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Abstract

Fredrich, Cecilia Maria Buarque; Feitosa, Raul Queiroz; Meggio-
laro, Marco Antonio. A Parallel Method For Object Tracking.
Rio de Janeiro, 2009. 93p. MSc Thesis — Department of Electrical
Engineering, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Computer Vision-based techniques are powerful tools for designing efficient

control systems. Cameras provide information, through which an industrial

manipulator can, for instance, have its trajectory corrected with respect to

the target object. Computer imagery might even be used to fully implement

a controlling device for such manipulators.

This thesis proposes a real-time object tracking method robust and adapt-

able to different environment circumstances and scenarios, as well as to the

quality of the camera available and the interest object’s nature itself.

Image points are the features chosen for the object recognition procedure.

The method relies on parallel processing for building the model that is best

suited to the current scenario, thus dismissing heuristics for selecting the

most adequate features. Although, the parallelism also contributes to the

computational speed that allows real-time operation, the trade-off between

algorithm complexity and quality of match is most responsible for achieving

this particular goal.

Two variants were devised to cope with a number of different scenarios, as

well as equipments, which accounts for the likeness of the method to succeed

in a great deal of applications.

Keywords
Point Matching. Image Matching. Object Tracking. Object Recog-

nition. Normalized Cross Correlation. Least Squares Matching. SIFT.

Pose Detection. Camera Calibration. Parallel Processing.



Resumo

Fredrich, Cecilia Maria Buarque; Feitosa, Raul Queiroz; Meggi-
olaro, Marco Antonio. Um Método Paralelo para Rastrea-
mento de Objetos. Rio de Janeiro, 2009. 93p. Dissertação de
Mestrado — Departamento de Engenharia Elétrica, Pontif́ıcia Uni-
versidade Católica do Rio de Janeiro.

Técnicas em Visão Computacional são excelentes ferramentas para imple-

mentação de sistemas de controle eficientes. Usando câmeras, é posśıvel

corrigir a trajetória de um manipulador para que este chegue ao seu des-

tino com maior exatidão. Imagens adquiridas através de câmeras podem,

inclusive, ser dados de entrada para sistemas de controle auto-suficientes.

Esta dissertação apresenta um método paralelo para rastreamento de obje-

tos, que opera em tempo real e é adaptável a diferentes condições de ambi-

ente, equipamento e, também, à própria natureza do objeto em questão.

O rastreamento inicia-se com a coleta de pontos relevantes das imagens

de entrada. Processamento paralelo garante que os pontos contidos no

modelo do objeto sejam consistentes com aqueles coletados em determinada

cena, sem necessidade de heuŕısticas. Apesar de o paralelismo contribuir

para a velocidade de execução, esta é primordialmente conseqüência do

compromisso estabelecido entre complexidade e qualidade dos algoritmos

envolvidos no processo.

Duas variantes foram propostas para lidar com uma vasta gama de cenários

e, também, equipamentos, tornando o método ser eficaz em diferentes

aplicações.

Palavras–chave
Correspondência entre Pontos. Correspondência entre Imagens. Ras-

treamento de Objetos. Reconhecimento de Objetos. Correlação Cruzada

Normalizada. Correspondência por Mı́nimos Quadrados. SIFT. Detecção

de Pose. Calibração de Câmeras. Processamento Paralelo.
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To see a World in a grain of sand,
And a Heaven in a wild flower,
Hold Infinity in the palm of your hand,
And Eternity in an hour.

William Blake, Auguries of Innocence.



1
Introduction

The majority of today’s industrial robots are programmed to follow a

predefined trajectory. Such controlling technique suffices when the robot is

working in a fixed environment where all objects of interest are situated in a

predetermined position relative to the robot’s base. If, however, the robot’s

target position needs altering, all the trajectories have to be reprogrammed

for the robot to be able to perform its tasks.

Another option is teleoperation, whereby a human operator conducts all

the movements during the operation in a master-slave architecture. Since any

positioning errors can be visually compensated, this configuration does not

demand that the robot has a high absolute accuracy. The drawback, in this

case, is the low speed and accuracy inherent to the human operator.

Figure 1.1: Hydraulic Manipulator Slingsby TA-40.

The manipulator considered in this research is the Slingsby TA-40,

depicted in Figure 1.1, attached to a Remote Operating Vehicle (ROV), which
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is brought to its working environment by the ROV operator. Every time

the robot is repositioned, it needs to estimate its position and orientation

relative to the work environment. The ROV operates at great depths and

there are only a few sensors that can operate at such environments. This is

the incentive for the use of Computer Vision to estimate the relative position

of the manipulator. Through cameras, the differences between the actual and

desired position of the manipulator can be estimated from pose detection,

using either feature or appearance matching. This information is then sent to

controllers to correct the pre-programmed trajectories. Due to their inherent

higher accuracy, these methodologies can also be merged to perform in-situ

calibration of the manipulator base.

This project originally addressed the recognition of an underwater target

object, namely valve panels, which would be used as a secondary fine-tuning

aid for a control system to correct the manipulator’s trajectory. The main

concern of the pose detection issue lies in the quality of the correspondences

between the image pairs. Especially as the manipulator moves closer to the

interest object, i.e., one of the valve panels. In such cases, if the matching

lacks accuracy, the robot could fail to properly operate the valves or even

collide against the panel, potentially damaging one another.

Computational efficiency is also of crucial importance, since the object

tracking must be performed in real-time. Hence, the quest for a suitable trade-

off between a fair enough match and an admissible processing time should be

the primary aim of this research. So is the statement itself of what exactly

can be considered as “fair enough” and “admissible”, regarding the operation

conditions.

Feature matching, namely interest points across image sequences, is the

approach adopted to tackle the problem. Poor image quality and high levels of

radial distortion, as well as the operation environment itself, where occlusion

may occur quite often, are the greatest obstacles to obtaining a proper match.

The study comprises determining what algorithms can be used, or

possibly adapted, to achieve the aforementioned trade-off, with respect to a

diversity of scenarios. These vary from one another, for instance, according to

the relative distance from the robot to the panel or by considering the frame

sampling rate, as occlusion - or noise - might force to discard considerable

pieces of the image sequence from time to time.

Since efforts are steered to both quality assessment and processing time

of the matching procedure(s), a more straightforward algorithm is initially

intended to implement the actual pose detection step of the control system.

The particular application concerning the valve operation by the Slingsby
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TA-40 was, as mentioned, the main incentive for this research. However, the

method proposed herein was not yet implemented to work with the manipu-

lator itself. Tests were conducted in different environments, which eventually

allowed to attest the method’s ability to function in various conditions.

1.1
Objectives

The contributions of this thesis are manifold and can be assembled

into two distinct objectives. The main purpose was to devise a novel real-

time method for object tracking, based upon parallel processing and feature

correspondence. The secondary goal entailed evaluating and ultimately electing

point matching algorithms that could in fact make feasible the implementation

of such tracking procedure.

Thus, both secondary and primary contributions, which are, respectively,

the exhaustive tests on performance assessment of the matching techniques and

the novel method for object tracking itself, are depicted next.

1.1.1
Secondary objective

As said, the greatest motivation of this project was the particular

valve control application. Hence, the underwater environment was chosen for

assessing the point matching procedures at an early stage.

At first, exhaustive tests were conducted, using underwater video se-

quences (some with quite poor quality), so as to evaluate a variety of matching

techniques to decide which could be adopted. Later, a video sequence shot in a

pool was used to stress the algorithms eventually selected as the most suitable.

Although such algorithms were to be implemented into a routine, which

would function as a vision-based aid to help correct the trajectory calculated

by the master control system and that would be called only eventually, the

ability of working in real-time would be crucial to its success. Thus, different

tests were conducted to address both accuracy and processing time.

Besides serving their purpose in this project, these experiments indeed

provide insights on the performance of the algorithms tested that can be used

as a knowledge tool in future related researches, as what regards how they

are expected to behave under stressful conditions. However, they faded into a

secondary contribution of this work, as they led to a step forward. Needless

to say, the primary goal set on this research would have never been attained,

unless its secondary objective was successful.
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1.1.2
Primary objective

The knowledge extracted from the previous experiments allowed the

implementation of a real-time object tracking method, that not only is self-

sufficient, i.e., can be adopted as the control system itself, but is also adaptable

to varying environment circumstances. Naturally, the method may still be

used as the underwater vision-based aid discussed before. The key to its

successfulness is parallel processing, as will be made clear in further chapters.

Nevertheless, once implemented, it would be desirable for the method

to be capable of functioning in various conditions, other than the one that

motivated its devising. Several other video sequences were used for further

tests to address this matter. Being of different natures - regarding not only the

environment, but also equipment and interest object - they provide ground for

attesting the method’s efficiency in various applications and explain the reason

for proposing two variants.

1.2
Thesis outline

The remainder of this document is organised as follows. Chapter 2

presents general concepts of feature-based and appearance-based models for

object tracking, a.k.a. identification or recognition, as well as a discussion

of several other tracking methods, pointing the differences between their

approaches and the one adopted in this work.

Chapter 3 briefly describes the point matching techniques used in the

method’s implementation. The method itself is presented in chapter 4, which

contains the ideas underlaying its devising, as well as the details of both of its

variants.

Finally, chapter 5 addresses the performance assessment of the point

matching techniques and the method itself, in its two variants. Those were

divided into two separate sections. The different assessment measures and their

outcomes are displayed and discussed, as well as are presented a few hints on

how each method’s variant is best suited to a particular application. All of

which followed by chapter 6’s concluding remarks and directions to future

works.

The appendix is divided into four chapters. Chapters A and B contain

straightforward techniques of camera calibration and pose detection and

present their basics. Chapter C contains the full records referring to the

experiments conducted for assessing the overall performance of the point

matching algorithms depicted in section 5.1.
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At last, a visual aid for assessing the performance of the object tracking

method is available in chapter D. The four videos show how each interest object

was tracked in the respective sequences presented in section 5.2.



2
Related research

The vision-based object tracking issue derives a multitude of research

lines compatible with the relevance of the matter. This chapter narrows its

survey down to the main focus of this thesis: object recognition, presenting

both feature-based and appearance-based mainstreams. The study of descrip-

tors of image points and methods for object tracking from such features are

also briefly introduced, as well as the camera calibration and pose detection

issues.

2.1
Object identification

Object recognition is indeed a twofold issue. That is, provided there is

(at least) one model of the interest object, the matter of recognising it entails

identifying this object in an image and, then, locating its position in 3-D space.

This section addresses the first problem.

Object identification can be perceived as determining which model in the

database matches the data in the input image. In other words, it is essentially

a matter of comparing input data to a model to decide whether they match

and, thus, the successfulness of an identification algorithm relies a great deal

on how effective is a model at describing a given object.

Namely, strategies for finding a match are divided in two basic categories,

according to the model’s nature: feature-based methods and appearance-based

methods.

2.1.1
Feature-based methods

Features are instances extracted from numerical image data, whether

related to a global property, e.g. a pixel’s value, or a region having a special

property, like edges. A feature must therefore be described by a collection of

characteristics, so that it can be identified, assessed and compared with. Such

collection is referred to as feature descriptor.
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Thus, feature-based methods are applied to problems, where the goal

is to either find instances of a given object in the input image(s); determine

what object is there in a particular scene, or describe what exactly is a certain

image region. Consequently, it becomes a matter of - given a model database

of features and a set of features detected in an input image - implementing an

algorithm for mapping the descriptors of the latter into the ones belonging to

the first.

This thesis presents a method for object tracking that is based upon

features, namely points. Several different descriptors are used, as will be clear

from chapter 3 on.

As said, the ability of a descriptor in representing a feature is crucial

for devising an effective object recognition method. Reference (20) surveys the

performance of several feature descriptors. They were evaluated, compared to

one another and finally ranked by the authors, who attest that the ones based

upon image region perform best. Indeed, the method proposed herein uses only

this kind of descriptors, with varying degrees of complexity.

As the descriptors based on the scale invariant feature transform (18),

or SIFT, obtained the best results according to reference (20), this was the

technique adopted for detecting points in the object tracking method proposed

herein. An alternative detector, invariant to scale and affine transformations,

may, however, be found in (19). For further readings, reference (21) reports

a comparison of the performance of a few affine covariant region detectors,

from which the authors have established a reference test set of images and

performance software, so that other detectors can be evaluated in the same

framework.

2.1.2
Appearance-based methods

Appearance-based identification uses images instead of features as mod-

els. The problem, thus, becomes determining whether a part of an input image

is, in fact, an instance of the interest object. In such cases, the model is a set

of images that represent several views of the tridimensional object and also

different illumination conditions, or rather, a set of possible appearances.

Identifying an object would then be equivalent to comparing an input

image to the set and deciding whether it contains an image that is similar

enough to be regarded as the same object.

Appearance-based methods compare the input data directly with the

model, since they are both images. At first, this may seem an obvious advantage

over their counterparts, which require that features be detected and described
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before the match process can actually start. However, in a great deal of

applications, the database usually grows extremely large to become really

representative of the interest object. In such cases, the memory usage can

be unmanageable to the point that the method becomes unfeasible.

2.2
Object location

Locating objects in space equals determining their position and orienta-

tion - or rather, their 3-D translation and rotation - provided their model is

known. In other words, object location is, in fact, a pose estimation problem.

The structure of the location algorithm depends on how the camera

was modelled. If the projective model is adopted, it becomes the problem

of handling a system of non-linear equations, which can be done by applying

Newton’s iterative method. In case of an affine model, the algorithm translates

into solving a linear system, a quite simpler task.

Both variants are engaged in determining the extrinsic camera param-

eters, a major part of the camera calibration problem, which are ultimately

used for estimating the object’s pose.

Since the method for object recognition proposed herein uses image

points as features, the matched conjugates themselves become the inputs of

the standard camera calibration and pose detection routines. Straightforward

techniques and basic theory on both issues are available at the appendix

(chapters A and B , respectively) and (26) describes a method for calibrating

high-distortion cameras. However, a deeper discussion on such matters falls

outside the scope of this document.

2.3
Other works

Two fundamental issues present the greatest difficulties, as far as the

problem of object recognition based on image points is concerned: processing

time and exactly what are the most suitable points to use as both input data

and model.

The first is a stumbling block for real-time applications, due to the

computation cost involving the state-of-art algorithms for point detection and

matching. The latter concerns the quality of the tracking algorithm more

directly. Not only all object views must be modelled by a single set of image

points - so that it can be identified (or tracked) at all times - but also

the tracking system must account for problems regarding the environment

conditions - e.g. occlusion, varying illumination patterns and view angle - and
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be robust to them. This means that the input features have to be equally

well representative and furthermore less subjected to a false match. Some real-

time procedures are presented next, and eventually compared to the method

introduced in chapter 4.

A vision-based localisation and mapping procedure, reported in (24),

devised to work in unmodified dynamic environments, uses SIFT features for

estimating a robot’s pose, from a three-camera stereo system. Here, a major

concern was to implement an algorithm for deciding which features were most

suitable for being part of the object’s model as the robot moved around.

Additionally, there was the safeguard of relying on odometry information to

predict the feature characteristics for each model point in the next frame and

to eventually estimate the pose, in case no sufficient matches were available.

From the same authors, (25) describes a method for global localisation,

where the robot localises itself, without any prior estimate. This is achieved by

matching features in the current frame to a model map. Se et al. have proposed

two different, and costly, approaches, namely the Hough Transform (8) and the

Random Sample Consensus (10), or RANSAC, that proved to yield the best

results and through which global localisation is performed by finding the robot

pose supported by most image points.

Another method for object tracking is based on a different, alternative,

descriptor. Described in (29), it uses Fern-based classification to match im-

age points. The descriptors, named ferns, are non-hierarchical structures for

classifying image patches. They consist of small sets of binary tests and re-

turn the probability that a patch belongs to any one of the classes that have

been learned during the training phase, which consists of synthesising many

views of points extracted from a training image. These responses are then

combined in a Näıve Bayesian way. This is actually an open source, available

at http://cvlab.epfl.ch/software/ferns/index.php, and, thus, it was in-

tended as a benchmark. However, despite showing satisfactory results in face

detection applications, it failed to track the objects in all four sequences used

to test the method described in 4.

http://cvlab.epfl.ch/software/ferns/index.php


3
Fundamental algorithms for point matching and underlaying
theory

This chapter presents a description of the three matching techniques

adopted for the implementation of the proposed object tracking algorithm.

The theory concerning the pose estimation, for determining the actual object

location, is also discussed in B. Nevertheless, as what regards the pose detection

and camera calibration issues - these last presented in A - only standard

techniques are described, since investigating these matters falls outside the

scope of this thesis.

The contents of this chapter suffice to fully understand the functioning of

the proposed method. However, by no means are they thorough to the extent

of exhausting these subjects.

As presented in chapter 4, three algorithms for matching are combined

into a keypoint tracking process with a decaying degree of complexity. Namely,

the normalised cross correlation (NCC), least squares matching (LSM) and

the scale invariant feature transform (SIFT). The theory that underlay these

algorithms is discussed next.

3.1
Normalised cross correlation

The cross correlation function measures the degree to which two signals

are similar (or correlated). In image processing applications, these are matrices

representing patches of each image.

Since their brightness may vary and to allow the pattern recognition to be

independent of scale and offset, the images should be normalised. This is done

by subtracting the mean at each position and then dividing by the product of

the standard deviations of the patches, in a computation that can be perceived

as the dot product of two normalised vectors.

Patches cropped around an image point are defined as area-based de-

scriptors as what concerns the feature matching matter. The normalised cross

correlation (NCC) of two windows of size W built around points pt and pm

in the template and matching images, respectively, is then given by eq. (3-1),
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whereby I(p) denotes the image intensity value at location p.

NCC =

∑
W

[(
It (pt)− ItWpt

)
·
(
Im (pm)− ImWpm

)]
√∑

W

(
It (pt)− ItWpt

)2

·
∑
W

(
Im (pm)− ImWpm

)2
(3-1)

The image of NCC falls within [−1, 1] and, for identical patches, it equals

1. Patches that have no similarity to one another incur a 0 correlation factor. A

value of -1 would indicate two inversely correlated patches, as, e.g., a template-

matching pair formed by the diapositive and the negative of an image.

Naturally, if the matching image is merely a shift transformation of the

template, the perfect match is easily found by sliding the matching window

around the search space, provided its wide enough to actually include the

correspondent coordinate. Otherwise, the match is to be considered as the

point within the search space, whose window yields the maximum correlation

factor.

3.2
Least squares matching

The least squares matching (LSM) (1, 13) is another area-based technique

for finding conjugate points in a pair of images. The underlaying idea is to

minimise the intensity level differences between the template and matching

patches. In LSM, however, both the centre and the shape of the matching

window are to be determined, which is done by small incremental adjustments

in an iterative process of a sub-pixel resolution. An initial guess for the location

of the matching point is, therefore, needed to launch the procedure, as well as

starting values for the transformation parameters.

In other words, LSM iteratively searches for the best parameter values

of a pre-determined geometric transformation that maps the matching image

into the template, by computing the grey level differences between the windows

around the template points and the ones built and transformed around their

respective conjugates. Thus, it is necessary to first define what transform is

more likely to map one image into the other: projective, affine or shift. The

projective transformation includes the other two, as the affine includes the

shift. Nevertheless, having to adjust a larger set of parameters not only reduces

the convergency rate, but can also potentially lead to stability problems. Thus,

the appropriate geometric transformation for a particular problem is the one
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able to do the mapping, with the required accuracy and the lowest possible

complexity.

Additionally, it may be necessary to introduce a radiometric transfor-

mation Tr to model eventual differences in contrast (r0) and brightness (r1)

between the two images. Eq. (3-2) shows the transformation applied to a given

matrix M .

Tr(M) = r0 ·M + r1 (3-2)

Although it is possible to add the radiometric transformation to the LSM

process, this computation is generally done as a pre-process for the reasons

presented above. In this work, only the affine and shift transformations were

applied to the LSM routine, as will become clear through the next two chapters.

The affine transformation, defined by the six ti terms, of a pixel

p0 = [x0, y0]
T in the initial matching window M0 at each iteration is given by

[
xT

yT

]
=

[
t0 t1 t2

t3 t4 t5

]
·

 x0

y0

1

 (3-3)

The transformed window M - at each iteration step - can then be

approximated by eq. (3-4), where the 4tji term would denote the adjustment

of the ith parameter at iteration j.

M ≈ M0 +
∂M

∂xT

·
2∑

i=0

∂xT

∂ti
4ti +

∂M

∂yT

·
5∑

i=3

∂yT

∂ti
4ti (3-4)

The LSM procedure then searches for the parameter values that yield

the residual matrix R having the minimum variance estimative. Matrix R is

written as the difference between the template window T and M , as defined

in eq. (3-5).

R = T −M (3-5)
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Merging eq. (3-4) and eq. (3-5) yields

R = T −M0 −
∂M

∂xT

·
2∑

i=0

∂xT

∂ti
4ti −

∂M

∂yT

·
5∑

i=3

∂yT

∂ti
4ti (3-6)

Writing eq. (3-6) for all pixel pairs in T and M yields a linear system,

where the unknown 4ti coefficients are calculated at each iteration, until

convergence, or the maximum number of iterations is reached. The final

transformation coefficients are given by the sums of all 4ti, and the conjugate

point, by the centre of the matching at the last iteration. The quality of

the match can be assessed by computing the variance of the residuals or,

alternatively, the NCC between the template and the final matching windows.

Applying the LSM technique to the shift transformation is analogous as

described, only taking t0 = t1 = t3 = t4 = 0. Notice that such a case would

be equivalent to a sub-pixel resolution NCC. For simplicity, from hereon, both

NCC and Shift-LSM will be referred as the former, whereas LSM will denote

the Affine-LSM routine.

3.3
Scale invariant feature transform

The scale invariant feature transform (SIFT) (16, 18), devised by D.

Lowe, is a powerful point detector that rely on an orientation-histogram-

based descriptor. Such keypoints are invariant to image scaling and rotation,

and partially invariant to changes in illumination and 3-D camera viewpoint.

Their distinctiveness allows each of them to be robustly matched against large

databases built from many images.

The steps to recognise a feature as a reliable keypoint are:

1. Scale-space extrema detection: use of a Difference-of-Gaussian (DoG)

Pyramid (5) to search for features that are invariant to scale and

orientation;

2. Accurate keypoint localisation: keypoints considered stable have their

location scale determined down to a sub-pixel resolution;

3. Orientation assignment: orientations based on local gradient directions

are assigned to each keypoint location;

4. Keypoint descriptor: built from local gradient measures at the selected

scale around the keypoint.
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The point matching is done by running the algorithm to identify the

keypoints of an individual image and then compare each one against the SIFT

feature database previously built from a set of model images.

The SIFT code that has been implemented for this work is a modi-

fied version of the one written by R. Hess, available at http://web.engr.

oregonstate.edu/~hess/index.html.

The four stages of the SIFT algorithm are discussed in some detail next.

3.3.1
Scale-space extrema detection

At first, keypoint candidates are detected and roughly located using

cascade filtering. A set of scales is produced by repeatedly applying the

continuous scale space function (28) to the input image. This function uses

the Gaussian function, given by eq. (3-7), as kernel.

G(x, y, σ) =
1

2πσ2
e−

(x2+y2)

2σ2 (3-7)

That is, the space L(x, y, σ) of the image I(x, y, σ) is defined by

L(x, y, σ) = G(x, y, σ) ∗ I(x, y, σ) (3-8)

The entire set of scales, or rather, the pyramid of scale-space images is searched

for invariant features.

Actually, feature stability can be more efficiently assured by detecting

scale-space extrema in the Difference-of-Gaussian function D(x, y, σ), rather

than in L(x, y, σ). The DoG is defined as the difference of two adjacent scales,

separated by a constant multiplicative factor k (see eq. (3-9)). Since the

computation of L(x, y, σ) is mandatory for scale-space feature description, no

significant additional cost is incurred from calculating D(x, y, σ).

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (3-9)

The local spaces for extrema detection consist of triplets of DoG image

patches, as depicted in Figure 3.11. The central patch is cropped around each

1All figures used as visual aids in the description of the SIFT algorithm were cropped
directly from (18).

http://web.engr.oregonstate.edu/~hess/index.html
http://web.engr.oregonstate.edu/~hess/index.html
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point in the inner pyramid scales and the two others located at the same x-y

coordinates in the upper and lower adjacent levels. If the centroid of each cubic

region corresponds to its maximum or minimum, then it is a extrema location,

i.e., a keypoint candidate.

Figure 3.1: Searching region for scale-space extrema detection.

3.3.2
Accurate keypoint localisation

The keypoint candidates have their x-y localisation and scale adjusted

down to sub-pixel resolution to improve stability even further. This fine tuning

is done by drawing a 3-D quadratic curve calculated by Taylor expansion of

D(x, y, σ) and then shifted, so that its origin is at the candidate’s location, as

given by eq. (3-10), whereby x = [x, y, σ]T .

D(x) = D +
∂DT

∂x
+

1

2
xT ∂2D

∂x2
x (3-10)

The derivatives are approximated by finite differences, thus the samples

for the calculation of each accurate keypoint position are the candidate itself

and its immediate neighbours in all three dimensions (x, y and σ). In eq. (3-

10), D and its derivatives are taken at the sample point that is considered to

be the closest to the accurate location, i.e., the central sample point (initially,

the keypoint candidate) and x is the offset from this point. Determining the

magnitude of the fine adjustment is equivalent to finding the values of x that

correspond to the extremum point of the curve, here denoted by x̂.

Deriving eq. (3-10) with respect to x and setting it to 0 yields the 3× 3

system
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

∂2D

∂σ2

∂2D

∂σ∂y

∂2D

∂σ∂x

∂2D

∂σ∂y

∂2D

∂y2

∂2D

∂y∂x

∂2D

∂σ∂x

∂2D

∂y∂x

∂2D

∂x2


·

 σ

y

x

 = −



∂D

∂σ

∂D

∂x

∂D

∂y


(3-11)

for whose coefficients the linear approximations by finite differences are:



∂D

∂σ
=

Di,j,k+1 −Di,j,k−1

2

∂D

∂y
=

Di,j+1,k −Di,j−1,k

2

∂D

∂x
=

Di+1,j,k −Di−1,j,k

2



∂2D

∂σ2
= Di,j,k−1 − 2Di,j,k + Di,j,k+1

∂2D

∂y2
= Di,j−1,k − 2Di,j,k + Di,j+1,k

∂2D

∂x2
= Di−1,j,k − 2Di,j,k + Di+1,j,k



∂2D

∂σ∂y
=

(Di,j+1,k+1 −Di,j+1,k−1)− (Di,j−1,k+1 −Di,j−1,k−1)

4

∂2D

∂σ∂x
=

(Di+1,j,k+1 −Di+1,j,k−1)− (Di−1,j,k+1 −Di−1,j,k−1)

4

∂2D

∂y∂x
=

(Di+1,j+1,k −Di+1,j−1,k)− (Di−1,j+1,k −Di−1,j−1,k)

4

An absolute value greater than 0.5 in any direction of x̂ means that the

accurate keypoint location is actually closer to another sample. In such cases,

the central point must shift to the respective sample coordinates. This process

is repeated until x̂ has all its values below 0.5 and the accurate position of

the keypoint is then obtained by adding the adjustment x̂ to the central point

location.

For stability reasons, the keypoint candidate has to pass a contrast filter.

Namely, if |D(x̂)| is below an user-defined threshold (reference (18) suggests a
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bound of 0.03, for normalised image pixel values), the correspondent keypoint

is eliminated.

The remaining candidates have to go through yet another filter to be

considered stable enough to enter the keypoint list. The DoG function is typ-

ically quite responsive to edges, even if a candidate location is fuzzy around

it. Such features can be detected by using the ratio between the trace and

the determinant of the Hessian matrix H computed at their position (see eq.

(3-12)).

Tr(H)

Det(H)
=

(r + 1)2

r
(3-12)

whereby r is the ratio between the largest and the smallest eigenvalue of H

(r = 10 is the ratio used on tests reported in (18)).

Candidates that pass both filters are elected SIFT features, or keypoints,

and will undergo the last two steps of the algorithm.

3.3.3
Orientation assignment

Invariance to image rotation is achieved by representing the keypoints

relative to their orientation. The computations are made at the L(x, y, σ)

that is closest to each keypoint scale, so that the features remain invariant to

changes in this dimension. The magnitude m(x, y) and orientation θ(x, y) of

∇L(x, y, σ) are calculated by eq. (3-13) and eq. (3-14), respectively.

m(x, y) =

√
[L(x + 1, y)− L(x− 1, y)]2 + [L(x, y + 1)− L(x, y − 1)]2 (3-13)

θ(x, y) = arctan

(
L(x + 1, y)− L(x− 1, y)

L(x, y + 1)− L(x, y − 1)

)
(3-14)

An histogram of orientation is built for each keypoint and the pixels

that surround it. The entries are weighted by their magnitudes and a gaussian

window with a standard deviation typically 1.5 times greater than the feature

scale. Each bean of the histogram covers a 10◦ range.

The highest peak in each histogram, plus any other that eventually is

within 80% of it, are selected to be feature orientations. Since there can be
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more than one peak, spin-off keypoints having the same (x, y, σ), but a different

orientation, may be created. The orientations are also adjusted by fitting a

parabola to the three histogram values closer to each peak.

3.3.4
Keypoint descriptor

Up to this stage, the resulting features are invariant to scale and orien-

tation. A descriptor for the area around the keypoint must then be computed

to achieve robustness regarding illumination changes, 3-D view point and even

non-rigid deformations. Figure 3.2 provides an example of the entire process.

The approach for building the keypoint descriptor was inspired by the

idea that had been introduced in (9). The first step is to sample the gradient

magnitudes and orientations around the keypoint, whose scale defines the level

of gaussian blur for the gradient image. Rotating both gradient orientations

and descriptor coordinates relative to the feature orientation assures invariance

to this parameter. Then, the magnitude of each sample point around the

feature is weighted by a gaussian function with standard deviation equal to

half the width of the descriptor window.

Figure 3.2: A 2×2 descriptor, on the right, computed from four 4×4 subregions, on
the left, where the gaussian window is indicated by the overlaid circle. The length of
each descriptor arrow corresponds to the sum of the weighted gradient magnitudes
near that direction within the respective subregion.

The sample area is divided into sub-regions, each represented by an

orientation histogram. Their entries are the sum of all weighted sample

magnitudes within the sub-region, in the respective orientation range. Before

the summation, however, these samples are multiplied by yet another weighting

factor, which is inversely proportional to the gap between their orientation and

the centre of their respective bins.
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The histograms are assembled and then normalised to form the keypoint

descriptor. Finally, to favour the contribution of orientation over magnitude, all

descriptor entries are limited to a given upper bound and then re-normalised.

Experiments reported in (18) use 16 × 16 sample areas and 4 × 4 sub-

regions, represented by 8-bin histograms, as well as an upper bound of 0.2.

3.3.5
Matching

Euclidean distance between two descriptors is the measure assessed to

identify a conjugate pair of keypoints. The database feature within the closest

distance from a given keypoint descriptor is its match, which must then be

validated.

For every false match, there is likely a number of other ones within similar

distances, due to the high dimensionality of the descriptor space. Therefore, a

match is considered valuable, if the difference between the closest and second-

closest distances is wide enough.

Exhaustive search for the conjugate pair would incur a tremendous

computational cost. Thus, the match searching engine is KD-tree-based (12).

An alternative procedure, the Best-Bin-First (BBF) algorithm (4), returns the

closest descriptor with high probability by searching the bins in the order of

their closest distance from the query location.



4
Proposed methods for keypoint tracking

This chapter introduces two algorithms devised for tracking keypoints

in a video sequence. The following sections describe in details each one

individually, but the general guidelines given in this preamble will help

understanding their broad functioning, for they may actually be perceived

as two variants of the same method, rather than different approaches to tackle

the same problem.

In fact, the choice of which to adopt should be problem-driven, i.e.,

regarding the particular characteristics of a sequence, whose terms will be

discussed in the forthcoming chapter. Both variants are a potpourri of the

algorithms for point matching presented in 3 - or a variation of some of them

- and the contents of each mix are what makes one brand more suitable for

dealing with a specific kind of movie.

Generally, in a video sequence, two subsequent frames are converted into

the image pair for tracking each keypoint position. The processing time of the

matching procedure determines the frame sampling rate; that is, the faster the

procedure, the closer (in time scale) the two frames.

Consecutive frames that are closer in time tend to be more similar to one

another, making keypoints easier to trace. Thus, in such cases, the robustness

demanded of the matching technique may drop, to a certain degree, without

corrupting the tracking progress. That said, one is left with the circular trade-

off dilemma depicted below, in Figure 4.1.

//

�� ��

�� ��
a drop in robustness

leads to a
simpler algorithm

���� ��

�� ��
if the algorithm is

faster the robustness
may be even feebler

�� ��
�� ��
simpler algorithms
tend to be faster

oo

Figure 4.1: Scheme that drove the devising of the object tracking method.



A Parallel Method For Object Tracking 32

Leaving the relation between robustness, speed and complexity of the

matching procedures for a later discussion, there is still the matter of initialis-

ing - and maintaining - a keypoint collection, so that the tracking process may

actually be carried on, to be taken under consideration. Typically, matching

procedures that are less robust are also more likely to lose track of a greater

number of keypoints during the process. Thus, such collection must be updated

to either replace lost keypoints, refresh their coordinates, or even add new ones

that are more suitable to the current scene.

Moreover, environmental problems, such as occlusion and change in

illumination, make the selection of the initial keypoints even less trivial and in

fact suggest such collection should not be statical. Which brings on the matter

of how to assess the suitability of a keypoint to the current scene, as addressed

in (24) and (25), for instance.

The method proposed herein makes needless to implement any heuristics

in such assessment. The adequacy of the collection is automatically assured by

the fact that its entries are the keypoints found as close in time as possible to

the sequence frame being processed at a given instant, and thus they have a

higher chance of being consistent with the upcoming scene. This is achieved

by parallel processing, i.e., separate threads for the tracking and updating

processes.

The block diagram depicted by Figure 4.2 illustrates the overall process

throughout time.

Prior to running the tracking algorithm, an object model must be built

off-line. This model consists of a keypoint list - which may be analyst-selected,

to assure stability - containing the features’ x-y coordinates, associated to a

particular descriptor, and their correspondent world coordinates, for the object

pose detection calculations, which can be performed, for instance, by a third

thread. Since the SIFT algorithm was adopted at the early tracking stage in

both variants, the descriptor used is exactly as described in (18). The collection

must contain keypoints corresponding to all views of the object.

The updating strategy is as follows. Using the past matching sequence

frames, a thread should be held responsible for carrying on the collection

update. New features, in these last fames, are matched to the original model

image(s) to assemble a new starting list, i.e., the keypoint collection to be

processed by the next tracking thread. Finally, a mask matrix is associated

to the starting list. These keypoints are the ones most likely to be consistent

with the scenes from this moment on - since they were spotted at frames

corresponding to immediately past time instants - therefore making them the

best candidates for tracking. They must be matched against the original model,
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Figure 4.2: Block diagram of the object tracking process.

as to assure they fall in the area defined as being stable at the off-line training

stage.

As soon as an update is ready (and the current tracking thread is idle),

the keypoint coordinates corresponding to the template image, or rather, the

template coordinates, are refreshed - or replaced by others - and the matching

process continues. The old tracking thread dies as another update thread starts.

All these new keypoints are flagged as “fit” in the mask matrix. During the

matching process, whenever the algorithm fails to keep track of a feature,

its template coordinates are tagged as “unfit” and cease being part of the

tracking process at the subsequent frames, remaining latent until the current

thread dies, but remembering that they may still be members of the next list

delivered by the following update.

The keypoint updating process is kept indefinitely ongoing. The only

requirement is that there must be a new set of keypoints ready, whenever the

number of fit pairs falls beneath a certain threshold, which may be around the

minimum points required for the 3-D reconstruction (pose detection). If, by

any chance, the list is entirely lost before the update process has delivered the

next one, the object will remain untraceable for that period.

Having introduced the kernel of the object tracking process, let us present

in details the two variants devised for running in the matching thread.
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4.1
Variant 1

As previously stated, the matching algorithms implemented for the actual

object tracking that are fast enough to keep a high frame sampling rate,

are also less robust, due to their simpler nature. This lack of complexity

demands keypoints that are themselves both inherently easy to match and

consistent with the upcoming scene, which is achieved by the updating

procedure described in the previous section. Having addressed the point

stability matter, let us discuss how the matching techniques presented in

chapter 3 can be used to take full advantage of the keypoint collection quality.

At the very beginning of the tracking process, there is hardly any

knowledge about the camera position, in relation to the pose of object model

(or the keypoint collection). Hence, the point correspondence in the template-

matching frame pair at this stage is rather more difficult, in relation to the

ones hereafter. Therefore, a more robust procedure should be adopted.

From hereon, as to assure keypoint stability and pairing consistency, an

algorithm that can not only provide a match, but also eliminate false initial

matches is desirable. As the video sequence moves further in time and the

camera movements have stabilised, as well as the false matches have been

eliminated, the tracking process will not require a great filtering ability nor a

wide image transformation coverage. Consequently, the matching algorithm as

the current tracking thread advances in time can be even simpler.

Based upon the discussion above, the mix proposed for this variant is as

follows. Figure 4.3 shows the object tracking scheme.

– apply the SIFT algorithm and match the starting frame against the

model

– whenever the former step is completed, grab the incoming frame and

use LSM to adjust the coordinates of all keypoints, using their present

values, i.e., the SIFT output, as initial guesses and with the last

processed frame - the SIFT-frame - as the template

– consecutively apply NCC from now on to refresh the still fit keypoints;

the initial guesses and template are analogous to the LSM-step

This procedure restarts every time a collection update is released. The

update processes are in fact analogous to the first step and replace it as the

scheme goes further in the time line. Notice that the number of frames lost, i.e.,

left unprocessed during each match calculation drop significantly from stage to

stage, since the procedures themselves get faster and faster and, additionally,
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more keypoints become unfit (and no longer adjusted), although the latter

aspect is a direct consequence of adopting this procedure rather than properly

an advantage.

Chapter 5 provides quantitative information to buttress the strategy

devised for this variant.

Figure 4.3: Block diagram of the object tracking method: variant 1, also called the
SLN variant.

In the remaining of this document, variant 1 will be designated by the

initials of the algorithms that compound the mix (namely, SIFT, LSM and

NCC), that is, by the SLN abbreviation.

4.2
Variant 2

Both the LSM and the NCC algorithms have matrices of neighbouring

image pixel values as descriptors. Hence, not only they behave rather poorly

in cases where the geometric difference between the pairs of frames is too

significant - like in high movement sequences - but they also may become

quite unstable when processing severely compressed video sequences, namely

those where the quantisation blocks are noticeable and a pixel’s neighbours

- and even location - are far from corresponding to the ones in the original

uncompressed frames.

This second variant was devised to deal with such sequences and its func-

tioning is very similar to its peer’s. Here, the LSM-NCC routine is replaced by
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a SIFT-based matching technique. Figure 4.4 depicts the alternative matching

strategy.

Running the SIFT algorithm as implemented in the first step throughout

the whole sequence would incur a massive loss of image frames, due to its

processing time. Again, if the subsequent frames used as template-matching

pairs are kept close enough in time to one another, it is fair to admit

that a keypoint location will not wander off, in terms of absolute image

coordinates, regardless the significancy of the geometric transformation it went

through. Therefore, processing only a patch of the matching frame, around the

coordinates of each template keypoint, should be enough to determine the new

location.

Regarding this variant, the matching technique consists then in consecu-

tively applying the SIFT algorithm to each keypoint individually, considering

the image to be only a small area around it (in other words, locally applying

the algorithm), until the update process is completed.

Figure 4.4: Block diagram of the object tracking method: variant 2, also called the
SLS variant.

Evidently, this second variant can be successfully applicable to all natures

of video sequences, including the ones best suited to the one presented in the

previous section. However, since the SIFT algorithm, even when applied locally,

is slower than both LSM and NCC procedures, the frame sampling rate would

be lower, leaving more frames unprocessed. In fact, if applying both methods to

the same low movement, not severely compressed, sequence and then playing
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only the processed frames as a movie, the video made using the frames output

by the second variant would appear rather jerky, when compared to the other.

Analogously, this variant will be referred to as the SLS variant from

hereon.

4.3
General remarks on performance

Commenting on the overall method in terms of programming code, there

are two identical structures that carry keypoint collections, one referred as

the updating list and the other, as the tracking list. Whenever an update is

ready, they simply switch their memory addresses, which makes the refreshing

of the tracking keypoints virtually instantaneous. Moreover, since multi-core

processors have become quite dominating, the parallelism of the method

proposed herein is easily implemented.

In addition, the greatest stumbling block, regarding the method’s per-

formance in both variants, is the processing time of the matching procedures.

Thus, as the CPU clock frequency increases, so does the quality of the results

achieved by the object tracking algorithm presented in this chapter, both in

number of frames processed and location accuracy, the latter being a direct

consequence of the former. Moreover, faster machines also lead to an increase

in the collection updating rate, hence the consistency of the keypoint lists with

the changing scene escalates, as well, which further contributes to the method’s

accuracy.



5
Performance assessment

This chapter is organised as follows. The first section provides a discussion

on the quality assessment of all the point matching algorithms addressed

in chapter 3, which founded the theory behind the object tracking method

previously discussed.

The last section presents the performance evaluation of the method itself.

General guidelines on which variant to use, are given as well, according to the

nature of a sequence, in terms of environment, video quality and compression

characteristics.

All tests reported herein were conducted in a Pentium Quad-Core Q6600

Processor (2.40 GHz – 3.23 GB RAM).

5.1
Performance evaluation of the matching techniques

The quality assessment of the algorithms were made considering both

accuracy, as defined in section 5.1.1, and processing time. Different databases

were used to cover each aspect.

5.1.1
Accuracy measures

The database used for measuring the accuracy of both the SIFT and

LSM procedures was built from a single 640×479 image, which underwent

five different affine transformations. These transformations had to be applied

artificially, so that the ground truth would be known.

This is actually an intensity level image correspondent to a frame of a

video sequence shot underwater1, which is the source of various test data used

in the experiments reported herein. The fact that it was shot with a camera

that is most likely to be used in the valve control application, described in

section 1, is the main reason why the experiments resorted so much to it.

Additionally, the environment is as close as possible to the real conditions of

such application, when compared to the rest of the test data available.

1This source also engendered the “Pool” video sequence and, therefore, its properties are
fully addressed in section 5.2.1.
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Building the database

The five affine transformations (I-V ), defined by the 3×2 matrix in eq.

(5-1) and used to assess the accuracy of the point matching algorithms, are

listed next.

[
xtr

ytr

]
=

[
a b c

d e f

]
·

 x

y

1

 (5-1)



I :

[
0 1 0

1 0 0

]

II :

[
0.5 0.1 2

0.1 0.5 2

]

III :

[
1.1 0.1 2

0.1 1.1 2

]

IV :

[
1.1 0.05 3

0.05 1.1 3

]

V :

[
1.2 0.2 1

0.2 1.2 1

]

The results of applying each of the transformations above to the original

image are shown below.

Figure 5.1: Original image. Figure 5.2: Affine transformation I.
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Figure 5.3: Affine transformation II. Figure 5.4: Affine transformation III.

Figure 5.5: Affine transformation IV. Figure 5.6: Affine transformation V.

Experiment setup

The experiments were conducted as follows:

1. the SIFT algorithm, up to the keypoint localisation stage, was applied

to all six images, original plus its five affine spin-offs

2. the original image was matched against each spin-off individually (for

the LSM assessment, the coordinates output by SIFT in each image

were taken as the initial guesses)

3. all false matches were eliminated

4. the ground truth (GT) of the five matching procedures was obtained by

computing the known affine transformations of all remaining keypoints

on the original image, in each case

5. accuracy was assessed by measuring the distance, in pixels, between:

– GT and SIFT outcome

– GT and LSM outcome

– SIFT and LSM outcomes
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As what regards the NCC algorithms, both pixel and sub-pixel versions,

tests were conducted in a similar fashion. Only, in this case, the test points

were chosen manually. However, for true shift transforms are of a quite simple

nature, in all cases the outcomes matched the ground truth exactly.

Results

All five transformations were joined into single tables and charts, while

the three distance measures - x-y coordinates and euclidean - were kept

separate.

The tables and charts referring to the fifth item listed in the experiment

setup are presented consecutively and followed by a comparative discussion

over the results.

x y euc.
mean 0.34 0.32 0.51
stddev 0.42 0.51 0.63
min 0 0 0
max 4.55 6.81 8.04

Table 5.1: Difference in pixels between the SIFT outcome and the ground truth.

x y euc.
mean 0.67 0.82 1.17
stddev 0.80 0.99 1.16
min 0.01 0.01 0.06
max 4.49 7.09 8.39

Table 5.2: Difference in pixels between the LSM outcome and the ground truth.

x y euc.
mean 0.53 0.60 0.91
stddev 0.49 0.57 0.61
min 0.01 0 0.1
max 2.47 2.76 2.76

Table 5.3: Difference in pixels between the SIFT and the LSM outcomes.

Manually eliminating false matches, whose coordinates in the trans-

formed image are not far from the correct location, can be rather difficult

for some of the affine transformations. This may explain the higher values ob-

served in the charts and tables that refer to the comparisons with the ground

truth(Tables 5.1 and 5.2 and Figures 5.7 and 5.8). Especially considering the

much lower values observed when the two algorithms were compared with one
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Figure 5.7: Euclidean distance between the SIFT outcome and the ground truth.

Figure 5.8: Euclidean distance between the LSM outcome and the ground truth.
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Figure 5.9: Euclidean distance between SIFT and LSM outcomes.

another (Table 5.3 and Figure 5.9). These lower values, along with the quite

similar patterns of the histogram distributions seen in Figures 5.7 and 5.8,

point that both procedures indeed output equivalent results.

Moreover, the procedure adopted for the ground truth computation is

subjected to truncation and therefore not 100% accurate, thus adding residual

error to the resulting coordinates, as indicate the high standard deviation

levels. The average values, however, attest the robustness of both procedures

and the disparity between their outcome and the ground truth can indeed be

attributed a great deal to the residues.

5.1.2
Hit rate and processing time

The results presented herein are summarised. Complete records are

available in the appendix.

This section addresses a comparative study of the SIFT and the LSM

procedures, regarding their ability to match keypoints in two consecutive

frames of a video sequence. Performance measures assessed were hit rate, rather

than the accurate point location, and processing time.
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The hit rate percentage is defined as

hit rate =

(
1− # false matches

# total matches

)
· 100 (5-2)

Object tracking in real-time video sequences can be translated into repet-

itively matching a set of its keypoints in two consecutive frames throughout

time. Thus, if an algorithm can not only match a reasonable number of key-

points in two views of an object - keeping a low incidence of false positives -

but also run fast enough, so that not many frames are left unprocessed, then it

is fit for object detection. The actual pose detection from such keypoint record

is a simple straightforward procedure, provided the camera parameters and

the correspondent coordinates in the model, relative to a given World system,

are both known. In this case, the total of matched keypoints required is also

very low (about 3 should be enough), although a greater number is desirable

for robustness, as it tends to rule out the effects of small location errors or

even eventual surviving false positives.

Database

The database used in this study was a 401-frame uncompressed video

sequence, with a frame rate of 40.00 fps, shot underwater. Another piece was

saved for the quality assessment of the method itself (section 5.2.1’s “Pool”

sequence).

Experiment setup

The experiment was designed as follows:

1. taking 2 consecutive frames at the time, the complete SIFT algorithm

was applied to find keypoint matches between the images, resulting in

400 pairs

2. total of matches and processing time of each pair were recorded

3. the LSM algorithm was then applied, using the SIFT outcome as its

template (first image) and initial guess (second image) coordinates

4. the same performance measures were recorded

5. finally, each one of the 800 (400 from SIFT and 400 from LSM) pairs

was individually examined, match-by-match, to manually count all false

positives, whereby the criteria were strictly visual
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Filtering false matches in two consecutive frames of a video sequence is

a much easier task, in comparison to the case reported in section 5.1.1, since

they are very similar to one another. Thus, the false positives elimination is

most likely to have been 100% accurate.

Results

Complete records of the results presented in this section are available in

the appendix (chapter C).

The tests conducted show the ability of the LSM procedure in filtering

false matches from the SIFT outcome. Overall, the hit rate improvement, after

running LSM, was quite substantial.

Tables 5.42 and 5.5 present the overall performance of the SIFT and

LSM algorithms, respectively. Although SIFT had an already low average

of less than two mismatches per frame, the number of false matches after

running LSM is nearly 10 times smaller and its worst hit rate score is just

below 99%. Comparing only the worst absolute behaviours, SIFT output at

most 6 false positives against LSM’s 2. There was an increase of 245 frames

with only correct matches (over 60%) and in only 7.5% of cases the hit rate

dropped after applying LSM, even so always below 0.5% (Tables 5.8-(c) and

5.7). However, its somewhat instable nature caused a considerable reduction

(in average almost 27%) of the original SIFT matches (see Table 5.6), meaning

that the model must contain an either long or, preferably, stable list of points.

For instance, model points near homogeneous areas should be avoided.

mean stddev max min total
# matches 561.45 186.16 1073 99 224581
# false matches 1.49 1.26 6 0 597
hit rate 99.68 0.34 100 96.71 X
time 0.82 0.17 1.84 0.23 X

Table 5.4: Overall performance of SIFT.

mean stddev max min total
# matches 410.42 197.50 903 9 164170
# false matches 0.16 0.39 2 0 64
hit rate 99.94 0.17 100 98.94 X
time 0.74 0.22 1.44 0.14 X

Table 5.5: Overall performance of LSM.

2The symbol “#”, seen in Tables 5.4 to 5.12, denotes quantity.
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mean stddev max min total
# matches -151.02 47.24 -70 -332 -60411
# false matches -1.33 0.39 0 -6 -533
hit rate 0.26 0.17 3.29 -0.48 X

Table 5.6: Comparative table of SIFT and LSM overall performances; negative values
denote a decrease from the former to the latter.

highest drop in false matches 6
highest decrease of hit rate 0.48
highest increase of hit rate 3.29

Table 5.7: Comparative table of SIFT and LSM overall performances: absolute
values.

Tables 5.8-(a..c) to 5.12 provide further information on the ability of

LSM to improve a SIFT outcome. They list the outcome of both algorithms

in terms of mean and standard deviation, as well as direct comparison of their

performance regarding the total of matches. These were built by assembling

pairs of consecutive frames into groups, whose labels are depicted below. The

hit rate metric was also used as a comparative measure. Tables 5.8 to 5.12,

along with Table 5.13, provide the ground for the discussion presented in the

remainder of section 5.1.2.

IP: template-matching image pairs

PM: pairs with no false matches

HR: hit rate

(a) SIFT

# IP 400
# PM 95

(b) LSM

# IP 400
# PM 340

(c) LSM to SIFT

# IP 400
# increase in PM 245
# decrease in HR 30
# increase HR 275
# same HR 95

Table 5.8: Comparing SIFT and LSM performances: total of pairs.

# PM
# matches 618.83
time 0.82

Table 5.9: SIFT pairs: comparison by mean.
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# PM
# matches 197.47
time 0.20

Table 5.10: SIFT pairs: comparison by standard deviation.

# PM
# matches 417.94
time 0.75

Table 5.11: LSM pairs: comparison by mean.

# PM
# matches 196.70
time 0.23

Table 5.12: LSM pairs: comparison by standard deviation.

According to Tables 5.9 and 5.11, both procedures, when considering

only frames with no false positives, yielded an average number of matches

even (a little) higher than the one obtained with respect to all frames (the

standard deviation values also remained about the same, as show Tables 5.10

and 5.12, and are much lower than the respective mean records). This helps

speaking for the robustness of the matching algorithms, since they are capable

of performing with 100% accuracy, even when processing a high number of

conjugate pairs.

Processing time was much longer than that obtained when embedding

both algorithms to the object tracking method, but so was the list of keypoints

found, which are in a considerably smaller number in practical object tracking

applications. Keypoints were located in the entire images to increase the

number of samples for robustness purposes. Additionally, this also allowed a

more comprehensive analysis regarding the investigation of feature stability. In

fact, all false matches observed in this video sequence involved points located

in a restrained area of the scene. This strongly suggests that post-processing

the object model created for the tracking to look for such “instability” areas

may contribute a great deal to the improvement of the method’s performance.

Moreover, a considerably higher contrast threshold and a shorter pyramid were

used, severely reducing the number of keypoints.

In addition to the aforementioned performance measures, another as-

sessment of the keypoint location accuracy is presented next. Naturally, the

ground truth, as defined in section 5.1.1, could not be computed. However,
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the results provide further information about the similarity between the SIFT

and LSM outcomes. This calculations were done automatically, i.e., without

filtering the false positives, which nevertheless, due to the high levels observed

for the hit rate, are unlikely to have contaminated the results to a degree

that would invalidate the conclusions drawn. Tables 5.3 and 5.13 are analogous.

x y euc.
mean 0.23 0.19 0.34
stddev 0.37 0.34 0.48

Table 5.13: Difference in pixels between the SIFT and the LSM outcomes: total of
164170 samples.

The maximal and minimal assessments were suppressed from Table 5.13,

because of the presence of false matches. The average difference stays around

1/5 of a pixel in each direction, which may be solely attributed to truncation

errors, as further suggest the much higher levels of standard deviation. Since

replication of error patterns are extremely rare, especially considering that

both algorithms are of complete different natures, these results offer yet another

indication of the accuracy of pixel localisation achieved by adopting such

procedures.

5.2
Performance evaluation of the object tracking method

This section presents the results of applying the method for object

tracking described in chapter 4 to different video sequences; each having its own

idiosyncrasies, regarding compression, environment and degree of movement.

The method’s performance quality assessment was chiefly visual-aided and,

therefore, of a more qualitative nature, rather than quantitative. Numerical

data were nevertheless produced and are made available, as well.

Discussions are followed by a few guidelines on which variant is more

likely to yield the best results, given the characteristics of a sequence.

5.2.1
Database

Four sequences, from three different cameras, were used for evaluating

the method’s performance. They are:

Surgical Procedure: JPEG-compressed sequence, of an extremely high

degree of movement. Environment and object blend; the human body

being the scene, and the prostate the specific target to track. The
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geometrical transformations the object undergoes throughout this video

may be remarkably difficult to model, even between consecutive frames,

due to the rubbery consistency of animal tissues.

Figure 5.10: Surgical procedure: frame sample.

Fast Pre-Amp.: High movement JPEG-compressed sequence, specially shot

for testing the method’s behaviour. The interest object, an ancient pre-

amplifier unit, placed in a dry environment, is the only one appearing

in the scene. World coordinates of the keypoints are easily measurable,

due to the nature of the interest object. However, the background is still

not perfectly neutral and illumination changes and incidence cause it to

incur perceptible alterations in contrast.

Figure 5.11: Fast Pre-Amp.: frame sample.
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Slow Pre-Amp.: Very similar to the previous one, only differing as regards

the degree of movement; low, is this case. The former observations made

on illumination conditions apply here, as well.

Figure 5.12: Slow Pre-Amp.: frame sample.

Pool: Low movement uncompressed sequence, shot underwater in a (rather

dirty) pool. The object is a sort of tank, located in a fairly more

interesting environment, i.e., full of potential keypoint candidates, to

be recognised by the SIFT algorithm.

Figure 5.13: Pool: frame sample.
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5.2.2
Experiment setup

The degree of movement was the main criterion for dividing the sequences

among the two method variants. Applying the SLN and SLS variants to the sur-

gical procedure and pool sequences, respectively, was a considerably straight-

forward choice. The geometrical changes of the former go completely against

the SLN fundamentals, quite the opposite of the latter, a low movement se-

quence, with no compression, meaning that the relations between neighbouring

pixels remained intact, which provides a more reliable keypoint descriptor for

the two last procedures.

Matter resolved, two extra videos were made for testing:

– SLN’s performance in cases where (JPEG) compression is present, and

– SLS’s behaviour in less extreme environmental conditions.

However, the incidence of keypoints is significantly low, due to the object’s own

nature (i.e., its appearance that is remarkably uniform), which adds difficulty

to the tracking conditions.

Thus, all four sequences present some characteristic that affects the level

of difficulty for testing an object tracking procedure. Indeed, they are intended

to assess the robustness of the method, ultimately speaking for the likelihood

of its success in real applications.

The four sequences were processed by their respective variants, whose

performance was assessed from:

– charts of the total of keypoints throughout time that show the cyclical

routine of continuous drops - as frames are processed - and sudden

increases - whenever an updated is released;

– histograms of the keypoints in each frame, which offer the complementary

view of how many frames hold a particular number of features, and

– records of the actual keypoint locations in all processed frames, merged

into an output movie, in which each one eventually lost was replaced by

the last processed frame.

5.2.3
Results

This section reports the results of the performance measures previously

described. A further analysis on the behaviour of the SLN variant, when applied

to the “Pool” sequence, regarding the update process, is also presented.
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Figure 5.14: Surgical procedure: Incidence of matched keypoints throughout time
(SLS variant).

Figure 5.15: Surgical procedure: Matches per frames histogram (SLS variant).
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Figure 5.16: Fast Pre-amp: Incidence of matched keypoints throughout time (SLS
variant).

Figure 5.17: Fast Pre-amp: Matches per frames histogram (SLS variant).
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Figure 5.18: Slow Pre-amp: Incidence of matched keypoints throughout time (SLN
variant).

Figure 5.19: Slow Pre-amp: Matches per frames histogram (SLN variant).
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Figure 5.20: Pool: Incidence of matched keypoints throughout time (SLN variant).

Figure 5.21: Pool: Matches per frames histogram (SLN variant).
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All charts and histograms are depicted in Figures 5.14 to 5.21. Time

elapsed during the starting step of the object tracking (the “START” block

on Figure 4.2) was excluded from these records. The remaining unprocessed

frames, however, contribute with a 0 entry in the histograms.

The SLN and SLS variants are instantly recognisable from their general

response depicted in the charts (Figures 5.14, 5.16, 5.18 and 5.20). They show

that SLN is able to track more keypoints, missing less frames, as indicate the

series of short steady periods, during which the total of keypoints remains the

same. The update and tracking processes are more easily identified on the SLS

charts, for subsequent scenes - further apart in time - hardly ever have the

same number of keypoints. The overall duration of a tracking chain is bound

by the time needed for the next update release. However, in SLN’s tracking

chain (“thread #1” on Figure 4.2), each link is faster, which is crucial to

the effectiveness of the area-based keypoint descriptors in this case and hence

accounts for the steadier behaviour of this variant, in terms of match losses.

Comparing both SLS sequences, the lower degree movement of “Fast Pre-

Amp”, in comparison to “Surgical Procedure”, cause the variant’s behaviour to

somewhat resemble the standard SLN’s, despite of the average total of matched

keypoints being lower, for the reasons given in section 5.2.2.

Regarding the SLN sequences, the appearance of the interest object in

“Slow Pre-Amp”, which hampers the matching process, helps to explain the

rather more erratic behaviour of the method, depicted by the high frequency

of fluctuations on Figure 5.18, when compared to ones on Figure 5.20.

The histograms show that the total of matched keypoints varies signif-

icantly among the frames, especially in the SLN sequences, which may be

explained by the fact that the tracking procedure actually consists of several

independent processes, started by an update event that has no memory of the

past ones and whose relation to them is solely the resemblance - or lack of it

- borne by the scenes such frames depict.

Different keypoints may have the same x-y coordinates, but differ in the

σ dimension. This explains why the number of matches is greater than the one

perceived on the images.

As visual aid for the performance evaluation, mosaics showing the dif-

ferent localisations of some keypoints throughout a few frames, i.e., describing

how the object moves along the scene, are presented next. A change of colour

denote that an update has taken place, and, in this case, kept the feature in

the tracking list. Table 5.14 lists the time elapsed between the first and last

frames in Figures 5.22 to 5.26, where keypoint locations were rounded for the

display.
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time (s)
Surgical Procedure 1 1.40
Surgical Procedure 2 3.48
Fast Pre-Amp 1.50
Slow Pre-Amp 0.53
Pool 1.23

Table 5.14: Time elapsed during the processes of tracking the keypoints in the
examples given.

Figure 5.22: Surgical Procedure: a keypoint moving throughout time (row-wise, from
top left to bottom right).

Figure 5.23: Surgical Procedure: another keypoint moving throughout time (row-
wise, from top left to bottom right).
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Figure 5.24: Fast Pre-Amp: a keypoint moving throughout time (row-wise, from top
left to bottom right).

Exception made to the two “Surgical Procedure” figures, consecutive

frames on the mosaics do not necessarily correspond to consecutive processed

frames. They followed, nevertheless, the time line. The object’s appearance is

likely to be the main reason of the more dynamic keypoint turn out at updates

in the “Surgical Procedure” sequence.

Conversely, for a sequence like “Pools”, where the scene changing rates

are much lower and the interest object is rigid, consecutive updated collection

releases are expected to be quite similar to one another - with respect to the

distribution of keypoints - since the SIFT response is deterministic. However,

during some intervals, the tracking list changed quite remarkably after an

update event. As said, due to its high stability standards, LSM eliminates a

fair amount of the matched point entries in the list delivered by SIFT. In

addition, varying environmental conditions cause changes from one frame to
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Figure 5.25: Slow Pre-Amp: a keypoint moving throughout time (row-wise, from top
left to bottom right).

another, even if the scene remained stationary. This is particularly significant

in a sequence shot underwater, since the medium is subjected to refraction

and movement. Thus, the keypoints that meet those stability criteria may be

different at each update process, even if the original starting lists are similar.

As to verify this hypothesis, six frame triplets were analysed. Figures

5.27 and 5.28 depict, respectively, three samples representing cases, in which

the matched keypoints list released by the update:

– is similar to the one before, and

– changed considerably in comparison with the previous one.

Each triplet contains the SIFT outcomes - up to the keypoint localisation

stage - in the following frames:

1. frame used for a given update event (left patch; keypoints in red)
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Figure 5.26: Pool: a keypoint moving throughout time (row-wise, from top left to
bottom right).

2. last frame processed by the tracking thread originated by the update

(central patch; keypoints in green)

3. frame used for the next update event (right patch; keypoints in blue)

All triplets yielded very similar keypoint distribution patterns - especially

the last two items in each triplet, which are, in fact, closer in time - and, thus,

corroborate the previous statement.

At first, in the cases of sequences processed by the SLN variant it

might seem like both versions of the proposed method could actually be used

interchangeably. In fact, the SLS variant would work well with all sequences.

However, the former produces a greater average number of matches. Thus,

the decision for one or the other is essentially a trade-off between match

incidence and range of transformation mapping. There are yet other factors

that contribute to the suitability of one variant over the other, a matter

addressed in the next section.
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Figure 5.27: Samples that yielded similar matched keypoint lists. Left: at an update
event; centre: last frame in the tracking phase; right: at the next update event.
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Figure 5.28: Samples that yielded significantly different matched keypoint lists. Left:
at an update event; centre: last frame in the tracking phase; right: at the next update
event.
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5.2.4
General guidelines

In this section, the overall characteristics of the four test sequences,

regarding environment, compression, nature of the interest object and degree

of movement, are assembled into Table 5.15. Hopefully, it will help selecting

between the two variants for a future application, given a particular set of

conditions.

frame rate (fps) 25.00 29.97 29.97 40.00
compression JPEG JPEG JPEG NONE

degree of movement EXTREM. HIGH HIGH LOW LOW
environment HUMAN BODY DRY DRY UNDERWATER

interest object DEFORMABLE HARD HARD HARD

VARIANT SLS SLS SLN SLN

Table 5.15: Summary table for case-driven determination of the most suitable
variant.



6
Concluding remarks

This work aimed at the development of a novel method for tracking a

target object in real-time. By determining the locations of several keypoints

throughout a video sequence, the object’s pose can then be estimated. Exhaus-

tive tests on point matching algorithms provided the information required for

devising a method that is adaptable to different conditions of environment, the

nature of the interest object, quality of the camera(s) and degree of movement.

Although it was meant for self-sufficient use, the proposed algorithm may also

be embedded in a control system to function as the visual-based fine tuning

stage, where it would be triggered occasionally. That was, in fact, the original

project.

Parallel processing automatically assures that the set of keypoints is al-

ways consistent to the current scene, thus discarding algorithms for monitoring

or controlling these features’ incidence. Two variants of the method were de-

signed to increase its robustness and, thus, widen its applicability in the face

of the diversity of working conditions that may be encountered. Indeed, the

procedure proved to be case-driven, for the inherent qualities of some sam-

ple sequences violated the very principals, in which bed the original variant’s

functioning.

Future works include adding the pose detection step to a demo version.

If the camera parameters and the correspondent world coordinates are known,

the procedure is rather simple and only requires one camera. For analogous

reasons to what exposed herein, an independent third thread should perform

the pose computation, allowing the processing time of the two existing ones to

remain unchanged.
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A
Camera model and calibration overview

This chapter describes the physical parameters that relate World and

camera coordinates, as well as the derived general perspective projection

equation.

A.1
Model

The parameters that relate a camera to the World are divided into

intrinsic and extrinsic categories. The former models the camera’s actual

coordinates to the idealised system (see eq. A-8) and the latter relates the

device’s coordinate system to a fixed World point, determining its position

and orientation.

The coordinates of a point P = [x, y, z]T and its image P′ = [x′, y′, z′]T

are related by


x′ = z′

x

z

y′ = z′
y

z

(A-1)

Since P′ lies in the camera plane, its z′ coordinate is equal to the focal

distance f ′.

If normalising the image plane, a point p̂ = [û, v̂, 1]T in this system can

by related to the World coordinates by

p̂ =
1

z

[
I 0

]
·

[
P

1

]
(A-2)

Let us consider the pinhole camera model, which can be perceived as a

light-proof box with a small hole in one side. When light from a scene passes

through this pinhole, it projects an inverted image on the opposite side. For

instance, cameras using small apertures act like such box.
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Assuming that the physical retina of a camera is located at a distance f

from the pinhole and its centre is not at the origin of the camera system, the

coordinates of an image point p[u, v, 1]T , in pixel units, are given by eq. (A-3),

where

– u0, v0 are the offset from the retina centre;

– α, β are the magnification parameters, defined by the ratio between the

distance f and the size of a pixel in the camera frame (expressed in the

same length units as f);

– θ is the angle between the image axes, introduced to account for the

skew caused by eventual manufacturing errors.


u = α

x

z
− α cot θ

x

z
+ u0

v =
β

sin θ

y

z
+ v0

(A-3)

Substituting (A-3) into (A-2) yields

p̂ =


α −α cot θ u0

0
β

sin θ
v0

0 0 1


︸ ︷︷ ︸

K

p (A-4)

or rather,

p̂ =
1

z
MP, where M 4

=
[
K 0

]
(A-5)

In eq. (A-5), M represents the perspective projection that maps P into

p.

Furthermore, the camera and World frames may be distinct from one

another, thus M can be rewritten as

M = K
[
R T

]
(A-6)
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whereby R and T are, respectively, the rotation matrix and the transla-

tion vector from the World to the camera system. Eq. (A-5) still applies

and, in this case, is known as the general form of the perspective projection

equation.

The depth z in eq. (A-5) is not an independent parameter and, in fact,

equals m3 ·P, where m3 is the third row of M.

Explicitly writing the projection matrix as a function of its intrinsic (α,

β, u0, v0 and θ) and extrinsic (R and T ) parameters yields the following 3× 4

matrix

M =


αrT

1 − α cot θrT
2 + u0r

T
3 αt1 − α cot θt2 + u0t3

β

sin θ
rT
2 + v0r

T
3

β

sin θ
t2 + v0t3

rT
3 t3

 (A-7)

A.2
Calibration

Camera calibration is the process of estimating the parameters intro-

duced in last section.

Camera lenses are always subjectable to some degree of radial distortion,

which are generally quite significant in underwater applications, for instance.

To account for such phenomenon, the general perspective projection equation

becomes

 (m1 − λum3) ·P = 0

(m2 − λvm3) ·P = 0
(A-8)

where the parameter λ is a polynomial function of the distance between

the image centre and the image point p, given by

λ = 1 +

q∑
p=1

κpd
2p (A-9)

where the κp term stands for the radial distortion coefficients. Assuming

the image centre is known, both u0 and v0 can be set to 0, thus the distance
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d expressed as a function of p yields

d =

√
u2

α2
+

v2

β2
+ 2

uv

αβ
cos θ (A-10)

which turns the calibration matter into a non-linear system of order q + 11.

Alternatively, it can be broken into two steps. The first consists in

solving eq. (A-5) for nine camera parameters and the second, in estimating

the remaining q + 2 by solving a simpler non-linear system.



B
Pose detection overview

In robotics, pose detection is the ultimate goal of a vision-based position

control system. Through cameras, the differences between the actual and

desired position of the manipulator can be estimated from pose detection,

using, e.g., point matching. This information is then sent to controllers to, for

instance, correct the pre-programmed trajectories. In other words, the aim is

to determine the rotation matrix R and the translation vector T that map

the position of an object in an image frame into its real location in the World

system.

This chapter addresses the geometric and algebraic constraints that link

two views of a scene, as well as the 3-D reconstruction of a scene from a

set of point projections taken from two different cameras. In addition, a brief

comment on the monoscopic variant of the pose detection issue is also included.

B.1
Monoscopic pose estimation

Assuming the intrinsic camera parameters are known, the calibration

matrixK is constant and the pose estimation issue translates into the simplified

calibration problem of finding the extrinsic camera parameters, provided that

the correspondent World coordinates of each point in the database are also

known.

B.2
Stereoscopic pose estimation

The depth of a image point along its projection ray cannot be directly

assessed from a single image. However, if (at least) two views are available, it

can be calculated through triangulation, for an image point lies, necessarily,

in the pane formed by the other image and the camera centres. This is called

the epipolar constraint, which is represented by a 3 × 3 matrix, named the

essential matrix E (15) or the fundamental matrix F , depending on whether

the intrinsic camera parameters are known or unknown.
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Figure B.1: Epipolar geometry.

Figure B.1 depicts the epipolar geometry. It shows that the point P and

its images p and p′, taken by a pair of cameras - i.e., a conjugate point - whose

centres are O and O′ all belong to the epipolar plane defined by OP and O′P .

The epipole e′ is the projection of the optical centre O of the left camera in

the image taken by the right camera, and vice-versa and, since p and p′ are

images of the same point, p′(p) lies on the epipolar line l(l′) associated with

p(p′).

Again, let us assume that the intrinsic camera parameters were previ-

ously computed and are, therefore, known. In such case, the homogeneous and

normalised image coordinate vectors are perfectly equivalent. That is, p = p̂.

It should have been made clear from Figure B.1 that

−→
Op ·

[−−→
OO′ ×

−−→
O′p′

]
= 0 (B-1)

which can be rewritten as

p̂ · [T × (Rp̂′)] = 0 (B-2)

The two projection matrices M and M′, with respect to the left camera,

are given by
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
M =

[
I 0

]
M′ =

[
RT −RTT

] (B-3)

Rewriting eq. (B-2) in terms of the essential matrix E yields

p̂T [T ×R] p̂′ = 0 =⇒ p̂TEp̂′= 0 (B-4)

The nine coefficients of E are only defined up to scale and can be

parametrised by the three degrees of freedom of R and the two of T .

Figure B.2: 3-D reconstruction by triangulation.

The 3-D reconstruction can be performed by triangulation, as depicted

in Figure B.2. In eq. (B-4), the product Ep̂′ represents the epipolar line l

associated to p′. Furthermore, from Figure B.2

−−→
OP1 +

−−→
P1P2 +

−−→
P2O

′ =
−−→
OO′ (B-5)

which can be rewritten, with respect to the left image plane, as
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zp̂− dl (p̂×R′p̂′)− z′R′p̂′ − T = 0 (B-6)

where dl is the euclidean distance between the origin and l (see Figure B.1).

Finally, if that is the case, the World coordinates P of the conjugate

pair can then be calculated by combining the projective projection equation

(see eq. (A-5)) and eq. B-6 to yield eq. B-7.

P = zp̂− dl
(p̂×R′p̂′)

2
(B-7)



C
Match quality assessment: full tables

This chapter contains full records of the results summarised in section

5.1.2.

C.1
SIFT records

Figure C.1: SIFT: lowest incidence of matches.

Figure C.2: SIFT: highest incidence of matches.

Figure C.3: SIFT: worst hit rate behaviour.
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Figure C.4: SIFT: best hit rate behaviour.
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Figure C.5: SIFT: full record.

C.2
LSM records

Figure C.6: LSM: lowest incidence of matches.

Figure C.7: LSM: highest incidence of matches.
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Figure C.8: LSM: worst hit rate behaviour.
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Figure C.9: LSM: best hit rate behaviour.
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Figure C.10: LSM: full record.

C.3
Comparative records

A negative number on the following table means that the respective SIFT

value was higher than LSM’s.
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Figure C.11: SIFT-LSM: full record.



D
Video sequences

Video sequences used for assessing the performance of the tracking

algorithms. The squares switch colour to indicate that a new database has

been released.

Notice: it may take this document a while to load the movies...

D.1
Surgical procedure

Surgical procedure: SLS Variant.

Figure D.1: Surgical procedure: click to play.
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D.2
High movement pre-amp

High movement pre-amp: SLS Variant.

Figure D.2: High movement pre-amp: click to play.
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D.3
Low movement pre-amp

Low movement pre-amp: SLN Variant.

Figure D.3: Low movement pre-amp: click to play.
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D.4
Pool

Pool: SLN Variant.

Figure D.4: Pool: click to play.
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