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Resumo 
 

Achanccaray, David. Ativação de um Robô Móvel mediante uma 
Interface Cérebro Computador baseado no Processamento de Sinais 
Electroencefalograficas. Rio de Janeiro, 2009. 83p. Dissertação de 
Mestrado - Departamento de Engenharia Mecânica, Pontifícia 
Universidade Católica do Rio de Janeiro. 

 

Este trabalho apresenta o desenvolvimento de uma interface cérebro 

computador como um meio de comunicação alternativo para ser utilizado na 

área de robótica. A dissertação contempla a implementação de um 

eletroencefalógrafo, alem disso, métodos e técnicas computacionais para a 

realização desta interface. 

Para a aquisição dos sinais cerebrais se desenhou um eletroencefalógrafo, 

basicamente configurado por uma tripla amplificação, um filtro passa-baixos, 

filtros passa-altos e uma conversão analógico-digital. O processamento do sinal 

digitalizado é feito em duas etapas, o preprocessamento; no qual se filtra o ruído 

elétrico e se detecta os artefatos que possa conter o sinal. A segunda etapa é o 

processamento propriamente dito, na qual se faz a extração de características que 

definem cinco tipos de atividades mentais escolhidas segundo a especialização 

dos hemisférios do cérebro e referências sobre este tipo de interfaces; com as 

medidas obtidas se procede ao reconhecimento de padrões mediante o 

treinamento de uma rede neural probabilística. 

O protocolo de treinamento estabelecido consta de três etapas: detecção de 

artifacts, classificação do tipo de atividade mental, e adaptação mutúa entre a 

interface e o usuário mediante a realimentação da atividade reconhecida e a 

atualização dos parâmetros da rede neural. 

A interface desenvolvida é aplicada para a ativação de um robô móvel, 

associando as atividades mentais a comandos, avaliando o desempenho da 

interface interagindo com outros sistemas. 

 

Palavras-chave 
Interface Cérebro Computador; Eletroencefalograma; Redes Neurais; 

Transformada Wavelet; Robótica. 
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Abstract 
 

Achanccaray, David. Activation of a Mobile Robot through a Brain 
Computer Interface based on Electroencephalographic Signal 
Processing. Rio de Janeiro, 2009. 83p. M.Sc. Dissertation - Departamento 
de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de 
Janeiro. 

 

This work presents the development of a brain computer interface as an 

alternative communication channel to be used on the robotic field. The 

dissertation contemplates the implementation of an electroencephalograph, the 

computational methods and techniques to accomplish this interface. 

An electroencephalograph is designed to acquire brain signals; basically 

conform by a triple amplification, a low-pass filter, high-pass filters and an 

analog-digital converter.  

The processing of the digitized signal is composed by two stages, the 

preprocessing; in which, the electric noise is filtered and the artifacts are 

detected. The second stage is the processing strictly speaking; in which, the 

feature extraction that define to five kinds of chosen mental activities according 

to the brain specialization and brain computer interface references are computed; 

with these measures, a probabilistic neural network is trained to classify the kind 

of mental activity presented. 

The training protocol is defined by three stages: detection of artifacts, 

classification of the kind of mental activity, mutual adaptation between the user 

and the system through the feedback of the classified mental activity and the 

updating of the neural network parameters. 

The brain computer interface developed is applied to activate the 

movements of a mobile robot, associating the mental activities to commands, 

evaluating the performance of the interface interacting with other systems.   

 

Keywords 
Brain Computer Interface; Electroencephalograph; Neural Networks; 

Wavelet Transform; Robotic. 

 

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



  

Summary 

1 INTRODUCTION 14 

1.1 Motivation 14 

1.2 Objectives 16 

1.3 Methodology 16 

1.3.1 Implementation of an Electroencephalograph 16 

1.3.2 Preprocessing 17 

1.3.3 Processing 18 

1.3.4 Development of the Interface 18 

1.3.5 Application 19 

1.4 Outline of the Dissertation 19 

2 IMPLEMENTATION OF AN ELECTROENCEPHALOGRAPH 20 

2.1 Introduction 20 

2.2 Electroencephalography 21 

2.2.1 Neurophysiology of the EEG 21 

2.2.2 EEG Rhythms 22 

2.3 Implementation 23 

2.3.1 Protection Circuit 23 

2.3.2 Instrumental Amplification 24 

2.3.3 Right-Leg Driver 27 

2.3.4 Amplification 30 

2.3.5 Analog-Digital Converter 35 

2.4 Summary and Conclusions 36 

3 PREPROCESSING 40 

3.1 Introduction 40 

3.2 EEG Perturbations 40 

3.3 Preprocessing 41 

3.3.1 Filtering 42 

3.3.2 Power Line Noise Filtering 44 

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



  

3.3.3 Artifact Detection 46 

3.3.4 Wavelet Transform Analysis 46 

3.3.5 High-Order Statistics 50 

3.3.6 Neural Networks 51 

3.4 Summary and Conclusions 54 

4 PROCESSING 56 

4.1 Introduction 56 

4.2 Mental Activities 57 

4.2.1 Evoked Response based BCIs 57 

4.2.2 Operant Conditioning based BCIs 58 

4.3 Feature Extraction 60 

4.4 Pattern Recognition 61 

4.5 Summary and Conclusions 63 

5 APPLICATION 65 

5.1 Introduction 65 

5.2 Training Protocol 66 

5.3 Graphical Interface 67 

5.4 Application 69 

5.5 Summary and Conclusions 72 

6 CONCLUSIONS 73 

6.1 Summary of achievements 73 

6.2 Future directions 74 

REFERENCES 75 

 

 

 

 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



  

List of figures 

Figure 2.1 – Protection Circuit. 24 

Figure 2.2 – Biomedical Instrumentation Amplifier. 26 

Figure 2.3 – Instrumentation Amplifier INA114 (Texas Instrument 

Incorporated, 2003). 27 

Figure 2.4 – RLD system as shown in the INA114 datasheet. 28 

Figure 2.5 – RLD system for n-channels. 29 

Figure 2.6 – First stage of amplification. 31 

Figure 2.7 – Second stage of amplification. 32 

Figure 2.8 – Structure VCVS of a second order low-order filter. 33 

Figure 2.9 – Components of the data acquisition system CompactDAQ.  

(a) NI 9205 analog input module. (b) NI cDAQ-9172 chassis. 35 

Figure 2.10 – Block diagram of the implemented electroencephalograph.37 

Figure 2.11 – The implemented electroencephalograph. 37 

Figure 2.12 – Electrodes positions from the International System 10-20. 38 

Figure 2.13 – Acquired signal in the position Fp1 of the International 

System 10-20. 38 

Figure 3.1 – Magnitude characteristics of physically realizable filters. 42 

Figure 3.2 – Magnitude and phase of the frequency response of the 

Butterworth filter. 44 

Figure 3.3 – Magnitude and phase of the frequency response of the  

notch filter. 45 

Figure 3.4 – Sub-band decomposition of DWT implementation. 48 

Figure 3.5 – Decomposition of the frequency ranges. 49 

Figure 3.6 – Electrodes position according to the international system  

10-20. 50 

Figure 3.7 – Neural network block to detect artifacts. 52 

Figure 3.8 – Block diagram of the preprocessing stage. 55 

Figure 4.1 – Feature extraction of the wavelet coefficients. 61 

Figure 4.2 – Pattern recognition of the five mental activities. 62 

Figure 4.3 – Block diagram of the processing of the digitalized EEG  

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



  

signal. 64 

Figure 5.1 – Block diagram of the sequence of stages in the application. 66 

Figure 5.2 – Training protocol applied to a user. 67 

Figure 5.3 – Training option of the interface. 68 

Figure 5.4 – Application option of the interface. 68 

Figure 5.5 – Mobile robot “Touro” of the application. 69 

Figure 5.6 – Differential traction configuration of the mobile robot  

“Touro”. 69 

Figure 5.7 – Application of the brain computer interface. 70 

Figure 5.8 – The block diagram of the integrated system. 72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



  

List of tables 

Table 1 – Values of the parameters a  and b  for the Butterworth filters, 

where n is a filter order. 34 

Table 2 – Features of the NI 9205 analog input module. 35 

Table 3 – Test of the MLP neural networks (individually and united).  

C: Correct. I: Incorrect. 53 

Table 4 – Test of the probabilistic neural networks (individually and united). 

C: Correct. I: Incorrect. 53 

Table 5 – Confusion Matrix of the Classification with MLP neural  

networks. S: Signal without artifact. SA: Signal with artifact. 53 

Table 6 – Confusion Matrix of the Classification with probabilistic  

neural networks. S: Signal without artifact. SA: Signal with artifact. 54 

Table 7 – Confusion Matrix of the Classification of the Mental Activities 

with a PNN neural network. RM: Motor imagery of the movement of the 

forefinger to the right side. LM: Motor imagery of the movement of the 

forefinger to the left side. CR: 3D Rotation of a cube. AS: Arithmetic 

operation of subtraction. RX: Relax. 63 

Table 8 – Comparison between mental activities and classifier’s output.  71 

 

 

 

 

 

 

 

 

 

 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



  

List of abbreviations 

AC          

ADC       

ALS   

AS   

BCI         

CMRR    

CR          

DC          

EEG       

EMG       

ERP 

ERS  

ERD  

ESD       

LM          

MA         

MLP       

PNN   

P300    

RAM   

RF          

RLD        

RM         

RX  

SCP       

SNR       

SSVER  

Altern current  

Analogical-digital conversion  

Amyotrophic lateral sclerosis  

Arithmetic operation of subtraction 

Brain computer interface  

Common mode rejection ratio 

3D Rotation of a cube  

Direct current  

Electroencephalography  

Electromyography  

Event related potentials  

Event-related synchronization  

event-related desynchronization 

Electrostatic discharge  

Motor imagery of the movement of the forefinger to the left side  

Mental activity 

Multilayer perceptron 

Probabilistic neural network 

Positive peak at about 300 milliseconds 

Random Access Memory 

Radiofrequency 

Right-leg driver 

Motor imagery of the movement of the forefinger to the right side  

Relax 

Slow cortical potentials  

Signal-to-noise ratio  

Steady state visual evoked responses 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



 14

1. 
INTRODUCTION 

1.1 
Motivation 

The development of interfaces between humans and machines has been an 

expanding field in the last decades including several interfaces using voice, vision, 

haptics, electromyography (EMG) signals, electroencephalography (EEG) signals 

and combinations between those as communication support (Garcia, 2004). 

Recent studies show the possibility to analyze brainwaves to derive 

information about the subjects’ mental state that is then mapped into some 

external action such as selecting a letter from a virtual keyboard or moving a 

robotics device. A system that utilizes these brainwaves is called Brain Computer 

Interface (BCI) (Millan, 2002a). 

People who are partially or totally paralyzed (e.g., by amyotrophic lateral 

sclerosis (ALS) or brainstem stroke) or have other severe motor disabilities,  can 

find a BCI as an alternative communication and control channel that does not 

depend on the brain’s normal output pathway of peripheral nerves and muscles. A 

BCI makes it possible that these persons enhance their life quality (Wolpaw et al., 

2000). 

Non-invasive BCIs are based on the analysis of EEG phenomena associated 

with various aspects of brain function (Millan, 2002a). Thus, Birbaumer (1999) 

measured slow cortical potentials (SCP) over the vertex (top of the scalp). SCP 

are shifts in the depolarization level of the upper cortical dendrites and indicate 

the overall preparatory excitation level of a cortical network. Other groups look at 

local variations of the EEG rhythms. The most used of such rhythms are related to 

the imagination of movements and are recorded from the central region of the 

scalp overlying the sensorimotor cortex. In this respect, there are two main 

paradigms. Pfurtscheller’s team works with event-related desynchronization 

(ERD) computed at fixed time intervals after the subject is commanded to imagine 

specific movements of the limbs (Kalcher, 1996; Obermaier et al., 2001a). 
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Alternatively, Wolpaw (1994) and coworkers analyze continuous changes in the 

amplitudes of the mu (8-12 Hz) or beta (13-28 Hz) rhythms. 

Finally, in addition to motor-related rhythms, Anderson (1997) and Millán 

(2002b) analyze continuous variations of EEG rhythms, but not only over the 

sensorimotor cortex and in specific frequency bands. The reason is that a number 

of neurocognitive studies have found that different mental activities (such as 

imagination of movements, arithmetic operations, or language) activate local 

cortical areas at different extents. The insights gathered from these studies guide 

the placement of electrodes to get more relevant signals for the different tasks to 

be recognized. In this latter case, rather than looking for predefined EEG 

phenomena as in the previous paradigms, the approach aims at discovering EEG 

patterns embedded in the continuous EEG signal associated with different mental 

states.  

These different BCI systems are used to operate a number of brain-actuated 

applications that augment people’s communication capabilities, provide new 

forms of education and entertainment, and also enable the operation of physical 

devices (Millan, 2002a). The subject controls active devices by carrying out 

mental activities, which are associated with actions depending on the BCI 

application (Garcia, 2004). 

BCI applications include control of the elements in a computer-rendered 

environment (e.g. cursor positioning (Wolpaw et al., 2000; Garcia et al., 2004), 

visit of a virtual apartment (Bayliss, 2001, 2003)), spelling programs (e.g. virtual 

keyboard (Obermaier et al, 2001b)), and command of an external device (e.g. 

robot (Millan & Mourino, 2003), prosthesis (Pfurtscheller et al., 2003)).  

Recent applications into the robotic field are the control of a wheelchair 

(Bourhis et al., 2001) and the control of the robot Khepera (Millan et al., 2004); 

these applications could be the basis for the implementation of an external 

skeleton to return the total mobility of a quadriplegic person. 

In this work, the hardware and the software for a BCI system is developed. 

The hardware for the acquisition of EEG signals is implemented in two stages; an 

amplification stage and an analogical-digital conversion (ADC) stage. The 

software of the BCI system is developed in C# language at Visual Studio 2005 

environment linking developed functions in the MATLAB program for the EEG 

signal processing and the recognition of mental activities.     
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1.2 
Objectives 

The goal of this work is to develop an alternative unidirectional 

communication system between humans and robots through a BCI. To achieve 

this goal the following objectives must be accomplished: 

 

• Implement a multichannel electroencephalograph. 

• Develop an interface for the processing of the EEG signals. 

• Integrate the BCI system to the robot to be activated. 

 

 

1.3 
Methodology 

The development of this work consists of the following stages: 

 

1.3.1 
Implementation of an Electroencephalograph 

An electroencephalograph is a device that records the brain activity through 

electrodes placed on the scalp. The acquisition encompasses different kinds of 

waves, due to the large number of interconnections of neurons and to the non-

uniform structure of the brain, which depend on the position of the electrodes. 

The implementation of the electroencephalograph is based on the reference 

“The Experimental Portable EEG/EMG Amplifier” (Benning et al., 2003), mainly 

in the stage of user protection, amplification and reduction of common-mode 

noise. The electronic design is composed of the following parts: 

• Protection circuit: it protects the circuitry from electrostatic discharge 

(ESD) and protects the user from failing circuitry. 

• Instrumental amplification: it amplifies the signal and reduces the 

impedance of a differential input. 

• Right-Leg Driver (RLD): it raises the common-mode rejection ratio 

(CMRR) of the instrumentation amplifier, with a higher signal-to-noise 

ratio (SNR), the differential signal obtained is ensured to possess only 
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relevant information and a minimum of interference currents or irrelevant 

data. 

• Amplification: it amplifies the signal amplitude to suitable levels for the 

analog-digital converter. 

• Analog-Digital Converter (ADC): it digitalizes the signal to be processed 

by the computer. In this case, the data acquisition system “CompactDAQ” 

of the National Instruments company is used as ADC.  

 

The amplification circuit is achieved in two stages: two high-pass first order 

filters are included between the amplifications, with a cutoff frequency of 0.16 Hz 

to remove DC-voltage offsets. The second amplification contains a low-pass 

second order Butterworth filter, with a cutoff frequency of 100 Hz. This reduction 

of the bandwidth allows getting closer the range of frequency to the brainwaves.  

 

1.3.2 
Preprocessing 

The EEG signal is the endogenous brain activity measured as voltage 

changes at the scalp, while a perturbation is any voltage change generated by 

other sources. The perturbation sources include: electromagnetic interferences, 

eye blinks, eye movements, and muscular activity (particularly from head 

muscles).  

The preprocessing removes external noise from EEG trials and detects the 

presence of artifacts. The power line noise is considered as external noise; eye 

blinks and eye movements are defined as ocular artifacts, while muscular activity 

is referred to as muscular artifact. 

Electromagnetic and EEG equipment noise are narrow band pass signals. 

Thus, removing them through hardware or software filtering is straightforward. 

Typically, EEG signals are filtered in the 0.5-40 Hz frequency band; i.e. the 

effective EEG frequency band (Garcia, 2004). 

It is worth mentioning that while in the BCI frame work they are treated as 

artifacts, muscular and eye movements are used as information support in other 

human-machine interaction systems (Barreto et al, 2000; Tecce et al., 1998); i.e. 

the detection of artifacts is used to interact with the system. 
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The power line noise is removed through notch filtering and the artifacts are 

detected by training of neural networks to recognize patterns obtained after the 

application of a wavelet transform, as discussed later in this work. 

 

1.3.3 
Processing 

The signal processing is divided into two parts: feature extraction and 

pattern recognition. 

The feature extraction consists on computing a few measurements from 

which it is possible to determine the different mental activity patterns. In this case, 

the chosen measurement is the mean of the wavelet coefficients in the principal 

frequency bands of the brainwaves.  

Pattern recognition consists on determining an algorithm to classify the 

signal’s features according to the corresponding mental task. A probabilistic 

neural network (PNN) is used as classifier, obtaining a high hit rate; the classifier 

must be able to recognize five different kinds of mental activities. 

  

1.3.4 
Development of the Interface 

The stages of training and application of the BCI must be performed by 

automatic processes. The development of a graphical interface that can link all the 

subsystems fulfilled in different programming environments and interact with the 

available hardware is necessary. 

The graphical interface is developed in the programming environment 

Visual C# adding libraries to run routines in MATLAB to control the data 

acquisition through the “CompactDAQ” hardware and to send commands for the 

mobile robot by the radiofrequency (RF) interface. 

This interface offers to the user a friendly environment to develop the skill 

of controlling his/her brain activity, while the system can adapt to him/her. 
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1.3.5 
Application 

The validation of the BCI is made through the activation of the movements 

of a mobile robot, associating the mental activities to commands that can be sent 

to the robot by the RF interface. This application is tested with a user, evaluating 

the performance of the BCI with different measurements to demonstrate the 

accuracy and speed of the integrated system. 

 

 

1.4 
Outline of the Dissertation 

This dissertation is divided into six chapters.  This chapter serves as an 

introduction and overview of the work.   

Chapter 2 is a description of the stages of implementation of the 

electroencephalograph, electronic design and fulfillment of standards. 

Chapter 3 presents in detail the methods for the EEG signal preprocessing: 

the power line noise filtering and the procedure to detect artifacts. 

Chapter 4 describes the signal processing: the algorithms for the feature 

extraction and the models for pattern recognition. 

Chapter 5 explains the application of the BCI, to validate the integrated 

system and to compare the obtained performance with different users.  

Chapter 6 summarizes the conclusions regarding the integration of the 

above methodologies.  Finally, suggestions for further work are presented. 
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2 
IMPLEMENTATION OF AN ELECTROENCEPHALOGRAPH 

2.1  
Introduction 

In 1929, a German doctor named Hans Berger announced his discovery that 

it was possible to record the electrical impulses of the brain and display them 

graphically on paper. He also discovered that these electrical impulses changed 

according to the brain's activity, whether in sleep, under sedation, with lack of 

oxygen, and in certain neurological disorders like epilepsy. Initially, his peers 

laughed at him, but eventually his discovery laid the groundwork to the field that 

today is known as clinical neurophysiology (Griffiths et al., 2002). 

An electroencephalograph is a device that records the brain activity through 

electrodes placed on the scalp. The acquisition encompasses different kinds of 

waves that depend on the position of the electrodes. 

Electroencephalography has an invaluable support to the diagnostic of 

diseases of the central nervous system (CNS) that compromise the structure of the 

neurons. One of the pathologies where the electroencephalography is most useful 

is in the study of epilepsy, featuring unusual excitability of the neurons (Cotrina, 

2003). 

 A first step to develop a BCI is buying or implementing the acquisition 

system of EEG signals. In this work, due to the high cost of an commercial 

electroencephalograph, an electroencephalograph of ten differential channels is 

designed and implemented with the suitable features to acquire EEG signals for 

the desired analysis. 
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2.2  
Electroencephalography 

2.2.1  
Neurophysiology of the EEG 

The generators of electric fields that can be registered with scalp electrodes 

are groups of neurons with uniformly oriented dendrites. Neurons communicate 

with each other by sending electrochemical signals from the synaptic terminal of 

one cell to the dendrites of other cells. These signals affect dendritic synapses, 

inducing excitatory and inhibitory post synaptic potentials (Evans & Abarbanel, 

1999; Windhorst & Johansson, 1999). The EEG is a result of the summation of 

potentials derived from the mixture of extracellular currents generated by 

populations of neurons. Hereby the EEG depends on the cytoarchitectures of the 

neuronal populations, their connectivity, including feedback loops, and the 

geometries of their extracellular fields (Garcia, 2004).  

The brain cortex is composed of six layers: namely molecular layer, external 

granular layer, external pyramidal layer, internal granular layer, internal 

pyramidal layer and polymorphic or multiform layer. The main physical sources 

of scalp potentials are the pyramidal cells of the third and fifth cortical layers 

(Barea, 2002). 

The appearance of EEG rhythmic activity in scalp recordings results from 

the coordinated activation of groups of neurons, whose summed synaptic events 

become sufficiently large. The rhythmic activity may be generated both by 

neurons having the inherent capability of rhythmic oscillations, and by neurons 

which can not generate a rhythm on their own but can coordinate their activity 

through excitatory and inhibitory connections in such a manner that they 

constitute a network with pacemaker properties. The latter may be designated as 

neuronal oscillators (Windhorst & Johansson, 1999). The oscillators have their 

own discharge frequency, which depends on their internal connectivity. The 

neuronal oscillators start to act in synchrony after application of external sensory 

stimulation or hidden signals from internal sources, e.g. resulting from cognitive 

loading (Garcia, 2004). 

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



 22

2.2.2  
EEG Rhythms  

The usual classification of the main EEG rhythms based on their frequency 

ranges is as follows: delta (0 to 4 Hz), theta (4 to 8 Hz), alpha (8 to 13 Hz), beta 

(13 to 30 Hz), and gamma (higher than 30 Hz). However, this classification only 

partially reflects the functional variation of rhythmic activities. For example, EEG 

rhythms within the alpha range may be distinguished by their dynamics, place of 

generation and relation to certain behavioral acts (Garcia, 2004). 

The alpha rhythm (Berger’s wave) is typical of a resting condition and 

disappears when the subject perceives a sensorial signal or when he/she makes 

mental efforts; this rhythm is best detected with the eyes closed (Garcia, 2004; 

Inuso et al., 2007). It was shown that the alpha rhythm is generated by 

reverberating propagation of nerve impulses between cortical neuronal groups and 

some thalamic nuclei, interconnected by a system of excitatory and inhibitory 

connections and resulting in rhythmic discharges of large populations of cortical 

neurons (Lopes da Silva, 1991). 

The beta rhythm is generated by neuronal oscillators that are located 

presumably inside the cortex (Lopes da Silva, 1991). The beta rhythm is typical of 

periods of intense activity of the nervous system and occurs mainly in the parietal 

and frontal regions (Garcia, 2004). Low amplitude beta with multiple and varying 

frequencies is often associated with active, busy or anxious thinking and active 

concentration. Rhythm beta with a dominant set of frequencies is associated with 

various pathologies and drug effects (Inuso et al., 2007). 

The theta rhythm originates from interactions between cortical and 

hippocampal neuronal groups (Miller, 1991). It appears in periods of emotional 

stress or rapid eye movement during sleep (Garcia, 2004). 

The delta rhythm appears during deep sleep, anesthesia, and is also present 

during various meditative states involving willful and conscious focus of attention 

in the absence of other sensory stimuli (Findji et al., 1981). 

The rhythm gamma oscillations have its basis in interneuronal feedback 

with quarter-cycle phase lags between neurons situated close to each other in local 

areas of the cortex (Freeman, 1992). It is thought that gamma oscillations are 

associated with attention, perception and cognition. 
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The analysis of EEG rhythms and their interactions provide indices that are 

correlated with mental states such as attention (Gevins et al., 1999), memory 

encoding (Tallon-Boudry et al. 1998), motor imagery (Babiloni et al., 2000; 

Pfurtscheller et al., 2003; Wolpaw, 2000) and perception/recognition (Thorpe et 

al., 1996). 

The range of the EEG rhythms is 5 to 100 Vμ  peak to peak (Lee & Tan, 

2006). 

 

 

2.3  
Implementation 

The implementation of the electroencephalograph is based on the reference 

“The Experimental Portable EEG/EMG Amplifier” (Benning et al., 2003), mainly 

in the stage of user protection, amplification and reduction of common-mode 

noise. The electronic design is composed of the following parts. 

 

2.3.1  
Protection Circuit 

The protection circuit is connected to external electrodes. It is the first stop 

for the EEG signal entering the amplifier box.  Each channel takes two differential 

signals that enter the protection circuit through a pair of 2.2 k resistors and three 

capacitors (10pF, 100pF, 100pF), see Fig. 2.1.  This initial stage suppresses RF 

signals that enter the system through the electrode cables.  After this stage, but 

before the instrumentation amplifier stage, each differential signal can be 

observed individually. The individual signals then enter the clamping diode 

section.  The clamping diodes are actually a pair of matched NPN and PNP 

transistors that begin to conduct at voltages exceeding ± 0.58V.  With voltages 

above this level the transistors act as open circuits pulling all harmful currents 

down to ground (Benning et al., 2003).   
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Figure 2.1 – Protection Circuit. 

 

2.3.2  
Instrumental Amplification 

Instrumentation amplifiers are used to perform the crucial differential signal 

combination of the amplification stage. Although there are many applications and 

types of instrumentation amplifiers, the low-signal system has proven the most 

appropriate method of acquiring EEG signals (Benning et al., 2003). 

The instrumentation amplifier could be considered the most important 

component of the EEG device. It is this stage that controls the essential combining 

of the differential input signals and sets up the common-mode rejection ratio for 

the entire device. It is also the instrumentation amplifier that must deal with the 

issue of noise in the incoming signal since the output signal is usually large 

enough to reduce this effect (Benning et al., 2003).  

An instrumentation amplifier performs a combination of important tasks in 

the modification of an analog signal. Firstly, this amplification stage takes in two 

separate signals and relates them to each other. This relation is known as the 

differential signal. This differential signal allows for the two input signals to vary 

in polarity and amplitude. It also allows for the signals to possess a common DC 

signal that will not be introduced into the resultant output. For this reason, a 
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floating ground, such as it exists on the human body, is acceptable in relation to 

the input signals (Benning et al., 2003). 

Furthermore, an instrumentation amplifier is realized through the integration 

of a series of three operational amplifiers (op-amp). This construction method 

ensures, by default, that the differential signal must be referenced to the op-amp 

output zero voltage. This reference now guarantees that the unknown common-

mode DC signal found in the input signals is eliminated and the output is a pure 

differential signal related to the board ground plane (Benning et al., 2003). 

It is also the job of the instrumentation amplifier to remove noise from the 

input signals. This concept is closely related to the previous comments about 

common DC signals. Over time, the human, and therefore the input signals, are 

subjected to variable interference currents from a variety of sources. This noise 

causes the floating potential of the human to randomly fluctuate up and down. 

Due to these fluctuations, a common-mode signal is introduced into the 

instrumentation amplifier, which in turn creates erroneous results to be produced 

at the op-amp output. There is an interesting method of counteracting this 

fluctuation in the form of a Right Leg Driver (Benning et al., 2003), explained in 

detail in the section 2.3.3.  

An instrumentation amplifier consists of two variable gain op-amps and a 

unity gain differential amplifier. For low-signal applications, the negative inputs 

for the variable-gain op-amps are tied together via matching resistors, and a 

floating ground is created. The floating ground is actually dependent on the 

combined outputs of the variable gain op-amps and therefore also directly related 

to a known board reference ground. This floating ground allows the second stage 

differential amplifier to achieve CMRR values from 10 to 50dB higher than 

conventional instrumentation amplifier models while the two matching resistors 

set up the initial gain value. The variable gain op-amps act as voltage followers 

(due to the floating ground) and the common-mode gain equals 1. The typical 

instrumentation amplifier is shown in the Figure 2.2 and can be bought as an IC 

chip that may or may not consist of the Cf capacitors. In the figure; however, the 

Cf capacitors should not affect the DC component of the signal and are used to 

remove AC signals (Benning et al., 2003).   
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Figure 2.2 – Biomedical Instrumentation Amplifier. 

 

The INA114 instrumentation amplifier from Texas Instruments is selected 

as the best circuit available for this application. The INA114 allows for the op-

amp output voltage to be referenced to a variable voltage. This ensures that the 

differential signal will continue to remain referenced to this signal throughout the 

entire board and no unintentional DC offset will be obtained later in the system 

(Texas Instrument Incorporated, 2003). 

The INA114 allows for variable gain from 1 to 10000 times to amplify the 

differential signal dependent on an external resistance. The variable gain G  can 

be calculated by Eq. (1).  

GR
k

G
Ω

+=
50

1                                               (1) 

where GR  is the external resistance that defines the variable gain (see Fig. 2.3). In 

this design GR  = 4.4 Ωk . 

36.12
4.4

501 =
Ω
Ω

+=
k
kG                                       (2) 
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Figure 2.3 – Instrumentation Amplifier INA114 (Texas Instrument Incorporated, 

2003). 

 

2.3.3  
Right-Leg Driver 

The Right Leg Driver is used to raise the common-mode rejection ratio of 

the instrumentation amplifier. With this higher signal-to-noise ratio (SNR), the 

differential signal obtained is ensured to possess only relevant information and a 

minimum of interference currents or irrelevant data. The idea behind the RLD is 

to maintain a known voltage potential in the human subject that is directly related 

to the system board ground. This method then reduces the common-mode DC 

offset previously found in the system and thereby attempts to cancel any different 

DC offsets that individual channels or probes may experience (Benning et al., 

2003). 

The actual method of the RLD is quite unique. A feedback network is 

created, which depends on the averaged inputs from the combined instrumentation 

amplifier floating grounds and a GROUND signal originating from the human. 

This signal is then sent through an inverting gain stage that completes the 

feedback loop, which effectively counteracts any potential changes in the subject.  

To fully understand the Right Leg Driver, it is necessary to appreciate the 

influences that derive its requirement. Therefore, refer to Benning et al. (2003).  
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This method of reducing the CMRR is actually quite common in small 

signal applications. In developing the INA114, Texas Instruments (TI) has 

actually developed its own version of a compatible RLD system as shown in Fig. 

2.4.  

 

 
Figure 2.4 – RLD system as shown in the INA114 datasheet. 

 

The first part of the RLD is an averaging circuit. The system presented in 

Fig. 2.4. has been developed by TI in an attempt to average the two negative 

inputs to the instrumentation amplifier and therefore balance the floating ground.  

The resistor RG usually just set up the gain of the INA114, but in RLD 

applications, the values are halved and utilized as shown. The RLD tap into this 

circuit can then be brought off this floating ground in such a way that it does not 

bias the amplifier with any adverse effects (Benning et al., 2003).  

The next component in the circuit would be the voltage follower. The 

simple purpose of this op-amp is to ensure that there is no loading or feedback 

signal placed onto the instrumentation amplifier. Depending on which RLD model 

is chosen, the output of this op-amp would be where you attach any cable 

shielding for the electrodes. There is then a 10k resistor separating the op-amp 

output from the next stage (Benning et al., 2003).  

The third stage of the RLD is a common carrier or averaging stage, which 

will be called COMM for simplicity, see Fig 2.5. All of the RLD circuits of the 

device are joined to this COMM line which then forces COMM to an average 

potential based on the various outputs of the RLD voltage followers. To this 

average potential (COMM) is also connected an electrode from the human which 

acts as a human ground reference. At this point, COMM has multiple averaged 
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inputs all attached to the human ground. Also, COMM is referenced to the 

floating ground of the instrumentation amplifier via an op-amp. In turn, the op-

amp is referenced to the board ground and therefore fluctuates around some 

midpoint potential based on the op-amp characteristics. This combination leads to 

a known potential relation between the human ground and the board ground, 

thereby eliminating the common mode signal (Benning et al., 2003). 

 

 

 
 

Figure 2.5 – RLD system for n-channels. 
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This system would be perfectly acceptable if it were not for the constant 

fluctuations and influence of interference currents. Due to this influence, the 

human ground potential varies up and down, which in turn creates variable DC 

offset signals and a decrease in the CMMR. In order to counteract this problem, a 

clever feedback loop is created that ensures a constant relation to the board ground 

(Benning et al., 2003).  

The COMM signal is fed through the negative input of an op-amp and 

through a large gain stage. This high gain is necessary because the immediate 

influence of interference currents does not normally affect the potential of the 

human in the order of volts, but merely in the milli to microvolts range. The 

negative feedback loop therefore counteracts the influence of interference currents 

and ensures the stability of the human ground to that of the board ground. This 

assurance guarantees high CMRR values from the instrumentation amplifier 

(Benning et al., 2003). 

 

2.3.4  
Amplification 

The amplification circuit is achieved in two stages: two high-pass first order 

filters are included between the amplifications, with a cutoff frequency of 0.16 Hz 

to remove DC-voltage offsets. The second amplification contains a low-pass 

second order Butterworth filter, with a cutoff frequency of 100 Hz. This 

bandwidth is due to the range of frequencies of the brainwaves, which is from 0 to 

100 Hz. 

A high-pass filter is a filter that passes high frequencies, but attenuates 

(reduces the amplitude of) frequencies lower than the cutoff frequency. The actual 

amount of attenuation for each frequency varies from filter to filter. It is useful as 

a filter to block any unwanted low frequency components of a complex signal 

while passing the higher frequencies. Of course, the meanings of 'low' and 'high' 

frequencies are relative to the cutoff frequency chosen by the filter designer. 

The simplest electronic high-pass filter consists of a capacitor in series with 

the signal path in conjunction with a resistor in parallel with the signal path. The 

resistance times the capacitance (R×C) is the time constant (τ); it is inversely 
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proportional to the cutoff frequency ( Cf ) (see Eq. (3)), at which the output power 

is half the input (−3 dB). 

RC
fC ππτ 2

1
2

1
==                                           (3) 

Replacing for commercial values of capacitor and resistor, the cutoff 

frequency 1Cf  is obtained as 

Hz
xx

fC 1592.0
)101000)(101(2

1
361 == −π

                       (4) 

The implementation of the high-pass filter can be seen in Fig. 2.6. 

 

High-Pass
Filter

First Amplification

Reference

 
 

Figure 2.6 – First stage of amplification. 

 

The first amplification stage (see Fig. 2.6) consists of a circuit with op-amp 

in non-inverting configuration; the amplifier gain ( VA ) is obtained by the 

following equation (Pertence, 1988): 

1

1
R
R

V
V

A f

i

o
V +==                                           (5) 

where 

- oV  is the output voltage;  

- iV  is the input voltage; 

- fR  is the feedback resistance; and 
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- 1R  is the resistance connected to the negative input of the op-amp. 

Replacing the values for the considered design, the amplifier gain 1VA  is 

obtained as 

51
102
101001 3

3

1 =+=
x
xAV                                      (6) 

The second amplification stage includes a second order low-pass filter (see 

Fig 2.7).  

 

Reference

High-Pass
Filter

Second Amplification
Low-Pass Filter

 
 

Figure 2.7 – Second stage of amplification. 

 

The implementation of a second order filter using the structure voltage-

controlled voltage-source (VCVS), a widely used circuit, can be seen in Fig. 2.8 

(Pertence, 1988).  
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Figure 2.8 – Structure VCVS of a second order low-order filter. 

 

The equations to implement this filter are 

3

41
R
RK +=                                                (7) 

[ ] CCbCCKbaaC
R

ω⎥⎦
⎤

⎢⎣
⎡ −−++

=
21

2
2

2
2

1
4)1(4

2                  (8) 

2
121

2
1

CRCbC
R

ω
=                                           (9) 

1
)( 21

3 −
+

=
K

RRKR                                           (10) 

)( 214 RRKR +=                                           (11) 

where: 

- 1R , 2R , 3R , 4R are the resistances shown in Fig. 2.8; 

- 1C , 2C are the capacitors shown in Fig. 2.8; 

- K  is the amplifier gain; 

- a , b  are obtained from the suitable tables (they define the response 

function or desired approximation); and  

- Cω  is the cutoff frequency ( Cf ) in rad/s, CC fπω 2= . 

After the choice of a commercial value for 2C , close to Cf10 , the 

commercial value of the 1C  must carry out the condition: 

[ ]
b

CKbaC
4

)1(4 2
2

1
−+

≤                                    (12) 
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Replacing the values for the design, 1C  = 0.1 Fμ  and 2C = 0.01 Fμ  (F: 

Faraday); the values of a  and b  are obtained from Table 1 for a Butterworth 

second order filter and K  = 100. The parameters calculated are the following: 

Ω=
Ω=
Ω=
Ω=

MR
kR
kR
kR

741.16
1.169
6.150

82.16

4

3

2

1

                                            (13) 

 

Table 1 – Values of the parameters a  and b  for the Butterworth filters, where n is 

a filter order. 

 

n a  b  

2 1.414214 1 

1.000000 1 
3 

- 1 

0.765367 1 
4 

1.847759 1 

0.618034 1 

1.618034 1 5 

- 1 

0.517638 1 

1.414214 1 6 

1.931852 1 

0.445042 1 

1.246980 1 

1.801938 1 
7 

- 1 

0.390181 1 

1.111140 1 

1.662930 1 
8 

1.961571 1 
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2.3.5  
Analog-Digital Converter 

The analog-digital conversion is the means by which the signals are 

digitalized for the subsequent processing. The digitalization is carried out through 

the data acquisition system CompactDAQ from National Instruments; this system 

covers the components NI 9205 analog input module and the NI cDAQ-9172 

chassis (see Fig. 2.9). 

 
Figure 2.9 – Components of the data acquisition system CompactDAQ. (a) NI 9205 

analog input module. (b) NI cDAQ-9172 chassis. 

 

The NI 9205 also includes a channel-to-earth-ground double isolation 

barrier for safety, noise immunity, and high common-mode voltage range. It is 

rated for 1,000 Vrms transient overvoltage protection (National Instruments, 

2007). The features of the NI 9205 are shown in Table 2. 

 
Table 2 – Features of the NI 9205 analog input module. 

 
Resolution 16 bits 

Accumulated frequency rate 250 kS/s 

Operation range temperature - 40 to 70 °C 

Inputs 32 single ended inputs or 16 differential inputs 

Input range ±200 mV, ±1 V, ±5 V and ±10 V 

Overvoltage protection Up to 60V 

  

 
(a) (b) 
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The National Instruments cDAQ-9172 is an 8-slot NI CompactDAQ chassis 

that can hold up to eight C Series I/O modules. The chassis operates on 11 to 30 

VDC and includes an AC/DC power converter. The NI cDAQ-9172 is a USB 2.0-

compliant device that includes a 1.8 m USB cable. 

The NI cDAQ-9172 has two 32-bit counter/timer chips built into the 

chassis. With a correlated digital I/O module installed in slot 5 or 6 of the chassis, 

one can access all the functionality of the counter/timer chip including event 

counting, pulse-wave generation or measurement, and quadrature encoders 

(National Instruments, 2007). 

A graphical interface developed in Visual C# 2005 controls the data 

acquisition system CompactDAQ by NI cDAQ-9172, that commands the NI 9205. 

The amplified signals are connected to the NI 9205 for their digitalization and the 

cDAQ-9172 sends this information to a personal computer for processing. 

 

 

2.4  
Summary and Conclusions 

This chapter presented theoretical fundaments of electroencephalography 

and details of the implementation of a ten channel electroencephalograph. The 

block diagram of the implemented hardware is shown in Fig. 2.10. 

where 

- Si, (i = 1, 2, … 10) represents the ten electrodes used; 

- M is the electrode located in the left mastoid as reference; 

- RL is the electrode located in the right leg; and 

- SD is the digitalized signal. 
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Figure 2.10 – Block diagram of the implemented electroencephalograph. 

 

The implemented electroencephalograph is shown in Fig. 2.11, pointing out 

its modular parts. 

 
 

Figure 2.11 – The implemented electroencephalograph. 
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The overall amplification from the three stages is approximately 105, which 

generates a suitable range for the data acquisition system CompactDAQ. The 

electrodes position according to this system is shown in Fig. 2.12., a trial taken by 

the electroencephalograph in the position Fp1 of the International System 10-20 

(Harner & Sannit, 1974) can be observed in Fig. 2.13.  

 

 
 

Figure 2.12 – Electrodes positions from the International System 10-20. 

 

V

Sample

 
 

Figure 2.13 – Acquired signal in the position Fp1 of the International System 10-20. 

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



 39

The performance of the implemented electroencephalograph is lower than a 

commercial EEG, but it is enough for the desired analysis of the brainwaves and 

recognition of mental activities.  

In the next chapter, the preprocessing steps for the EEG signal are 

presented. 
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3 
PREPROCESSING 

3.1  
Introduction 

The extraction of information from EEG data is hindered by external noise 

and subject-generated artifacts. Most sources of external noise can be avoided by 

appropriately controlling the environment in which the measurement takes place. 

Thus, power line noise can be easily filtered since it occupies a narrow frequency 

band that is located beyond the EEG band (Garcia, 2004). 

Subject-generated artifacts (eye movements, eye blinks and muscular 

activity) can produce voltage changes of much higher amplitude than the 

endogenous brain activity. Even when artifacts are not correlated with tasks, they 

make it difficult to extract useful information from the data. In this situation the 

data is discarded and the subject is notified by a special action executed by the 

BCI. If the data containing artifacts were not discarded they could lead to 

misleading conclusions about the controlling performance of a subject (Garcia, 

2004). 

The preprocessing removes external noise from EEG trials and detects the 

presence of artifacts. The power line noise is considered as external noise; eye 

blinks and eye movements are defined as ocular artifacts, while muscular activity 

is referred to as muscular artifact. 

As discussed before, while in the BCI frame work they are treated as 

artifacts, muscular and eye movements are used as information support in other 

human-machine interaction systems (Barreto et al, 2000; Tecce et al., 1998). 

 

 

3.2  
EEG Perturbations 

The perturbation sources include: electromagnetic interferences, eye blinks, 

eye movements, and muscular activity (particularly head muscles). 
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Electromagnetic interferences can be avoided or at least attenuated by 

controlling the environment in which the measurements are carried out. 

Nonetheless, since the BCI setup requires to be connected to a computer, the EEG 

data can be corrupted by the noise from the alternate current (AC) power supplies. 

These perturbations are usually well localized in frequency and located 

beyond the EEG band. 

Eye blink artifacts are very common in EEG data. They produce low-

frequency high-amplitude signals that can be much greater than EEG signals of 

interest. Indeed, while regular EEG amplitudes are in the range of -50 to 50 micro 

volts, eye blink artifacts have amplitudes up to 100 micro volts (Garcia, 2004). 

Eye movement artifacts are caused by their orientation of the retinocorneal 

dipole. They are recognized by their quasi square shape and their amplitude in the 

same range of regular EEG (Overton & Shagass, 1969). 

Eye blinks and eye movement artifacts (called ocular artifacts) are mainly 

reflected at frontal sites, e.g. electrodes Fp1 and Fp2, denominated according to 

the International System 10-20 (Harner & Sannit, 1974). However, they can 

corrupt data on all electrodes, even those at the back of the head (Garcia, 2004). 

Muscular movement artifacts (muscular artifacts) can be caused by activity 

in different muscle groups. However, the activity in neck and facial muscles has 

more influence in EEG recordings. Muscular artifacts are characterized by their 

wide frequency content. Depending on the location of the source muscles, they 

can be distributed across different sets of electrodes. They mainly appear in 

temporal and parietal electrodes (Garcia, 2004). 

 

 

3.3  
Preprocessing 

The preprocessing consists in applying digital filters for power line filtering 

and a procedure based on wavelet transforms, high order statistics and neural 

networks to detect artifacts. 
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3.3.1  
Filtering 

The digitized signal is filtered to guarantee that it only has frequency 

components in the EEG band; the used filter is the Butterworth filter, see Fig. 3.1. 

 

 
 

Figure 3.1 – Magnitude characteristics of physically realizable filters. 

 

Low-pass Butterworth filters are all-pole filters characterized by the 

magnitude-squared frequency response. 

( ) ( ) N
P

N
C

H 222
2

1
1

1
1)(

ΩΩ+
=

ΩΩ+
=Ω

ε
                   (14) 

where 

- N  is the order of the filter; 

- CΩ  is its -3 dB frequency (usually called the cutoff frequency); 

- PΩ  is the passband edge frequency; and 

- )1(1 2ε+  is the bandedge value of 2)(ΩH . 

Since )(sH )( sH −  evaluated at s = jΩ  is simply equal to 2)(ΩH , it 

follows that 

( )NCs
sHsH

221

1
)()(

Ω−+
=−                               (15) 
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The poles of )()( sHsH − occur on a circle of radius CΩ  at equally spaced 

points. From Eq. (15) 

NkjN

C

e
s π)12(1

2

)1( +=−=
Ω
−

 k  = 0, 1,…, N-1                (16) 

and hence 
Nkjj

Ck ees 2)12(2/ ππ +Ω=   k  = 0, 1,…, N-1                (17) 

The order of the filter required to meet attenuation 2δ  at a specified 

frequency SΩ  is easily determined from Eq. (15). Thus, at Ω  = SΩ   

( )
2

2221
1

δ
ε

=
ΩΩ+ N

PS

                                   (18) 

and hence 

)/log(
)/log(

)/log(2
]1)/1log[( 2

2

PSCS

N
ΩΩ

=
ΩΩ
−

=
εδδ

                         (19) 

where, by definition, 2
2 11 δδ += . Thus the Butterworth filter is completely 

characterized by the parameters N , 2δ , ε  and the ratio PS ΩΩ /  (Proakis & 

Manolakis, 1996). 

The relation between Ω , ω  and f is 

SFf πωπ ==Ω 2                                          (20) 

where SF  is the sample rate. 

Replacing values in Eq. (19), Pf = 30 Hz, Sf = 100 Hz, 1δ = -3dB, 2δ = -

40dB and SF = 1000 Hz, the required order of the filter is  

4=N                                                  (21) 

The signal is filtered by a Butterworth fourth order low-pass digital filter. 

The magnitude and phase of the frequency response is shown in Fig. 3.2. 
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Figure 3.2 – Magnitude and phase of the frequency response of the Butterworth 

filter. 

 

3.3.2  
Power Line Noise Filtering 

  The power line noise is concentrated around a single frequency (60 Hz in 

Brazil) that falls beyond the EEG band. Therefore, it can be filtered using a notch 

filter (Hirano et al., 1974) which highly attenuates a single frequency while 

leaving nearby frequencies relatively unchanged. The digital notch filter z-

transform is given by (Golden, 1968; Hirano et al., 1974) 
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and nf  is the notch frequency at which there is no transmission through the filter, 

SF  is the sampling frequency. Within the frequency band centered at nf  and of 

width nβ  (3 dB band), all signal components are attenuated by more than 3dB, 

see Fig. 3.3 (Garcia, 2004). 

 

 
 

Figure 3.3 – Magnitude and phase of the frequency response of the notch filter. 

 

For the design of the notch filter the following parameters are considered: 

nf  = 60 Hz and nβ  = 3 Hz; replacing in Eq. (23) 
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3.3.3  
Artifact Detection 

The presence of eye movements, eye blinks and muscular artifacts in EEG 

signals can be easily detected from simple observation. As a matter of fact, each 

type of artifact has characteristics in time and frequency that make it 

distinguishable from regular EEG (Garcia, 2004). 

Ocular artifacts have large amplitudes; their spectral content is mainly 

concentrated in the theta band and they are more prominent at frontal pole 

electrodes, i.e. Fp1 and Fp2 (from the International System 10-20), see Fig 2.13.  

Muscular artifacts have amplitudes in the order of that of regular EEG, but 

their spectral content is concentrated in the beta band. These artifacts are more 

noticeable in central temporal and parietal electrodes, i.e. electrodes T3, T4, T5, 

P3, P4 and T6 (Van de Velde, 1998), see Fig 2.13. 

Artifacts can be considered as singular events in the time-frequency plane 

that appear randomly in EEG signals. To detect the presence of artifacts in an 

EEG trial, the EEG signals are acquired in segments of two seconds; after the 

application of the filters, the wavelet transform is applied to decompose the signal 

frequency band to extract the EEG bands. 

 

3.3.4  
Wavelet Transform Analysis 

Wavelet transforms are rapidly surfacing in fields as diverse as 

telecommunications and biology. Because of their suitability to analyze 

nonstationary signals, those whose statistical properties change over time, they 

have become a powerful alternative to Fourier methods in many medical 

applications, where such signals abound. In addition to helping in the recognition 

and detection of key diagnostic features, they provide a powerful means for 

compressing medical images with little loss of valuable information (Akay, 1997). 

The familiar Fourier transform expands time-domain signals onto 

orthogonal basis functions (sine and cosine waves), thereby revealing the 

frequency content of the signals. But this method can not localize the observed 

frequency components in time. It is therefore best suited to describe and analyze 

stationary signals (Akay, 1997). 
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Most biomedical signals, however, do not tend to be stationary. On the 

contrary, they typically have highly complex time-frequency components closely 

spaced in time, accompanied by long-lasting, low-frequency components closely 

spaced in frequency. Any appropriate analysis method for dealing with them 

should therefore exhibit good frequency resolution with fine time resolution, the 

first to localize the low-frequency components, and the second to resolve the high-

frequency components (Akay, 1997). 

An alternative way to analyze nonstationary biomedical signals is to expand 

them onto basis functions created by expanding, contracting, and shifting a single 

prototype function, specifically selected for the signal under consideration. This 

wavelet method acts as a sort of mathematical microscope through which different 

parts of the signal may be examined by adjusting the focus. In wavelet parlance, 

the prototype function is known as the "analyzing wavelet" or "mother wavelet" of 

the signal (Akay, 1997). 

Wavelet transforms can provide both very good time resolution at high 

frequencies and good frequency resolution at low frequencies. Interestingly, they 

can do so even in the absence of continuous time and frequency parameter 

information, thanks to the redundancies inherent in continuous wavelet signal 

representations. In fact, in practical applications, to reduce memory requirements 

and speed up numerical computation, it is usually desirable to eliminate much of 

this redundancy, usually by sampling the time and frequency parameters on a 

dyadic form (basis 2, the widely used choice) in the time-frequency plane (Akay, 

1997). 

Even without the efficiencies of sampling, their excellent combination of 

time and frequency resolution makes wavelets potentially invaluable in numerous 

applications, many of which fall into the realm of medical research and 

diagnostics. Among them, it may be found the early discovery of precursors of 

heart disease, studies of fetal breathing, the extraction of speech from background 

noise in digital hearing aids, the detection of breast cancer, and medical image 

compression (Akay, 1997). 

The decomposition of the signal leads to a set of coefficients called wavelet 

coefficients. The key feature of wavelets is the time-frequency localization. It 

means that most of the energy of the wavelet is restricted to a finite time interval. 

The wavelet technique applied to the EEG signal will reveal features related to the 
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transient nature of the signal. All wavelet transforms can be specified in terms of a 

low-pass filter g , which satisfies the standard quadrature mirror filter condition   

1)()()()( 11 =−−+ −− zGzGzGzG                              (25) 

 

where )(zG denotes the z-transform of the filter g . Its complementary high-pass 

filter can be defined as 

)()( 1−−= zzGzH                                         (26) 

A sequence of filters with increasing length can be obtained 
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with the initial condition )(0 zG = 1. It is expressed as a two-scale relation in time 

domain 
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2121 kghkhkggkg iiii ii ↑+↑+ ==                      (28) 

where the subscript m↑[.] indicates the up-sampling by a factor of m and k is the 

equally sampled discrete time.  

 The procedure of decomposition in sub-bands of the discrete wavelet 

transform (DWT) is schematically shown in Fig. 3.4. Each stage of this scheme 

consists of two digital filters and two down-samplers by 2. The first filter h[.] is 

the discrete mother wavelet, high-pass in nature, and the second, g[.], is its mirror 

version, low-pass in nature.  
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h[n]
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    2
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Figure 3.4 – Sub-band decomposition of DWT implementation. 
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The down-sampled outputs of first high-pass and low-pass filters provide 

the detail D1 and the approximation A1, respectively. The first approximation A1 

is further decomposed and this process is continued as shown in Fig. 3.4 

(Jahankhani et al., 2006). 

The EEG signal is decomposed through the DWT until achieving the 

frequency ranges of the brainwaves; the DWT is applied in seven levels, 

according to Figure 3.5, in order to approximately form the four principal 

frequency ranges of the brainwaves: 

• Delta Band [0 – 4 Hz]: (n). 

• Theta Band [4 – 8 Hz]: (o). 

• Alpha Band [8 – 13 Hz]: (p). 

• Beta Band [13 – 30 Hz]: (q) and (k). 

The sample rate ( SF ) is 1000 Hz; then, the decomposition of frequency 

ranges begins in the range of 0 to 500 Hz.  

 

0 – 500 Hz

0 – 250 250 – 500

0 – 125 125 – 250

0 – 62.5 62.50 – 125

0 – 31.2 31.2 – 62.5

0 – 15.6 15.6 – 31.2

0 – 7.8 7.8 – 15.6

0 – 3.9 3.9 – 7.8 7.8 – 11.7 11.7 – 15.6

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

(j) (k)

(l) (m)

(n) (o) (p) (q)

 
Figure 3.5 – Decomposition of the frequency ranges. 

 

The beta and theta bands are processed to obtain their respective wavelet 

coefficients using the electrodes Fp1, Fp2, P3 and P4, see Fig. 3.6.  
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Figure 3.6 – Electrodes position according to the international system 10-20. 

 

3.3.5  
High-Order Statistics 

Wavelet coefficients with artifactual activity are supposed to be “odd” with 

respect to other ones when an unexpected event occurs and involves its frequency 

range, or when it carries information about a noisy background activity. Thus, a 

measure of randomness might help to detect them. EEG artifacts such as eye 

blinks and heartbeat are typically characterized by a peaky distribution and could 

be detected by a measure of peakyness (Inuso et al., 2007). 

The parameters that can measure the randomness and the peakyness are 

entropy and kurtosis, respectively (Delorme et al., 2005).  

 

3.3.5.1  
Kurtosis 

Given a scalar random variable x, kurtosis ( k ) has the following expression: 
2

24 3mmk −=                                            (29) 

}){( 1
n

n mxEm −=                                         (30) 

where nm  is the n-order central moment of the variable and 1m  is its mean. 
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If the kurtosis is highly positive, the activity value distribution is highly 

peaked (usually around zero) with a sparse appearance of extreme values, and the 

identified data is likely to contain an artifact (Ghandeharion & Erfanian, 2004).  

 

3.3.5.2  
Renyi’s Entropy 

The definition of the Renyi’s entropy is shown in Eq. (31), where α (α ≥ 1) 

is the order of the entropy. Equations (32-33) come from the application of the 

kernel estimators. The order of the entropy is set at 2, in order to equally 

emphasize the sub-Gaussian and the super-Gaussian components. 
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                (33) 

Entropy can be interpreted as a measure of randomness. 

Before computing the entropy and the kurtosis of the wavelet coefficients, 

they are normalized with zero-mean and unit-variance. After computing the 

statistic data, it is observed that a simple threshold is not enough to discriminate 

the occurrence of artifacts (Erdogmus et al., 2002).  

Thereby, a few measurements are selected below as patterns for the training 

of neural networks. 

 

3.3.6  
Neural Networks 

The detection system is tested with two kinds of neural networks as 

classifiers: multilayer perceptron (MLP) and probabilistic neural network (PNN). 

The detection system consists of two neural networks, joined through a logic 

operation OR (see Fig. 3.7). 

The MLP has the ability to be an universal approximator with smaller 

training set requirements. It has a fast operation, ease of implementation and 

therefore it is the most commonly used neural network architecture. It has been 
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adapted to discriminate between the occurrence and the non-occurrence of 

artifacts. The classic gradient descending learning scheme is used here for the 

training of this particular network (Jahankhani, 2006). 

 

 
 

Figure 3.7 – Neural network block to detect artifacts. 

 

The second kind of classifier is a PNN scheme. The PNN network is rapidly 

trained; it is usually faster than the MLP, while exhibiting none of its training 

pathologies such as paralysis or local minima problems (Jahankhani, 2006). 

Detection of ocular artifacts is done using the wavelet coefficient kurtosis of 

the four electrodes (Fp1, Fp2, P3 and P4) in the frequency ranges beta (o) and 

theta (k), see Fig. 3.5, where XO is a feature vector of occurrence of an ocular 

artifact, see Fig. 3.7.  

Detection of muscular artifacts is done using the wavelet coefficient entropy 

and kurtosis of three electrodes (Fp1, Fp2 and P4) in the frequency range theta 

(k), see Figure 3.5, where XM is a feature vector of occurrence of a muscular 

ocular artifact, see Fig. 3.7. 

An experiment is developed to validate the procedure, considering 300 

trials: 100 trials without artifacts, 100 trials with ocular artifacts, and 100 trials 

with muscular artifacts. The training of the neural networks is described next. 

Neural network 1 (net1) is trained using 100 trials without artifacts, and 100 

trials with ocular artifacts, taking 80% of the trials for the training data and 20% 

for the validation data.  

Neural network 2 (net2) is trained in the same way, however using muscular 

instead of ocular artifacts.  

Cross-validation is applied to determine the neural network with the better 

performance in the classification, the 20% of the trials for the validation data of 

net1 

net2 
OR 

XO 

XM 

YA 
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the networks is taken through all the samples, resulting in five possible neural 

networks (Haykin, 1998). 

The union of the neural networks (netf) made through a logic operation OR 

as mentioned before, is then tested for the total of the trials. The neural networks 

with the better performance are chosen, the results of the tests of the neural 

networks are shown in Tables 3 and 4. 

 
Table 3 – Test of the MLP neural networks (individually and united). C: Correct. I: 

Incorrect. 

 

 C I Total
Hit Rate 

(%) 

net1 35 5 40 87.5 

net2 27 13 40 67.5 

netf 283 17 300 94.3 

 
Table 4 – Test of the probabilistic neural networks (individually and united). C: 

Correct. I: Incorrect. 

 

 C I Total
Hit Rate 

(%) 

net1 24 16 40 60.0 

net2 27 13 40 67.5 

netf 284 16 300 94.6 

 

Tables 5 and 6 show the confusion matrices of the detection system using 

MLP and PNN, respectively. 

 
Table 5 – Confusion Matrix of the Classification with MLP neural networks. S: 

Signal without artifact. SA: Signal with artifact. 

 

 

 

 

 S SA 

S 87 13 

SA 4 196 
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Table 6 – Confusion Matrix of the Classification with probabilistic neural networks. 

S: Signal without artifact. SA: Signal with artifact. 

 

 S SA 

S 88 12 

SA 4 196 

 

The tables above show that the approach for the processing of the EEG 

signals and for the detection of the artifacts is suitable. The better hit rate is 

94.6%, obtained by the detection system using PNN classifiers, closely followed 

by the hit rate using MLP classifiers, with 94.3%.  

 

 

3.4  
Summary and Conclusions 

This chapter presented the procedure to eliminate electrical noise and to 

detect artifact to exclude the EEG signal or to continue the analysis. 

The application of two filters, Butterworth fourth order digital filter and 

notch filter, guarantee the elimination of the electrical noise. 

In comparison with other techniques from the literature, such as independent 

component analysis (ICA) (Delorme et al., 2005) were used to prepare the data of 

the EEG signal to discriminate the artifact occurrence. The artifacts were modeled 

and mixed with recorded data previously of a 32-channel EEG; applying spectral 

methods to isolate artifacts and standard thresholding methods on the data, 

detecting all trials. 

The high order statistics and wavelet transform were used to determine 

thresholds to detect the presence of simulated artifacts (Inuso et al., 2007). The 

artifacts was simulated and mixed with recorded data too of a 8-channel EEG, 

detecting all trials. 

The technique to detect artifacts uses only four electrodes Fp1, Fp2, P3 and 

P4, with trials of 2000 samples recorded during two seconds. The method consists 

in integrating high order statistics, wavelet transform and neural networks 

classifying a 94.6 % of the trials correctly.  
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The union of neural networks through a logic operation resulted in a 

considerable increase in performance. The specialization of the neural networks 

demonstrates that the system could increase even more its hit rate. Thereby, this 

method leaves the EEG signals free of artifacts for a more elaborated analysis. 

The inconvenience of several methods used to detect artifacts is that they do 

not follow a pattern; therefore they can not be directly compared. 

The block diagram of the preprocessing stage is shown in Fig. 3.8, where 

SWT is the signal after the wavelet transforms. 

 

 
 

Figure 3.8 – Block diagram of the preprocessing stage. 

 

In the next chapter, the algorithms for feature extraction and the models for 

pattern recognition are presented. 

 

 

 

SD 
Low-Pass 

Filter 

Notch 

Filter 

Wavelet 

Transform 

Kurtosis 

Entropy 

Neural 

Networks 

Artifact?

Discarded 

Signal 

Yes

No

SWT 

Processing 

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



 56

4 
PROCESSING 

4.1 
Introduction 

The signal processing step is divided into two parts: feature extraction and 

pattern recognition. 

Features need to reflect properties of EEG that are relevant to the 

recognition of mental activities. The analysis of the generalized interaction (in 

time, frequency, and phase) between EEG channels has emerged as a tool to study 

EEG data (Garcia, 2004). 

A complete analysis that takes into account time, frequency and phase 

would result in a very large number of features and consequently a high 

dimensional feature vector. Because of the particular requirements of BCI 

applications, according to which a continuous adaptation of the recognition 

models and a reasonable training time are required, high dimensional feature 

vectors are clearly non-suitable (Garcia, 2004). 

There is a large consensus that an efficient and practical BCI should exhibit 

the following properties: high scores of correct recognition  and rapid responses, 

on the order of a second, to increase the bit rate of the communication channel 

(Millan, 2002b).  The accuracy of the classifier is fundamental for a correct 

recognition.  

Several classifiers are mentioned in (Garcia, 2004), such as optimal 

Bayesian classifier, vector quantization, distance sensitive vector quantization (a 

variant of vector quantization in which the distance takes into account the 

discriminative power of each feature), multi-layer neural networks (deal with 

general separation boundaries between the sets of mental tasks), auto-associative 

neural networks (which are able to directly operate in the time domain, the feature 

extraction procedure is therefore no longer necessary) (Devulapalli, 1996), linear 

and nonlinear classifiers are compared in Muller et al., 2003 for BCI applications. 
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Other approaches include logistic regression classifiers, hidden Markov 

models and microstate decomposition (Pascual-Marqui et al., 1995) to classify 

sequences of features, and Bayesian time series classification (Sykacek et al., 

2003). 

Machine learning state-of-the-art kernel methods such as support vector 

machines and kernel novelty detection algorithms are mentioned in Garcia et al., 

2003.  

 

4.2 
Mental Activities 

The mental activities used in current BCIs are chosen in accordance with 

brain hemispheric specialization studies, which suggest that the two hemispheres 

of the human brain are specialized for different cognitive functions. In particular, 

the left hemisphere appears to be predominantly involved in verbal and other 

analytical functions and the right one in spatial and holistic processing (Allanson, 

2000; Galin & Ornstein, 1975). Thus, typical mental activities (MA) include: 

evoked responses to external stimuli, imagined limb movement, and spatial, 

geometrical, arithmetical and verbal operations. 

BCIs can be categorized by the type of mental activities: there are BCIs 

based on Evoked Response or Operant Conditioning. In the first, the subject’s 

reaction to stimuli is monitored. Such BCI is the most common due to its 

implementation simplicity; however, it is limited because it depends on specific 

abilities from the subject such as gaze direction control, which might be a problem 

with handicapped patients. The second type, on the other hand, monitors directly 

the subject’s behavior, without the need for external stimuli and the ability to 

detect them. Both types are presented next. 

 

4.2.1 
Evoked Response based BCIs 

Evoked responses are related to cognitive methods in psychology (Utall, 

1999; Vaughan et al., 2003) which consider the mind as an information processing 

device whose output depends on the relationship between stimuli and the 

activation of cognitive processes. 
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External visual or auditory events (e.g. blinking objects on a computer 

screen, flashing elements on a grid or brief sounds) elicit transient signals in the 

EEG that are characterized by voltage deviations known as event related 

potentials (ERP). When the subject pays attention to a particular stimulus, an ERP 

that is time locked with that stimulus appears in his/her EEG. The changes in the 

EEG signals induced by the ERP can be detected by using averaging or blind 

source separation methods (Huggins et al., 1999; Makeig et al., 1997). If actions 

are associated with stimuli, the subject can gain control of the BCI by focusing 

his/her attention on the stimulus corresponding to the desired action. 

Examples of BCIs functioning under evoked conditions are those using the 

P300 and the steady state visual evoked responses (SSVER), as described next. 

Infrequent or particularly significant auditory, visual, or somatosensory 

stimuli, when mixed with frequent or routine stimuli, typically evoke in the EEG 

over the parietal cortex a positive peak at about 300 (P300) milliseconds after the 

stimulus presentation (Donchin & Smith, 1970; Donchin et al., 2000; Farwell & 

Donchin, 1998; Sutton et al., 1965; Walter et al., 1964). 

Flicker stimuli of variable frequency (2-90Hz) elicit a steady state visual 

evoked response in the EEG which is characterized by an oscillation at the same 

frequency as the stimulus. Thus, an SSVER can be detected by examining the 

spectral content of the signals recorded in the visual region, namely electrodes O1 

and O2 of the International System 10-20 (Harner & Sannit, 1974). 

When actions are associated with targets flickering with different 

frequencies, the subject can control the BCI by gazing at the target corresponding 

to the desired action (Calhoun et al., 1997; Cheng et al., 2002; Gao et al., 2003; 

Middendorf et al., 2000). BCIs based on this principle depend on the subject’s 

ability to control gaze direction. 

 

4.2.2 
Operant Conditioning based BCIs 

Operant conditioning is related to behavioral methods in psychology 

(Skinner, 1938; Vaughan et al., 2003). According to them, the subject can acquire 

control skills through adequate feedback (operant conditioning feedback). 
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Effective attempts to provide control through operant conditioning feedback 

begun in the 1950’s when some clinicians used the so-called neurofeedback to 

treat people suffering from attention deficit, hyperactivity, depression and even 

epilepsy. Based on the principle that functions of the autonomous and central 

nervous systems can be retrained for better adaptive functioning, neurofeedback 

practitioners trained their patients to self-regulate their brain activity through 

operant feedback. In some cases, they obtained astonishing results (Robbins, 

2000). 

Examples of BCIs functioning under operant conditioning use slow cortical 

potential shifts (SCPS), oscillatory sensorimotor activity, and other hemispheric 

specialized mental activities. 

SCPSs last from a few hundred milliseconds up to several seconds and 

indicate the overall preparatory excitation level of a cortical network. They are 

universally present in the human brain. Negative SCPSs are typically associated 

with movement and other functions involving cortical activation, while positive 

SCPSs are usually associated with reduced cortical activation (Birbaumer et al., 

2000; Rockstroh et al., 1984). 

Subjects can learn through operant feedback to produce a SCPS in an 

electrically positive or negative direction for binary control (Birbaumer et al., 

2000; Perelmouter & Birbaumer, 2000). This skill can be acquired if the subjects 

are provided with a feedback on the course of their SCPS production and if they 

are positively reinforced for correct responses (Birbaumer et al., 2003). 

In oscillatory sensorimotor activity, populations of neurons can form 

complex networks which are at the origin of oscillatory activity. In general, the 

frequency of such oscillations decreases with an increase in the number of 

synchronized neuronal assemblies (Singer, 1993). Two types of oscillations are 

especially important: the Rolandic mu rhythm, in the range from 7 to 13 Hz, and 

the central beta rhythm, above 13 Hz, both originating in the sensorimotor cortex 

(Jasper & Penfield). Sensory stimulation, motor behavior, and mental imagery can 

change the functional connectivity within the cortex and result in amplitude 

suppression (event-related desynchronization (ERD)) or in an amplitude 

enhancement (event-related synchronization (ERS)) of mu and central beta 

rhythms (Pfurtscheller & Aranibar, 1977).  
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Preparation and planning of self-paced hand movement results in a short-

lasting desynchronization (ERD) of Rolandic mu and central beta rhythms. 

Electrocorticographic recordings exhibit ERD in the alpha band associated with 

hand and foot movement. The general finding is that, similarly to the mu rhythm 

(around 10 Hz), beta oscillations desynchronize during the preparation and 

execution of a motor act (Pfurtscheller & Neuper, 2001). 

Motor imagery may be seen as mental rehearsal of a motor act without any 

overt motor output. It is broadly accepted that mental imagination of movements 

involves brain regions/functions similar to that involved in programming and 

preparing such movements (Jeannerod, 1995).  

In addition to imagined motor tasks, other mental activities for which 

evidence for hemispheric specialization was found are: geometrical MA (Nikolaev 

& Anokhin, 1998) (e.g. imagination of a geometric 3D object and the rotation of 

such an object), verbal MA (Galin & Ornstein, 1972; Koenig et al., 1998) (e.g. 

mental composition of a letter) and arithmetic MA (Rotenberg & Arshavsky, 

1997) (e.g. mental counting, multiplication, etc.). Few research groups considered 

these mental activities for BCI applications. Hemispheric specialized mental 

activities open the possibility to implement more control capabilities and in 

certain cases they are easier to perform than imagined motor mental activities 

(Garcia, 2004). 

Since they are able to extend the control capabilities beyond binary 

commands, motor imagery and hemispheric specialized mental activities are used 

in this work.  

 

 

4.3 
Feature Extraction 

The BCI developed in this work is based in operant conditioning. The 

mental activities defined are the motor imagery of the forefinger movement of the 

right hand to the right and to the left side, imagination of the 3D rotation of a 

cube, arithmetic operation of subtraction by a constant number and the mental 

state of relax. 
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After the application of the wavelet transform, the wavelet coefficients 

contain useful information in the time and frequency domain. The next step is the 

feature extraction, which consists on computing a few measurements from which 

it is possible to determine the different mental activity kinds. In this case, the 

chosen measurement is the mean of the wavelet coefficients in the principal 

frequency bands of the brainwaves. 

Figure 4.1 illustrates the feature extraction of the wavelet coefficients in the 

five regions correspondent to the brainwaves frequency ranges, where Xµ is the 

feature vector of the means of the wavelet coefficients. 

  

 
 

Figure 4.1 – Feature extraction of the wavelet coefficients. 

 

 

4.4 
Pattern Recognition 

Pattern recognition consists in determining an algorithm to classify the 

signal’s features according to the corresponding mental task. A probabilistic 

neural network is used as classifier, obtaining a high hit rate in comparison with a 

MLP when were tested; the classifier must be able to recognize five different 

mental activities. 

To train the neural network, 500 trials are taken where the user is asked to 

carry out 100 trials of the chosen mental activities: motor imagery of the 

forefinger movement to the right side (RM), motor imagery of the forefinger 

movement to the left side (LM), 3D rotation of a cube (CR), arithmetic operation 

of subtraction (AS), and the mental state of relax (RX). 

After computing the mean of the wavelet coefficients, the dimension of the 

feature vector is 50, five regions after the wavelet transform and ten electrodes; 

using the knowledge of the specialization of the brain activity and the position of 

SWT 
Mean 

µ 
Xµ 
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the electrodes it is possible to discard the electrodes Fp1, Fp2, P3 and P4, 

achieving a reduction of the dimensionality to 30. Then, the brain activity 

principal concentration is observed in the delta band [0 – 4 Hz], reducing the 

dimensionality to 6. Validation of the classifier allows discarding the electrodes 

C4 and Pz, then the final dimension of the feature vector is 4. 

The reduction of the dimensionality eases the training and application of the 

neural network. Therefore, the processing time is reduced too, which is an 

important requirement for applications in real time (see Fig. 4.2, where MA is the 

recognized mental activity). 

 

 
 

Figure 4.2 – Pattern recognition of the five mental activities. 

 

The trials with their reduced feature vector are divided in the following way: 

80% of the trials are taken for the training data and 20% for the validation data. 

Cross-validation is applied in the same way that in the artifact detection, to 

determine the neural network with better performance in the classification 

(Haykin, 2005). 

Table 7 shows the confusion matrix from the classification in the stage of 

validation of the neural network. The obtained hit rate is 83%.  

 

 

 

 

 

 

 

 

 

 

Dimensionality 

Reduction 
Xµ 

Pattern  

Recognition 
50 4 

MA

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



 63

Table 7 – Confusion Matrix of the Classification of the Mental Activities with a 

PNN neural network. RM: Motor imagery of the movement of the forefinger to the 

right side. LM: Motor imagery of the movement of the forefinger to the left side. 

CR: 3D Rotation of a cube. AS: Arithmetic operation of subtraction. RX: Relax. 

 

 

 

4.5 

4.6 
Summary and Conclusions 

This chapter described the data processing procedure, divided into two 

stages. The first stage is the feature recognition, where the chosen measurement is 

based on the references that extract some characteristic of the behavior of the 

signal in the time-frequency domain. The feature vector obtained must be reduced 

to ease the calculation and to decrease the processing time. 

The obtained hit rate of 83% for the PNN was better than the MLP neural 

network, which obtained 63%. Table 7 shows the confusion matrix, with a 

relatively low number of misclassifications with respect to the total of the trials of 

the validation data (100). 

Figure 4.3 illustrates the block diagram of the processing of the digitalized 

EEG signal. The MA can be used for whatever application; in this work, the 

activation of the movements of a mobile robot. 

 

 

 

 

 RM LM CR AS RX

RM 16 4 0 0 0

LM 0 15 5 0 0

CR 1 5 14 0 0

AS 1 1 0 18 0

RX 0 0 0 0 20
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Figure 4.3 – Block diagram of the processing of the digitalized EEG signal. 

 

The experimental results with a mobile robot are presented in the next 

chapter. 
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5 
APPLICATION 

5.1  
Introduction 

In the previous chapters, the methodology for each one of the subsystems of 

the BCI was described in detail. The EEG signals free of artifacts are processed to 

extract features that can be useful for the recognition of mental activities. 

The stages of training and application of the BCI must be automatic 

processes; the development of a graphic interface that can link all the subsystems 

in different programming environments, and interact with the available hardware 

is necessary. 

The graphic interface is developed in the programming environment Visual 

C#, adding libraries to run routines in Matlab to control data acquisition through 

the “CompactDAQ” and to send commands for the mobile robot by the 

radiofrequency (RF) interface. This interface offers to the user a friendly 

environment to develop the skill of controlling his/her brain activity while the 

system can adapt with him/her. 

The validation of the BCI is made through an application which consists on 

the activation of the movements of a mobile robot associating the mental activities 

to commands that can be sent to the robot by the radiofrequency interface. This 

application is tested with five users, evaluating the performance of the BCI with 

different measurements that explain the accuracy and speed of the integrated 

system. 
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Figure 5.1 – Block diagram of the sequence of stages in the application. 

 

 

5.2  
Training Protocol 

The training protocol is described as a sequence of three stages; see Fig. 5.2, 

which are described next. 

The first stage consists on the artifact detection through the training of two 

neural networks, which detect the occurrence of ocular and muscular artifacts; the 

procedure in this stage is described in detail in the section 3.3.6.  

The second stage consists on the mental activity recognition through the 

training of a PNN, which is achieved classifying the five kinds of mental 

activities; the procedure in this stage is described in detail in the section 4.4.  

The third stage consists on the mutual adaptation between the system and 

the user, providing to the user visual feedback (biofeedback). In such feedback, 

the mental activity to be developed is shown randomly on the screen. If the 

classifier point out a different mental activity; then, the acquired signal is 

discarded. 

This procedure is repeated so much as to complete 10 trials of each kind of 

mental activity, the trials resulted are added to the PNN neural network. The 

obtained data in the section 4.4 is used to validate this procedure. 10% of the trials 

are taken for the stage of the mutual adaptation, while another 10% of the trials 

are taken for validation data.  

The hit rate of the network of the second stage is 82%, while that the hit rate 

of the network of the third stage is 92%. 

 

Training 

User

Application 

MA 
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Figure 5.2 – Training protocol applied to a user. 

 

 

5.3  
Graphical Interface 

The graphical interface is developed in the programming environment 

Visual C# adding libraries to run routines in MATLAB to control the data 

acquisition through the “CompactDAQ” hardware and to send commands for the 

mobile robot by the radiofrequency (RF) interface. 

This interface offers to the user a friendly environment to develop the skill 

of controlling his/her brain activity. 

The interface has four options: Acquisition option, which allows continuous 

data acquisition; Control RF, which sends commands through radiofrequency to a 

receiver device; Training option, which accomplishes the training procedure in its 

three stages (see Fig. 5.3);  and Application option, which applies the obtained 

results in the training procedure to activate a mobile robot through radiofrequency 

(see Fig. 5.4).  

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



 68

The application option loads a file containing the classification data 

according to a specific user trained previously. It recognizes the kind of mental 

activity from the user, associating each classification with an established 

command to the robot. 

 

 
 

Figure 5.3 – Training option of the interface. 

 

 
 

Figure 5.4 – Application option of the interface. 
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5.4  
Application 

To validate the proposed methodology, the developed BCI is applied to a 

120 pound mobile robot. The chosen mobile robot, named “Touro” (see Fig. 5.5), 

were available at PUC-Rio’s Robotic Laboratory, setup to respond to RF 

commands, therefore no further development was necessary. In addition, this 

system is analogous to a powered wheelchair, one of the possible applications of 

the BCI: it is driven by only two active wheels (see Fig. 5.6) using “tank 

steering”, and it has enough torque to carry an adult.  

 
Figure 5.5 – Mobile robot “Touro” of the application. 

 

 
Figure 5.6 – Differential traction configuration of the mobile robot “Touro”. 
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The BCI commands are translated to five different commands: turn right, 

turn left, move forward, move backward, and stop. 

The Figure 5.7 shows the application of the BCI.   

 

 
 

Figure 5.7 – Application of the brain computer interface. 

 

The application to activate the robot is contained in the graphical interface, 

each processing of a command take approximately 2.5 seconds; therefore, the 

transmission rate is 25 commands/minute. The hit rate obtained of the application 

is 40 %. 

The Table 8 shows the comparison between mental activities and 

classifiers’s output resulting of the application test. 
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Table 8 – Comparison between mental activities and classifier’s output.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mental 

activity 

Classifier’s 

output 

RM RM 

LM AS 

CR RM 

AS RM 

RX RM 

RX RX 

CR CR 

AS RM 

LM LM 

RM RX 

DBD
PUC-Rio - Certificação Digital Nº 0611784/CA



 72

5.5  
Summary and Conclusions 

This chapter described the training protocol, the graphical interface and the 

application.  

The training protocol take approximately three hours, the computer used in 

this test is a notebook with processor AMD Turion64, 1.8 GHz and 1GB of RAM.  

The graphical interface was programmed to accomplish the three stages of 

the training automatically and sequentially.  

The mental activities classifier must be improved to increase the hit rate of 

the classification. 

The block diagram of the integrated system can be seen in the Fig. 5.8. 

 

 
 

Figure 5.8 – The block diagram of the integrated system. 
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6 
CONCLUSIONS 

The objectives of this dissertation were to: 

• Design and implement an EEG signal acquisition system, 

• Design and develop an asynchronous operant conditioning based BCI 

system, which carries out a training procedure based in mutual adaptation 

between the system and the user, through the adjustment of the system 

parameters and the feedback to the user. 

• Ensure that the BCI is free of the influence of signals of similar 

procedence such as ocular and muscular artifacts.  

• Establish efficient evaluation schemes and training protocols. 

 

 

6.1  
Summary of achievements 

The major achievements in this work can be summarized as follows. 

• A 10-channel EEG signal acquisition system was implemented to develop 

the BCI.  

• An asynchronous operant conditioning BCI was developed, which 

operates with five mental activities in the activation framework of a 

mobile robot, the BCI sends commands each 2.5 seconds. 

• An efficient algorithm to detect ocular and muscular artifacts was 

developed based on the training and composition of two neural networks. 

The parameters of this artifact detection system were set during a first 

training stage. 

• It was found that the selected features to train the neural networks in the 

artifact detection stage and the recognition stage represent suitably the 

behavior of the EEG signals in the frequency-time domain in each band of 

the EEG analysis. 
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6.2  
Future directions 

The BCI research depends of the development of neuroscience, technology 

and computational methods necessary for an efficient performance of the system. 

The follow proposals are possible extensions of this work. 

• The implemented EEG signal acquisition system can be improved, if the 

design contemplates surface electronic components, reducing the 

dimensions and protecting the circuits from noise influence. 

• The mental activities were chosen according to hemispheric brain 

specialization. The kinds of mental activity defined to train the classifiers, 

limiting the user to only them. The users could select, in future versions, 

the kind of mental activity with which they have more predisposition to 

operate the BCI.  

• The system implemented must be tested according to safety norms to 

guarantee the protection of the user, the recommended norm is the norm 

IEC 60601-1 (Medical electrical equipment – Part 1: General requirements 

for basic safety and essential performance). 

• The BCI can evolve to a Brain Machine Interface (BMI), which is 

implemented in an embedded system. The BMI will offer portability and 

improved user friendliness. 
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