939 35 0735
333 731 1 95 86 086 369 393 1 9874 0594
334 375 5 958 67 0,718 370 G5 1] 100 0g1z2
335 468 2 93 &7 0,Ba6 371 289 2 95 31 0734
336 518 3 9942 075 372 41 2 99 51 0625
337 383 4 95 96 075 373 641 2 95 69 n0a12
335 485 0 100 0Ba7 374 289 2 99 31 074
339 655 0 100 0859 375 411 4 9303 0625
340 375 4 9593 0797 376 6E9 1 95 85 0843
341 454 1 9578 0,Ba6 377 307 a 100 0a13
342 715 1 95 86 0528 378 403 3 95 26 0,641
343 345 < 9913 075 379 678 1 93 85 naiz
344 432 0 100 0641 380 314 2 95 36 0,766
345 666 2 937 0813 361 400 2 935 0,641
346 333 2 99 4 0797 382 721 1 95 86 1,063
347 434 0 100 0g72 383 329 2 95 39 0,781
348 741 0 100 0.8 354 378 a 100 0625
349 768 0 100 0,906 385 719 2 9572 0,89
350 285 4 958 0,781 386 816 1 99 85 1

351 372 0 100 0547 387 325 2 93 358 0a9
352 375 1 9573 0641 368 352 a 100 0578
353 445 2 93 55 0,Ba6 389 351 2 95 43 0687
354 673 0 100 089 380 432 1 9877 06858
355 883 2 9877 0,933 351 720 1] 100 0a9
356 331 3 95,09 0,735 392 &0 1 95 84 1,016
3487 424 1 9876 0p09 393 37 2 98 37 0,844
358 337 2 99 41 0paa 394 434 1 9877 0671
359 430 2 95 53 064 395 786 2 9874 0922
360 650 2 95 69 0797 396 328 a 95 44 0875
361 889 0 100 0937 397 476 4 95,16 06858
362 314 0 100 0813 398 744 1 99 87 0875
363 428 0 100 g1 399 357 1 9572 0875
364 661 0 100 0,559 400 451 0 100 0,703

Figure C.5: SIFT: full record.
C.2

LSM records

pair

#rmatches

#Halze m.

hit rate

tirme

155

£

a

100

0,14

Figure C.6: LSM: lowest incidence of matches.

pair

#rmatches

#Halze m.

hit rate

tirmne

/B

H05

a

100

1437

Figure C.7: LSM: highest incidence of matches.
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pair  |#matches | #alse m. | hit rate time
20 220 2 893 09 0 B25
29 242 2 99 17 0 B039
24R 424 2 99 55 0,703
247 BO& 2 99 38 0579
373 2 99 2975 0523 |Mean
180 2406 0 0208066 | 005289 |Std Dev
Figure C.8: LSM: worst hit rate behaviour.
pair  |#matches|#alse m. | hit rate time pair  |#matches| #alse m. [ hit rate time
1 543 a 100 0875 B4 520 a 100 0,529
2 253 0 100 0547 b5 742 0 100 1,234
3 526 0 100 05825 BB 184 0 100 0,B37
4 a37 0 100 0,844 T 512 0 100 0,544
5 237 0 100 0516 B9 544 0 100 0,859
B 453 a 100 1,125 71 643 a 100 0563
7 543 a 100 0575 . 175 a 100 0525
g 285 a 100 0547 73 430 a 100 0513
9 452 a 100 0,781 74 159 a 100 009
10 512 a 100 0954 5 543 a 100 1
12 524 a 100 0,544 7B a03 a 100 1437
13 a64 0 100 0,891 i G385 0 100 1,109
14 221 0 100 0578 78 184 0 100 064
15 472 0 100 0,765 75 475 0 100 0,797
16 &7k 0 100 0922 a1 165 0 100 0,554
18 A57 a 100 0,751 g2 522 a 100 il
19 542 a 100 0,559 85 532 a 100 0,36
21 451 a 100 0,766 g6 B46 a 100 1,109
22 631 a 100 0,254 a7 167 a 100 0509
24 4 a 100 1 oo 473 a 100 0523
25 232 a 100 0573 g4 B33 a 100 1219
28 485 0 100 0935 90 167 0 100 0,609
30 499 0 100 05825 91 als 0 100 0,859
31 570 0 100 0875 93 102 0 100 0545
32 167 0 100 0&1 94 454 0 100 0,766
33 506 a 100 0512 95 B73 a 100 1,109
34 554 a 100 0,206 a7 574 a 100 0,591
35 213 a 100 0524 93 718 a 100 1,125
36 455 a 100 0,766 99 156 a 100 0556
37 565 a 100 0207 100 a47 a 100 0,591
3a 173 a 100 0625 101 BE2 a 100 fNTA
39 485 0 100 0,529 103 454 0 100 0,906
40 BdB 0 100 1 104 810 0 100 1,219
41 213 0 100 0625 105 153 0 100 0,703
43 &5 0 100 1 106 519 0 100 1,11
44 220 a 100 0 B&7 108 164 a 100 0571
45 517 a 100 0,544 109 543 a 100 0575
46 B4 a 100 1,125 111 169 a 100 0556
47 216 a 100 0&72 93 540 a 100 1,328
43 535 a 100 0,559 114 G40 a 100 1
449 770 a 100 1,234 1t 109 a 100 0547
50 715 0 100 1125 116 4582 0 100 0,781
a1 212 0 100 0,64 117 725 0 100 1,11
52 509 0 100 0,825 118 7a 0 100 0641
a3 207 0 100 0&1 [N= 523 0 100 0875
54 525 a 100 0,359 120 G52 a 100 1,109
56 &30 a 100 0,985 121 130 a 100 0503
=t 503 a 100 0,959 122 a05 a 100 1,109
2t 545 a 100 0,559 123 704 a 100 1.1
&1 593 a 100 1,437 124 134 a 100 0625
52 B54 a 100 0,954 125 473 a 100 0,781
63 179 0 100 0 B25 126 544 0 100 0,559
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pair  |#matches|#alse m. | hit rate time pair  |#matches| #alse m. [ hit rate time
123 425 1] 100 0Ba7 21 330 1] 100 0,563
129 545 a 100 0,56 212 495 a 100 0,75
130 g1 a 100 05 214 406 a 100 0,969
131 414 a 100 0,891 25 583 a 100 0922
132 B32 a 100 0,989 218 137 a 100 0516
133 85 a 100 0 468 217 395 a 100 0571
134 355 a 100 0657 218 579 a 100 0575
135 522 a 100 0813 22 522 a 100 0813
136 101 a 100 o5 222 228 a 100 0,562
133 547 a 100 0935 223 a7 a 100 0857
139 105 1] 100 0578 224 533 1] 100 0837
140 431 1] 100 0,703 225 183 1] 100 0,469
141 472 a 100 0,75 226 356 a 100 0,563
143 449 a 100 0,734 227 476 a 100 0,719
144 554 a 100 0922 228 595 a 100 0,551
145 132 a 100 0525 223 108 a 100 0,297
146 412 a 100 0735 231 a1 a 100 0,351
147 743 a 100 1,218 232 436 a 100 0,781
143 FOS a 100 0954 233 555 a 100 0,843
149 114 a 100 0,641 234 556 a 100 0822
150 421 1] 100 0,703 235 210 1] 100 045
151 =F) 0 100 0546 238 391 0 100 0E25
152 424 a 100 0718 237 575 a 100 0575
153 760 a 100 1,218 235 295 a 100 0,563
154 B14 a 100 0,953 23 391 a 100 054
185 50 a 100 0578 240 505 a 100 0,781
186 357 a 100 0,641 241 307 a 100 0552
157 573 a 100 0,891 242 403 a 100 0,541
158 108 a 100 0547 243 586 a 100 0,905
159 354 a 100 0875 244 304 a 100 0,562
160 555 1] 100 0822 248 Jag 1] 100 0E25
161 106 0 100 0578 249 520 0 100 0,797
162 426 a 100 0687 252 B0G a 100 0,906
163 564 a 100 0875 253 345 a 100 0,594
164 137 a 100 0515 254 463 a 100 0528
165 350 a 100 0525 255 837 a 100 0812
166 570 a 100 0875 256 351 a 100 0578
168 330 a 100 0563 257 411 a 100 0571
169 455 a 100 0785 258 522 a 100 0922
170 104 a 100 o5 25 332 a 100 0,562
171 323 0 100 0547 260 447 0 100 0,703
172 s05 1] 100 0,781 261 455 1] 100 0,703
173 79 a 100 05 262 g2 a 100 0,203
174 346 a 100 0,593 263 280 a 100 0,468
175 555 a 100 0,859 264 228 a 100 0,405
176 125 a 100 0515 265 114 a 100 0,281
177 344 a 100 0594 266 EEE a 100 0547
178 457 a 100 0735 267 435 a 100 0,75
179 120 a 100 0,531 265 183 a 100 0,351
180 353 o 100 0,703 265 465 o 100 0,735
181 B04 1] 100 0837 270 453 1] 100 0,703
152 122 1] 100 0516 271 255 1] 100 0516
183 358 a 100 0625 272 410 a 100 0572
184 566 a 100 0875 273 584 a 100 0,851
185 B10 a 100 0922 274 354 a 100 0,583
186 89 a 100 0 489 275 417 a 100 0556
130 346 a 100 0594 278 336 a 100 0Bs87
191 455 a 100 0,765 277 487 a 100 0,785
193 333 a 100 0,531 278 B47 a 100 0,953
194 521 a 100 o797 279 604 a 100 0,907
195 28 1] 100 0,156 280 /7g 1] 100 12149
196 142 0 100 0265 281 B16 0 100 0,906
197 131 a 100 025 282 834 a 100 1,219
198 g a 100 0,14 283 BEY a 100 1,104
199 306 a 100 045 284 574 a 100 1,435
200 472 a 100 0755 285 724 a 100 1,125
201 115 a 100 0,408 286 573 a 100 1,328
204 139 a 100 0,453 287 764 a 100 1,109
205 341 a 100 0658 285 565 a 100 1,218
207 146 a 100 05 239 603 a 100 0822
208 356 a 100 0,609 290 526 a 100 0,781
205 558 a 100 0,559 292 353 a 100 0,578
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#matches | #alse m. | hit rate time air #matches| #alse m. | hit rate time

Figure C.9: LSM: best hit rate behaviour.
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Seq. Pair |#Matches | # False Matches | Hit Rate | Time (s) Seq. Pair | #Matches | #False Matches | Hit Rate | Time (s
1 548 ] 100 0575 a3 643 1 99 84 1,109
2 253 0 100 0547 a4 174 1 99 43 0,704
3 526 0 100 | 0828 &5 532 o 100 0,85
] 17 o | o &6 B45 0 1o | 1,109

! ar 167 0 100 0509
=3 237 ] 100 0516 '
g 153 o 100 1 '1 25 as 473 0 100 0g2a
7 548 0 100 DIB?S g9 683 o 100 1219
5 285 0 100 0 '54? a0 167 o 100 0609
g s 0 100 DI?B1 N a06 o 100 0,359

. g2 81 1 G983 0559
10 612 ] 100 0954 o3 102 0 100 0 546
1" 256 1 99 61 0578 o4 A54 0 100 0 '?55
13 54 o 100 0,591 96 175 1 9943 | 0B41
14 221 0 100 0578 97 574 il 100 0,891
148 472 u} 100 0765 a5 718 il 100 1,125
16 576 u} 100 0922 g9 156 o 100 0556
17 214 1 9953 0562 100 547 u] 100 0,891
18 4587 0 100 ora1 101 582 0 100 1,11
19 542 0 100 0553 102 143 1 99 32 056
20 220 2 99,09 0625 103 550 u] 100 0,906
21 451 o] 100 0,766 104 810 u] 100 1219
22 631 o] 100 0984 105 158 o 100 0703
23 ] 1 o5 51 0593 105 a19 0 100 1.1
24 al8 1 959 .81 0543 107 725 1 25 86 1,109
25 644 o] 100 1 108 164 il 100 0671
26 232 ] 100 0578 109 243 o 100 0875
7 =] 1 05,83 0937 110 77 1 oo 87 1,219
2 jss] 0 100 0933 111 169 0 100 056
29 242 2 9317 0609 12 539 1 99 81 05875
30 499 o] 100 0828 13 840 o 100 1,328
K 570 o] 100 0875 114 540 o 100 1
32 167 0 100 0E1 115 109 0 100 0547
K] 506 0 100 ngiz 116 482 0 100 0781
34 584 ] 100 0206 17 725 o 100 1.1
35 213 ] 100 0594 18 75 o 100 0641
35 455 u} 100 0766 119 523 0 100 0875
7 a65 0 100 0907 120 G2 0 100 1,109
38 173 o] 100 0625 121 130 o 100 0609
39 485 o] 100 0829 122 a05 o 100 1,109
40 G465 ] 100 1 123 704 o 100 1.1
41 213 0 100 0E25 124 134 0 100 0E25
42 524 1 95,81 1 125 478 0 100 0781
43 G54 ] 100 1 126 549 o 100 0,859
44 220 o] 100 0657 127 13 1 9324 0547
45 517 u} 100 0844 128 425 0 100 0Ea7
45 G4 0 100 1,125 129 545 0 100 0,86
47 216 0 100 0572 130 a1 0 100 as
43 535 ] 100 0,859 131 414 o 100 0,89
49 770 o] 100 1234 132 632 o 100 0,969
a0 715 0 100 1,125 133 a5 0 100 0453
a1 212 0 100 0B 134 385 0 100 0Bs7
52 509 ] 100 0828 135 522 o 100 0813
a3 207 u] 100 061 136 101 o 100 as
a4 525 0 100 0859 137 429 1 08 77 0704
55 a38 1 o5 .83 1,328 138 B47 0 100 0585
56 530 0 100 0985 132 105 0 100 0575
a7 204 1 9951 0656 140 431 o 100 0703
58 a08 ] 100 0269 141 472 o 100 0,75
] 179 1 o5 44 0K 142 a3 1 G803 0563
G0 545 0 100 0859 143 445 0 100 0734
61 898 o] 100 1437 144 594 o 100 0922
62 G54 o] 100 0984 145 132 o 100 0625
63 179 o] 100 0625 145 412 o 100 0735
B4 520 0 100 0829 147 743 0 100 1,219
G5 742 0 100 1,234 145 =iniz] 0 100 0584
5153 184 ] 100 0687 149 114 o 100 0641
B7 12 ] 100 0844 150 421 o 100 0703
5] 177 1 o5 44 0E09 151 a7 0 100 0545
G5 544 0 100 0859 152 429 0 100 071a
70 873 1 9989 1328 153 7E0 o 100 1219
71 643 o] 100 0269 154 619 o 100 0953
72 175 ] 100 0625 155 a0 o 100 0578
73 480 0 100 0813 156 357 0 100 0EH
74 159 0 100 0E03 157 a73 0 100 0831
75 243 ] 100 1 158 108 o 100 0547
76 903 o] 100 1437 159 384 il 100 05875
77 FE8 u} 100 1,109 160 585 0 100 ooz
78 184 0 100 0B 161 106 0 100 0573
79 475 o] 100 0797 162 426 o 100 0687
a0 691 1 99 86 1,109 163 569 o 100 0875
a1 165 o] 100 0594 164 137 o 100 0515
] ] ] 100 1,11 165 380 0 100 0525
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Seq. Pair |#Matches | # False Matches | Hit Rate | Time (g) Seq. Pair |#Matches | #False Matches | Hit Rate | Time (g)
166 570 0 100 087s 249 520 0 100 0797
167 a4 1 95 .94 0,469 280 333 1 == 0573
168 330 0 100 0563 251 424 1 9976 0E72
165 4595 0 100 0,765 252 505 0 100 0,506
170 104 ] 100 05 253 345 0 100 0594
171 343 0 100 0547 254 453 0 100 0523
172 509 0 100 0781 255 537 0 100 og1z
173 73 0 100 05 256 351 0 100 0578
174 346 0 100 0593 257 411 0 100 0571
175 558 0 100 0g59 258 g2 0 100 og22
176 125 0 100 0516 289 332 0 100 0562
177 344 0 100 0594 260 447 0 100 0,703
178 457 0 100 0,735 261 455 0 100 0,703
178 120 ] 100 0531 262 a2 0 100 0203
180 353 0 100 0,703 23 280 0 100 0,485
131 504 0 100 0937 264 228 0 100 0,406
182 122 0 100 0516 265 114 0 100 0281
183 358 0 100 0525 266 333 0 100 0547
184 566 0 100 0875 X7 493 0 100 0,75
135 G610 0 100 0922 265 183 0 100 0,331
186 ] 0 100 04632 269 455 0 100 0735
187 406 1 98,75 0656 270 453 0 100 0,703
1858 561 1 9582 087s er| 295 0 100 0516
185 120 1 9517 0,484 ] 410 0 100 0E72
190 346 0 100 0594 273 4584 0 100 0831
191 489 0 100 0,765 274 354 0 100 0563
192 a5 1 9595 0,453 5 417 0 100 0656
193 333 0 100 053 2B 336 0 100 0637
194 521 0 100 0797 7 4587 0 100 0,765
195 28 0 100 0,156 278 647 0 100 0953
196 142 0 100 0265 79 504 0 100 0507
197 131 0 100 025 280 778 0 100 1,219
198 4 0 100 0,14 21 616 0 100 0,906
195 306 0 100 a5 252 g34 0 100 1,219
200 472 0 100 0,735 283 GE5 0 100 1,109
20 115 0 100 0,406 284 ars 0 100 1,438
202 351 1 959,74 0s02 285 72N 0 100 1,125
203 a0z 1 958 0,766 286 gr3 0 100 1,328
204 139 0 100 0,453 287 764 0 100 1,109
205 341 0 100 0535 288 it 0 100 1,219
206 465 1 95,78 0,734 289 503 0 100 og22
207 146 0 100 05 2890 526 0 100 0,781
205 356 0 100 0B09 23 242 1 9959 0516
209 558 0 100 0859 242 353 0 100 0578
210 168 1 954 05 293 512 0 100 0,781
21 330 ] 100 0563 284 337 1 a7 0547
212 4585 0 100 074 255 433 1 9.7y [INTA
213 120 1 a5 47 0531 2596 526 0 100 0,56
214 406 0 100 09632 27 363 0 100 0594
215 583 0 100 0922 2598 423 0 100 0E72
216 137 0 100 0516 2899 580 0 100 0875
217 358 0 100 0671 300 352 0 100 0,509
218 579 0 100 087s 301 445 0 100 0,703
219 216 1 95 .54 0547 30z 586 0 100 0891
220 401 1 95,75 0656 303 335 0 100 0578
241 =) 0 100 0813 304 4 0 100 05358
242 228 0 100 0562 305 517 0 100 022
243 387 0 100 0Bs7 306 328 0 100 0,502
224 633 0 100 0937 307 451 0 100 0,734
25 183 0 100 0,462 308 574 0 100 0,859
226 356 0 100 0563 309 284 0 100 0E72
247 476 0 100 0719 310 413 1 9976 0E72
228 555 0 100 0891 I 540 0 100 og1z
229 108 0 100 0297 3z G52 0 100 0584
230 319 1 95 B9 0516 313 235 0 100 0547
231 = 0 100 03 314 385 0 100 0541
232 486 0 100 0,781 35 290 0 100 0594
233 558 0 100 0843 3B 392 0 100 0656
234 556 0 100 0922 7 531 0 100 0875
235 210 0 100 05 318 724 0 100 1,128
236 391 0 100 0B25 39 285 0 100 0563
237 575 0 100 087s 320 402 0 100 0656
238 2895 0 100 0563 321 266 1 29 62 0594
239 3 0 100 054 3z 385 0 100 0641
240 a05 0 100 0,781 343 a64 0 100 1,11
21 307 0 100 0562 324 493 1 298 0,765
242 403 0 100 0B41 325 237 0 100 0547
243 586 ] 100 0,906 326 387 1 2874 0541
244 304 0 100 0562 347 atats] 0 100 0,56
245 413 1 95 76 0656 328 274 0 100 0,703
246 443 2 95,85 0,703 329 325 0 100 0656
247 321 2 9538 0573 330 544 1 2982 0544
248 388 0 100 0525 331 2N 1 2955 0531
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Seq. Pair |#Matches | # False Matches | Hit Rate | Time (g)

32 371 0 100 0G4 Seq. Pair |#Matches | # False Matches | Hit Rate | Time (s)
333 598 1 9983 | 0222 367 565 0 10a 0875
334 206 0 100 0547 368 el 0 1aa 0453
335 355 o] 100 061 369 281 u] 100 a5
336 394 0 100 054 370 523 0 100 0,859
337 218 1 99,54 0578 371 G4 0 100 0422
338 374 o] 100 064 372 299 o 100 0531
339 520 ] 100 0513 373 495 o 100 0,781
340 195 ] 100 0547 374 an u] 100 0407
E 333 o 100 D578 75 295 0 100 0516
342 a72 o 100 089 376 532 0 100 0828
343 145 0 100 0531 377 134 o 100 0,438
344 331 0 100 0562 378 295 o 100 0516
345 529 o 100 0812 379 529 0 100 0828
346 147 o 100 05 380 140 0 100 0,438
347 313 0 100 0547 381 286 0 100 0578
348 GO0 0 100 05206 382 546 il 100 0,544
349 G20 0 100 1,109 383 160 il 100 0,453
350 105 o 100 0,438 384 278 0 100 0,469
351 269 0 100 0,484 385 550 0 100 0,344
352 167 1 99 4 0578 386 513 u] 100 05937
3583 338 0 100 0573 387 173 o 100 0,453
354 539 0 100 0843 385 275 i] 100 s
355 719 0 100 1.1 385 181 1 99 45 na
356 132 0 100 05 390 305 0 100 0532
357 315 0 100 0531 3N 522 il 100 0528
358 133 0 100 0,468 392 631 o 100 0,968
358 310 o 100 051 393 141 0 100 0,453
360 518 1 99,81 0813 394 297 i] 100 0531
361 706 0 100 1,109 395 571 1 9382 0,891
362 15 ] 100 0,453 396 185 1 99 47 0,453
363 321 0 100 0547 397 34 0 100 0578
364 515 0 100 0,906 398 575 0 100 0878
365 111 1] 100 0453 399 231 1 99 57 0,469
366 316 ] 100 0,532 400 338 o] 100 0,563

Figure C.10: LSM: full record.

C3
Comparative records

A negative number on the following table means that the respective SIFT

value was higher than LSM’s.

1 -165 0 0 23 157 -1 TE]
2 148 2 05 24 137 -1 0,12
3 -133 0 0 28 -164 -4 05
4 -155 -1 0,14 2B -185 -5 12
5 -144 -1 0268 27 -144 -1 0,1
B -134 a 0 ] 137 -1 0,14
7 170 5 07 29 77 -4 0B
g8 -135 -3 071 30 137 -3 047
g 140 2 032 3 144 -1 0,14
10 155 =3 0.26 32 242 -4 098
17 174 - 008 33 121 -1 0,16
12 -144 o 0 34 1245 -1 014
13 37 19 0,29 35 193 2 0,49
14 185 3 074 36 -117 3 052
15 -137 -1 0,16 37 -131 -1 0,14
16 -147 o 0 38 208 -1 026
17 196 0 07 39 133 -1 0,16
18 -139 0 0 40 157 2 026
19 -164 -1 0,14 41 -213 -3 07
i 215 -2 0,01 42 131 2 0,27
21 -145 -3 05 43 -122 2 028
22 157 R 013 44 -204 -4 0,94
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45 =120 -3 047 13 -170 0 a
45 -153 -2 024 114 -136 -2 026
47 22T B 1,35 114 -232 -1 029
48 -129 -2 0.3 116 -123 -3 05
43 152 -3 0,33 M7 -1582 -1 011
50 -143 -2 023 118 -332 -2 049
a1 =225 -4 os 119 127 -3 046
52 -133 -2 0,31 120 117 -3 0,35
53 =224 -2 0,46 121 -267 ] a
a4 -136 -3 045 122 -141 -1 a,15
55 -153 a -0,02 123 -161 a a
ol -136 a 0 124 -27g -3 0,73
a7 =240 a -0.26 125 -114 -1 a17
a5 -122 -2 032 126 -120 a a
59 -234 1] -0,32 127 -230 0 0,48
B0 -126 -2 0.3 128 -04 0 a
B1 -163 -2 0,19 129 -120 ] a
62 -123 a 1] 130 -240 5 1481
B3 -260 -1 0,23 131 -123 0 1]
B4 -1 -1 0,16 132 -142 -2 0,26
65 -149 -1 a,11 133 -236 -1 a3t
513] =270 -3 066 134 147 -1 a1a
57 127 1] 0 135 -145 0 o
Ba =233 -2 017 136 =240 -2 059
g3 -119 -1 0,15 137 122 a -0.05
70 -178 a -0,01 134 -149 a a
71 -7 -2 0,26 139 -268 -2 054
72 =238 -3 0,73 140 -112 -1 0,18
73 -119 a 1] 14 -116 -1 17
74 -232 -4 1,02 142 -282 5 056
74 -7 -1 0,15 143 -136 0 a
76 -160 a 0 144 -187 0 a
7 -135 -1 o1z 145 -275 -3 o74
78 -251 -1 023 146 -134 -1 o1&
79 -130 -1 017 147 -185 0 a
a0 1580 -1 o1 148 -187 -1 0,13
g1 -232 -2 oh 149 -254 -1 025
g2 127 a 1] 180 -154 -2 0,35
a3 -139 -1 o1 151 -282 0 a
g4 =229 -1 -0,07 1582 -165 -3 05
g5 -114 -1 a,15 153 213 -1 0,1
1] -126 -2 026 154 -162 -1 13
a7 =234 -1 025 155 -2493 -1 0,26
ol -134 a 0 186 -135 -1 02
aic] -145 -3 036 187 -180 -1 13
a0 -232 -1 025 158 -265 -1 027
91 -1 a 0 189 -135 -1 0,19
92 =117 a -0,03 160 -187 ] a
93 -243 -1 024 161 -280 -2 51
94 -1a1 -1 017 162 -131 0 o
95 -160 -1 0,12 1683 -153 0 a
95 -264 -1 -0,11 164 -202 -2 o5a
a7 -114 a 1] 165 -114 -1 02
9g -147 -2 0,23 166 -170 0 1]
99 =292 -4 054 167 =214 -1 0,42
100 -132 -3 044 165 -105 -1 023
1M -153 -1 o1z 169 -142 -2 a3t
102 230 -3 0,25 170 -233 -3 059
103 -134 -2 0249 171 -122 -1 022
104 -145 -3 031 172 -150 -1 a,15
105 -301 -4 g7 173 -253 -1 03
106 -124 a 0 174 -102 0 a
107 -130 -3 0,33 175 -142 0 a
105 =279 a 1] 176 -219 5 1,45
109 127 -1 a,15 177 -125 -1 .21
1o 1480 -2 0z 178 -147 0 a
111 =264 -3 op4 179 =224 -3 0,56
112 -143 -2 025 1580 -115 -2 042
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181 -144 a 1] 249 -106 -1 0,16
182 -233 -2 0,56 250 -104 0 007
183 =124 a 0 251 -100 0 0,05
164 -139 a 1] 252 -132 a a

165 -152 a 1] 253 - -2 046
186 -216 -1 032 254 -104 -2 0,35
187 -121 a -0,06 285 -123 -2 0.3
165 -174 a -0,04 256 -100 -2 044
1689 =211 -1 -0,23 257 -7 -2 035
180 -131 -1 0,21 253 -125 -2 027
191 -133 -1 0,16 259 94 -2 0,46
192 -204 -2 -0,05 280 -104 -2 0,36
193 -113 a 1] 261 -106 -2 0,35
194 -1586 a 0 262 -0 -4 3,249
195 40 -1 0,55 263 -100 -1 0,26
196 -85 a 1] 254 a2 -2 052
197 -80 a 1] 265 a0 -1 049
198 40 a 0 266 94 0 a

199 -89 a 0 267 -142 ] a

200 -143 a 1] 265 -83 -1 0,35
2M 152 -1 037 269 -114 0 o

202 -112 -2 0,35 270 -106 -1 0,18
203 -139 -1 a,11 27 -106 -1 0,25
204 -174 -1 032 272 -107 -2 039
205 -119 -2 0,43 273 -130 -2 0.2a
206 -135 a -0,05 274 -88 -3 0ks
207 -194 -2 osa 275 -101 -1 a,19
205 127 -1 021 278 -112 -3 a67
209 -149 -1 0,14 277 -114 0 o

210 -182 -1 -0,03 278 -149 -1 013
211 -107 a 1] 279 -135 a a

212 -121 a 1] 280 -176 a a

213 -170 -2 0.3 281 -135 -1 013
214 -1 a 0 282 -181 0 a

215 -143 -1 0,14 283 -151 a a

216 -193 a 1] 284 1594 a a

217 -126 -1 0,14 205 -155 -1 o1
218 -135 a 0 286 -193 0 a

219 -171 -1 o065 287 -170 -1 a1
220 -129 -1 o013 285 -186 a a

21 -123 -3 0,46 289 127 -1 0,14
222 -181 -2 051 290 -108 0 a

223 -117 -2 o4 291 -112 a 0,13
224 -123 -1 13 292 -87 -2 045
225 152 -3 o9 293 -122 -1 0,16
226 95 -1 0,22 294 95 -1 0,16
227 -115 a 1] 295 -7g a 0,03
228 -140 a 1] 296 -114 -1 016
229 -1m -1 048 297 -101 -1 022
230 93 a -0.07 298 93 ] a

231 -137 a 1] 259 -1185 -1 0,14
232 -129 -1 0,16 300 92 -3 066
233 144 -1 0,14 3m 92 -2 037
234 -138 a 0 302 -131 -2 0,28
235 -123 -2 g 303 -103 -4 a1
236 -a6 1] 0 304 -115 -3 0,56
237 -139 -2 0,23 305 -155 -3 0,39
235 -104 -3 a.7a 306 -129 -4 055
238 -110 -2 04 307 -113 -2 0,35
240 121 -1 0,16 303 -135 -1 0,14
241 106 a 0 309 -114 -2 05
242 98 -1 o2 310 -111 -1 o,14
243 -144 -1 0,14 311 -139 -1 a,15
244 -1m -2 0,449 312 -178 -1 012
245 =113 -2 0,33 313 -187 -3 077
245 -106 a -0,05 314 -96 a a

247 95 a -0,14 315 -137 -2 047
243 95 -2 0,41 316 -121 0 a




A Parallel Method For Object Tracking 89

37 -137 -3 0,42 359 -120 -2 047
315 -150 -1 a,11 380 -132 -1 o1z
319 -122 -3 0,73 361 -183 0 o

320 -116 -1 0,14 362 -184 0 a

321 -156 -2 033 J&3 -107 a a

J22 -129 a 1] 364 146 a a

323 -143 o 0 365 -205 -3 095
324 1582 a -0,04 366 93 -2 0,45
325 -145 -3 aye 387 -165 -1 0,14
326 -102 a -0,06 Je5 -208 -2 a5
327 147 -1 0,14 369 -112 -1 0,25
328 -154 -1 0,23 370 -165 0 a

329 -115 -2 o3s 371 -205 -2 aga
330 -129 -1 o1z 372 -112 -2 049
I 189 a -0,19 373 -146 -2 03
332 -121 -1 02 374 -1849 -2 0g9
333 -133 a -0,03 75 -116 -4 og7
334 -1649 5 1,33 76 -157 -1 a.15
335 -113 -2 043 377 -173 0 a

336 =124 -3 0,558 378 -108 -3 074
337 -165 -3 as5 379 -149 -1 a,15
335 -111 a 1] 3580 -174 -2 0,64
339 -135 a 0 381 -114 -2 05
340 -180 -4 1,07 382 -175 -1 14
341 -116 -1 022 3583 -169 -2 og1
342 -143 -1 0,14 Jo4 -100 0 o

343 =200 -3 og7 355 -1649 -2 0,28
344 -1 a 0 386 -203 -1 012
345 -137 -2 o3 3587 -152 -2 0g2
346 -156 -2 0& 308 -107 0 1]

347 -1 a 0 389 -170 -1 o0z
345 =141 a 1] 320 127 -1 023
349 -144 a 1] 3 195 a a

3a0 -1a30 -4 14 392 -2249 -1 012
351 -103 a 0 393 -176 -2 0g3
352 -208 a -0,33 394 -137 -1 023
353 -107 -2 045 395 -185 -1 o058
354 -134 a 0 396 -140 -4 083
355 -164 -2 0,23 397 -135 -4 0,54
356 -199 -3 0.9 395 -169 -1 13
357 -104 -1 024 329 -126 a 015
350 -199 -2 0,54 400 -113 0 a

Figure C.11: SIFT-LSM: full record.



D
Video sequences

Video sequences used for assessing the performance of the tracking
algorithms. The squares switch colour to indicate that a new database has

been released.
Notice: it may take this document a while to load the movies...

D.1
Surgical procedure

Surgical procedure: SLS Variant.

Figure D.1: Surgical procedure: click to play.
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D.2
High movement pre-amp

High movement pre-amp: SLS Variant.

Figure D.2: High movement pre-amp: click to play.
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D.3
Low movement pre-amp

Low movement pre-amp: SLN Variant.

Figure D.3: Low movement pre-amp: click to play.
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D.4
Pool

Pool: SLN Variant.

Figure D.4: Pool: click to play.
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