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Abstract 

Luis Ernesto, Ynoquio Herrera; Meggiolaro, Marco Antonio (Orientador). 

Mobile Robot Simultaneous Localization and Mapping Using DP-

SLAM with a Single Laser Range Finder Rio de Janeiro 2011, 168p. 

M.Sc. Dissertation – Mechanical Engineering Department, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 

Simultaneous Localization and Mapping (SLAM) is one of the most 

widely researched areas of Robotics. It addresses the mobile robot problem of 

generating a map without prior knowledge of the environment, while keeping 

track of its position. Although technology offers increasingly accurate position 

sensors, even small measurement errors can accumulate and compromise the 

localization accuracy. This becomes evident when programming a robot to 

return to its original position after traveling a long distance, based only on its 

sensor readings. Thus, to improve SLAM´s performance it is necessary to 

represent its formulation using probability theory. The Extended Kalman Filter 

SLAM (EKF-SLAM) is a basic solution and, despite its shortcomings, it is by 

far the most popular technique. Fast SLAM, on the other hand, solves some 

limitations of the EKF-SLAM using an instance of the Rao-Blackwellized 

particle filter. Another successful solution is to use the DP-SLAM approach, 

which uses a grid representation and a hierarchical algorithm to build accurate 

2D maps. All SLAM solutions require two types of sensor information: 

odometry and range measurement. Laser Range Finders (LRF) are popular range 

measurement sensors and, because of their accuracy, are well suited for 

odometry error correction. Furthermore, the odometer may even be eliminated 

from the system if multiple consecutive LRF scans are matched. This works 

presents a detailed implementation of these three SLAM solutions, focused on 

structured indoor environments. The implementation is able to map 2D 

environments, as well as 3D environments with planar terrain, such as in a 

typical indoor application. The 2D application is able to automatically generate a 

stochastic grid map. On the other hand, the 3D problem uses a point cloud 

representation of the map, instead of a 3D grid, to reduce the SLAM 

computational effort. The considered mobile robot only uses a single LRF, 

without any odometry information. A Genetic Algorithm is presented to 

optimize the matching of LRF scans taken at different instants. Such matching is 

able not only to map the environment but also localize the robot, without the 

need for odometers or other sensors. A simulation program is implemented in 

Matlab® to generate virtual LRF readings of a mobile robot in a 3D 

environment. Both simulated readings and experimental data from the literature 

are independently used to validate the proposed methodology, automatically 

generating 3D maps using just a single LRF. 
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Resumo 

Luis Ernesto, Ynoquio Herrera; Meggiolaro, Marco Antonio (Orientador). 

Mapeamento e Localização Simultânea de Robôs Móveis usando DP-

SLAM e um Único Medidor Laser por Varredura Rio de Janeiro 2011, 

168p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, 

Pontifícia Universidade Católica do Rio de Janeiro. 

SLAM (Mapeamento e Localização Simultânea) é uma das áreas mais 

pesquisadas na Robótica móvel. Trata-se do problema, num robô móvel, de 

construir um mapa sem conhecimento prévio do ambiente e ao mesmo tempo 

manter a sua localização nele. Embora a tecnologia ofereça sensores cada vez 

mais precisos, pequenos erros na medição são acumulados comprometendo a 

precisão na localização, sendo estes evidentes quando o robô retorna a uma 

posição inicial depois de percorrer um longo caminho. Assim, para melhoria do 

desempenho do SLAM é necessário representar a sua formulação usando teoria 

das probabilidades. O SLAM com Filtro Extendido de Kalman (EKF-SLAM) é 

uma solução básica, e apesar de suas limitações é a técnica mais popular. O Fast 

SLAM, por outro lado, resolve algumas limitações do EKF-SLAM usando uma 

instância do filtro de partículas conhecida como Rao-Blackwellized. Outra 

solução bem sucedida é o DP-SLAM, o qual usa uma representação do mapa em 

forma de grade de ocupação, com um algoritmo hierárquico que constrói mapas 

2D bastante precisos. Todos estes algoritmos usam informação de dois tipos de 

sensores: odômetros e sensores de distância. O Laser Range Finder (LRF) é um 

medidor laser de distância por varredura, e pela sua precisão é bastante usado na 

correção do erro em odômetros. Este trabalho apresenta uma detalhada 

implementação destas três soluções para o SLAM, focalizado em ambientes 

fechados e estruturados. Apresenta-se a construção de mapas 2D e 3D em 

terrenos planos tais como em aplicações típicas de ambientes fechados. A 

representação dos mapas 2D é feita na forma de grade de ocupação. Por outro 

lado, a representação dos mapas 3D é feita na forma de nuvem de pontos ao 

invés de grade, para reduzir o custo computacional. É considerado um robô 

móvel equipado com apenas um LRF, sem nenhuma informação de odometria. 

O alinhamento entre varreduras laser é otimizado fazendo o uso de Algoritmos 

Genéticos. Assim, podem-se construir mapas e ao mesmo tempo localizar o robô 

sem necessidade de odômetros ou outros sensores. Um simulador em Matlab® é 

implementado para a geração de varreduras virtuais de um LRF em um ambiente 

3D (virtual). A metodologia proposta é validada com os dados simulados, assim 

como com dados experimentais obtidos da literatura, demonstrando a 

possibilidade de construção de mapas 3D com apenas um sensor LRF. 
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1 
Introduction and Problem Definition 

1.1. 
Introduction 

1.1.1. 
Robotics 

“Robotics is the science of perceiving and manipulation the physical world 

through computer-controlled mechanical devices” [1].  

The word robot was first introduced in 1921 by the Czech novelist Karel 

Čapek in his satirical drama entitled: Rossum´s Universal Robots. It is derived 

from the Czech word robota, which literally means “forced laborer” or “slave 

laborer” [2]. From there this word was popularized by science fiction, assigning it 

to machines with anthropomorphic characteristics, fitted with action and decision 

capabilities, similar or higher than humans [3]. Examples of successful robotics 

system include mobile platforms for planetary exploration, robotics arms in 

assembly lines, cars traveling  autonomously on highways, actuated arms that 

assist surgeons and so on.  

Mobile robot systems operate in increasingly unstructured environments, 

inherently unpredictable. “As a result, robotics is moving into areas where sensor 

input becomes increasingly important, and where robot software has to be robust 

enough to cope with a range of situations – often too many to anticipate them all” 

[1]. Robotics is becoming a software science, where the target is to develop sturdy 

software that enables robots to overcome the numerous challenges in unstructured 

and dynamic environments. 

 

http://en.wikipedia.org/wiki/Karel_%C4%8Capek
http://en.wikipedia.org/wiki/Karel_%C4%8Capek
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1.1.2.  
Uncertainty in Robotics 

Uncertainty in robotics arises from five different factors [1]: 

1. Environment. Environments such as private homes and highways are 

highly dynamic and unpredictable 

2. Sensors. Limitation in sensors arises from their range and resolution. In 

addition, sensors are subject to noise. 

3. Robots. “Robot actuation involves motors that are, at least to some 

extent, unpredictable, due to effects such as control noise and wear-and-

tear” [1]. 

4. Models. Models are idealization of the real world. They only partially 

model the physical processes of the robot and its environment. 

5. Computation. “Robots are real-time systems, which limits the amount 

of computation that can be carried out” [1]. Many algorithms are 

approximate, reaching timely response through slaughtering accuracy. 

“Traditionally such uncertainty has mostly been ignored in Robotics” [1]. 

However, as robots are moving away into increasingly unstructured environments, 

the ability to deal with uncertainty is crucial for building successful systems. 

 

1.2.  
Problem Definition 

The scope of this work is related to the SLAM problem. SLAM 

(Simultaneous Localization and Mapping) is one of the most widely researched 

subfields of robotics, in special in mobile robotic systems.  

Let’s consider a mobile robot which is using wheels connected to a motor, 

actuators and a camera. Consider that the robot is manipulated by an operator 

mapping inaccessible places. The actuators allow the robot to move around, and 

the camera provides visual information for the operator to know where objects are 
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and how the robot is oriented in reference to them. What the human operator is 

doing is an example of SLAM.  

“Thus, the SLAM subfield of Robotics attempts to provide a way for robots 

to perform SLAM autonomously. A solution to the SLAM problem would allow a 

robot to make maps without any human assistance whatsoever” [4].  

In the following, the SLAM idea is graphically presented (example taken 

from [4]). 

 

1.2.1.  
Localization overview 

Let’s consider a mobile robot in an environment which contains beacons or 

landmarks (points in the environment with a known exact location) from which 

the robot can calculate its distance and direction.  Assume that the robot starts in 

some true known location R0 (e.g. the red filled circle in Figure 1.1), and it has 

knowledge of a set L containing several landmark locations. When the robot 

moves a given distance in a certain direction (the movement vector u1) to location 

R1, it actually moves along some other vector to some location R 1́ which is nearby 

R1, due to uncertainties in the actuators. Landmarks need to be relocated to 

determine the new robot position. Because the actuators are imprecise, the 

landmarks could not be reacquired by assuming they have moved inversely to u1. 

Thus, the robot must search for the landmarks, starting near the expected location 

of the landmark and expanding outwards. Figure 1.1 presents this situation. 

Note that R 1́ and vector u’1  correspond to estimates rather than the actual 

values. Once the landmarks are reacquired, a new robot location estimate, R1, can 

be made as shown in Figure 1.2. 
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Figure 1.1: Localization Overview (search for landmarks) 

 

 

 

Figure 1.2: Localization Overview (location updated) 

 

It is important to stress that R1 is the location updated based on new 

observations, and therefore it is an estimated (white filled circle) robot position 

rather than the true position (red filled circle), which is impossible to perfectly 

measure.  
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1.2.2. 
Mapping overview 

Mapping is, in a way, the opposite of localization. In mapping, it is assumed 

that the robot exactly knows where it is at all times. What the robot does not 

know, in the mapping context, is the locations of landmarks. Thus, the robot must 

locate landmarks to build a map Zt={Lt1 Lt2 … Ltn}, where Ltn is the n
th

 landmark 

estimate at time step t. Of course Zt only contains approximations of the actual 

landmark locations. As the robot moves, the map is usually more accurate. 

Let’s follow the same example from the previous section, beginning at R0 

and moving along u1 to R1. The robot will acquire the set of landmarks, but in this 

situation the perceived landmarks locations will have shifted from their expected 

location due to sensor inaccuracies instead of odometry inaccuracies. The 

landmarks can be relocated by searching nearby where the robot expects to find 

them. Thus, the robot will have built a new map Z1, consisting of new locations of 

the landmarks in Z0. Figure 1.3 demonstrates the process. For simplicity, in this 

example preservation of landmarks is assumed; in reality some landmarks are lost 

and new landmarks are acquired. 

 

 

Figure 1.3: Mapping Overview 

 

To generate a new map, Z2, combining information of Z0 and Z1 but 

containing only one instance of each landmark, the robot can choose one of many 
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options. For example, it can choose any point on the line connecting L0n and L1n 

(note that L0n and L1n are two conflicting perceived locations of landmark n).  

  Whichever the method selected for incorporating new sensor readings, it 

seems safe to assume that Zt will improve as time t increases. 

 

1.2.3.  
Simultaneous Localization and Mapping 

The Localization Overview and the Mapping Overview presented before 

require something as an input that is unavailable in practice. Localization requires 

accurate landmark locations as input and conversely Mapping requires exact robot 

localization. This suggests that the two processes are related and could be 

combined into a single solution. 

Suppose a robot starts moving from some known origin. It uses the Mapping 

process to construct a preliminary map. It then moves to a new location and 

updates its expected location as in Localization step. Finally, the new calculated 

pose is used to once again generate a new map, which is combined with the 

original map as described in Section 1.2.2. By repeating this process, one can 

provide a map for input into the Localization, and a location for input into the 

Mapping. Figure 1.4 demonstrates the basic Simultaneous Localization and 

Mapping idea. 

 

 

Figure 1.4: Simultaneous Localization and Mapping 
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One thing to notice with this combined localization and mapping algorithm 

is that one does not provide completely accurate input to either the mapping or the 

localization components. 

 

1.3.  
Motivation 

Petrobras operates in oil and gas exploitation at Amazon, in the province of 

Urucu (AM), at the Solimões River, about 650 km from Manaus City. To drain 

this production, it has been built two gas pipelines: Coari-Manaus and Urucu 

Porto Velho, with 420 Km of extension from Manaus as well.   

In order to monitor these almost one thousand kilometers of pipeline in a 

hard access region and to avoid environment disasters, it was built a robotic 

amphibian vehicle, named Hybrid Environmental Robot (HER). 

HER is able to move in many different grounds of Amazon: water, ground 

and aquatic microfiber, and it is also able to monitor different scenarios using 

many sensors, as shown in Figure 1.5. Moving into such an extended and remote 

areas and collecting data samples has become an important issue; thus, a precise 

position perception is needed, allowing the possibility for navigation and 

demarcation in areas of interest.    

 

 

Figure 1.5: The Hybrid Environment Robot (HER) 
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HER acquires its position using a GPS system. However, it is prone to 

failure because of obstructions in satellite signal, caused by local vegetation. In 

this case, HER needs to acquire its position in a different way, in order to continue 

its mission or to search places with better satellite reception. The use of odometers 

is not a good choice due to frequent slipping on the ground; beyond, it does not 

have any utility over water. Localization by cameras also does not presents good 

results due to high similarity between vegetation images, making hard a reliable 

keypoints establishment. Inertial platforms would help in the localization of the 

robot, but would not have any utility to detect obstacles.  

So, the use of a Laser Range Finder (LFR) represents great advantages, 

cause it is able, not only to locate the robot or mapping the environment, but also 

to detect obstacles on the robot´s path. 

 

1.4.  
Objective 

The objective of this work is to perform SLAM with limited sensor 

capabilities. More specifically, it is shown that localization and mapping can be 

performed without odometry measurements, just by using a single Laser Range 

Finder (LRF).  

To accomplish that, first a detailed explanation of SLAM algorithms 

implementations is given, focusing on the: EKF-SLAM, FastSLAM, and DP-

SLAM methods. Then, a Genetic Algorithm is implemented for Normal 

Distribution Transform (NDT) optimization, in order to obtain robot displacement 

without odometry information. An implementation for 3D mapping is shown, 

using DP-SLAM, which does not use predetermined landmarks (not dealing either 

with data association problems). Finally a virtual 3D environment is simulated 

including virtual Laser Range Finder (LRF) readings, to validate the presented 

methodology. Experimental data from actual LRF readings are also used to 

evaluate the performance of the algorithms.  
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1.5. 
Organization of the Thesis  

This thesis is divided into six chapters, described as follows: 

Chapter 2 comprises the theory necessary for Probabilistic Robotic.  The 

basic concepts of representing uncertainties in a planar robot environment are 

shown. Also the main algorithms for scan matching are given, emphasizing on the 

Normal Distribution Transform(NDT). Concluding with Genetic Algorithms and 

Differential Evolution (DE). 

Chapter 3 describes the principal algorithms for the SLAM solutions, 

including EKF-SLAM, FastSLAM and DP-SLAM. Besides, is presented a review 

for 3D SLAM solutions and 3D mapping. 

Chapter 4 gives a detailed implementation of the principal SLAM solutions: 

EKF-SLAM, FastSLAM and DP-SLAM. Is explained also, the simulated Laser 

Range Finder (RLF) in a structured environment, developed for testing the 

proposed methods. In addition, is explained the NDT optimization using 

Differential Evolution, in order to get robot displacements without odometry 

information. 

Chapter 5 presents the results obtained in simulated and real data acquired 

from the literature. 

Chapter 6 presents comments and conclusions to the performed work. 
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2. 
Theoretical Basis 

2.1.  
Probabilistic Robotics 

“The key idea of Probabilistic Robotics is to represent uncertainty explicitly, 

using the calculus of probability theory” [1]. In other words, instead of relying on 

a single “best guess” probabilistic algorithms represent information by 

probabilistic distributions. By doing so, probabilistic robotics can mathematically 

represent ambiguity and degree of belief, enabling them to accommodate all 

sources of uncertainty. 

The advantage of probabilistically programming robots, compared to other 

approaches that do not explicitly represent uncertainty, is simply because:  

“A robot that carries a notion of its own uncertainty and that acts 

accordingly is superior to one that does not.” [1].  

Probabilistic approaches are typically more robust under sensor limitation, 

sensor noise, environment dynamics, and so on. They are well suited to complex 

and unstructured environments, where the ability to deal with uncertainty is quite 

important. “Probabilistic algorithms are broadly applicable to virtually every 

problem involving perception and action in the real world” [1]. 

All these advantages, however, come at a price. The two most cited 

limitations of probabilistic algorithms are: a need to approximate and 

computational inefficiency. Because probabilistic algorithms consider entire 

probability densities, they are less efficient than non-probabilistic ones. 

Computing exact posterior distributions is typically infeasible, since distributions 

over the continuum possess infinitely many dimensions (most robot worlds are 

continuous). Sometimes, uncertainty can be approximated with a compact 

parametric model (e.g. discrete distributions or Gaussians); in other cases, a more 

complicated representations most be employed. 
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“At the core of probabilistic robotics is the idea of estimating state from 

sensor data” [1]. This sensor data are not directly observable, but that can be 

inferred. A robot has to rely on its sensors to gather information, while this 

information is only partial, and corrupted by noise. Thus, state estimation seeks to 

recover state variables from data.  

 

2.1.1.  
Bayes Filter and SLAM 

In Probabilistic Robotics, all quantities related in estimation such as sensor 

measurements, controls, state of the robot and its environment might be modeled 

as random variables. Random variables can take on multiple values, and they 

behave according to probabilistic laws. Probabilistic inference is the process of 

calculating these laws. 

“Bayes rule is the archetype of probabilistic inference” [5]. It plays a 

predominant role in probabilistic robotics. Therefore, it is the basic principle 

underlying virtually every single successful SLAM algorithm. The Bayes rule is 

stated as [1]: 

 

   )(|)|( xpxdpdxp   (2.1) 

 

If the quantity to learn is x (e.g. a map), using measurement data d (e.g. 

odometry, range scans), then Bayes rule tells that the estimation problem can be 

solved by multiplying two terms: p(x|d) and p(x). The term p(x|d) is a 

generative model, it describes the process of generating sensor measurements 

under different worlds x . The term p(x) is called the prior. It specifies the 

willingness before the arrival of any data. Finally, η is a normalizer that is 

necessary to ensure that the left- hand side of Bayes rule is indeed a valid 

probability distribution [5]. 

In robotic mapping there are two different types of data: sensor 

measurements and controls. Let´s denote sensor measurement (e.g. camera 



31 

 

images, LRF scans) by the variable z, and the control (e.g. motion command, 

odometry) by u. Let us assume that the data is collected in alternation: 

 ...,,,, 2211 uzuz  (2.2) 

 

where subscripts are used as time index.  

“In the field of robot mapping, the single dominating scheme for integrating 

such temporal data is known as Bayes Filter” [5].  

The Bayes Filter is the extension of Bayes rule to temporal estimation 

problems[5]. It is a recursive estimator to compute posterior probability 

distributions over quantities that cannot be observed directly – such as a map or 

robot position. Let’s call this unknown quantity the state xt, where t is the time 

index. The generic Bayes filter calculates a posterior probability over the state xt 

using the recursive equation [1]: 
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where the superscript 
t
 refers to all data leading up to time t, that is: 

 },...,,{ 21 tt zzzz   (2.4) 

 },...,,{ 21 tt uuuu   (2.5) 

Note that Bayes filter is recursive, that is, the posterior probability 

p(x t |z
t
,u

t
) is calculated from the same probability one time step earlier. The 

initial probability at time t = 0 is p(x0 |z
0
,u

0
) = p(x0).  

In the context of robotic mapping the state x t  contains all unknown 

quantities that are typically two: the map and the robot’s pose in the environment. 

When using probabilistic techniques, the mapping problem is one where both the 

map and the robot pose have to be estimated in the same time altogether. Using m 

to denote the map and R for the robot’s pose, the following Bayes Filter is 

obtained [1]: 
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(2.6) 

 

If assumed a static world, the time index can be omitted when referring to 

the map m. Also, most approaches assume that the robot motion is independent of 

the map. And finally, using the Markov assumption, which postulates that past 

and future data are independent if one knows the current state xt, the state xt can be 

estimated using only the state xt-1 one step earlier. This results in a convenient 

form of the Bayes Filter for the robot mapping problem [5]: 
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(2.7) 

 

This estimator does not require integration over maps m, as it was the case 

for the previous one from eq. (2.6). The static world assumption is quite 

important, because such integration is difficult due to the high dimensionality of 

the space of all maps. 

In eq. (2.7) two distributions probabilities have to be specified: p(Rt|ut, Rt-1) 

and  p(zt|Rt,m). Both are generative models of the robot and its environment. 

The probability distribution p(Rt|ut, Rt-1), often called to as motion model, 

specifies the effect of the control u on the state. It describes the probability that 

the control u, if executed at the world state Rt-1, leads to the state Rt. 

The probability p(zt|Rt,m), often called to as perception model, describes in 

probabilistic terms how sensor measurements z are generated for different poses 

Rt and maps m.  

However, eq. (2.7) cannot be implemented on a digital computer in its 

general stated form. This is because the posterior over the space of all maps and 

robot poses is a probability distribution over a continuous space, hence possesses 

infinitely many dimensions. Therefore, any working mapping algorithm has to 

take additional assumptions. These assumptions and their implications on the 



33 

 

resulting algorithms and maps constitute the main differences between the 

different solutions to the SLAM. 

Figure 2.1 shows a generative probabilistic model (dynamic Bayes network) 

that underlies the essential of SLAM. 

 

 

Figure 2.1: SLAM like a Dynamic Bayes Network 

 

In particular, the robot poses, denoted by R1, R2, …, Rt, evolve over time as 

a function of the controls, denoted by u1, u2, …, ut. The map is composed (as it 

will be seen later) by landmarks and each measurement of them, denoted by z1, z2, 

…, zt, which are a function of its position L1, L2, …, Ln and of the robot pose at the 

time the measurement was taken. 

Note that in this SLAM equation analysis the odometery ut is assumed to be 

known, and this assumption will be kept till the Section 4.5.1 where odometry is 

replaced by Scan Matching. 

 

2.1.2.  
Motion Model  

“Robot motion models play an important role in modern robotics 

algorithms” [6]. The main purpose of a motion model is to model the relationship 

between a control input to the robot and a change in the robot´s configuration, 



34 

 

pose and map. Good models will capture not only systematic errors, but it will 

also capture the stochastic nature of the motion. The same control input will 

almost never produce the same result. “Thus, the effects of a robot’s action are, 

therefore, best described as distributions” [6].  

This thesis focuses entirely on kinematics for mobile robots operating in 

planar environments. Kinematics describes the effect of control actions on the 

configuration of a robot. A rigid mobile robot is commonly described by six 

variables, its three-dimensional Cartesian coordinates and its three Euler angles 

(roll, pitch, yaw) referred to an external coordinate frame. But in a planar 

environment, the position of a mobile robot is summarized by three variables: its 

two-dimensional planar coordinates referred to an external coordinate frame, 

along with its angular orientation.  
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(2.8) 

 

Figure 2.2 illustrates a robot pose in a plane. 

 

 

Figure 2.2: Robot pose 

 

The orientation of a robot is often called bearing, or heading direction. 
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The probabilistic kinematic model, or motion model, plays the role of the 

state transition model in Mobile Robotics. As described in the previous section, 

this model is the probability distribution: 

 ),|( 1ttt RR up
 

 (2.9) 

 

Figure 2.3 shows two examples that illustrate the motion model for a rigid 

mobile robot in a planar environment.  The robot’s initial pose,  in both cases, is 

Rt-1. The distribution p(Rt|ut, Rt-1) is visualized in the form of a gray shaded area: 

darker areas mean more probability in robot position. In both figures, the robot 

moves forward some distance, during which it may accumulate translational and 

rotational errors. The right figure shows a larger spread of uncertainty due to a 

more complicated motion. 

 

 

 

 

 

 

 

Figure 2.3: The motion model, showing posterior distributions of the robot’s pose 

after executing the motion command ut (red striped line). The darker a location, the 

more likely it is. 

 

There are two motion models usually used. “The first model assumes that 

the motion data ut specifies the velocity commands given to the robot’s motors” 

[1]. Many commercial mobile robots (e.g. differential drive, synchro drive) are 

actuated by independent translational and rotational velocities. The second model, 

which is used in this work, assumes that ut contains odometry information 

(distance traveled, angle turned). 
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However, odometry is only available as the robot moves. Hence it cannot be 

used for motion planning, such as collision avoidance [1]. “Technically, odometry 

are sensor measurements, not controls” [1]. But it is common to simply consider 

odometry as if it was a control input signal. 

 

2.1.3.  
Perception Model 

“The perception model comprises the second domain-specific model in 

probabilistic robotics, next to the motion model” [1]. In probabilistic terms, the 

Perception Model describes how sensor measurements z are generated for 

different poses R and maps m. As described before, this is modeled by: 

 ),|( mRzp tt  (2.10) 

 

The Perception Model account for the uncertainty in the robot’s sensors. 

Thus, it explicitly models noise in sensor measurement. It could say that better 

results are acquired by a more accurate Perception Model. However, it is almost 

impossible to accurately model a sensor; reference [1] gives two primarily 

reasons[1]: “First, developing an accurate perception model can be extremely 

time-consuming; and second, an accurate model may require state variables that 

are not known, such as the surface material” [1]. In this way Probabilistic 

Robotics, instead of modeling the Perception Model by a deterministic function 

z=f(x), accommodates the inaccuracies of Perception Model by a conditional 

probability density, p(z|x). “Herein lies a key advantage of probabilistic 

techniques over classical robotics” [1].  

Figure 2.4 shows a robot in an environment getting measurements from its 

Laser Range Finder (LRF). Given a position and the map of the environment, it is 

possible to use ray-tracing to get expected measurements for each rangefinder 

angle.   

The result of modeling the sensor is shown in Figure 2.5. For a particular 

expected distance, the sensor will give a value near that distance with some 



37 

 

probability.  So, given an actual measurement and an expected distance, it is 

possible to find the probability of getting that measurement using the graph from 

Figure 2.5. 

 

 

Figure 2.4: Robot in a map getting measurements from its LRF. 

 

 

Figure 2.5: Given an actual measurement and an expected distance, the probability 

of getting that measurement is given by the red line in the graph. 
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Today’s robots use a variety of sensor types, such as tactile sensors, range 

finder sensors, sonar sensors or cameras. The model specifications depend on the 

sensor type. 

 

2.2.  
Map Representation 

There are many reasons to have a representation of the robot’s environment. 

Some of the purposes of having a map are listed in the following: 

 Localization. The robot localization is possible making a correspondence 

between a given map and the observation of the robot’s environment. 

 Motion planning. Once the robot is located and given a target position, all 

necessary movements in the map can be compute to successfully move to the 

target.  

 Collision avoidance. Using a map and robot’s localization the navigation is 

possible without collisions. 

 Human use. The map constructed by the robot can be used for exploration 

tasks in potentially hazardous environments. 

In general, the map representation can be grouped into three main types: 

Geometric, Topological and Hybrid. However the general tendency in SLAM is to 

use geometric representation. Thus, this representation has also a subdivision: 

Landmark (or feature maps) and Grid maps. 

 

2.2.1. 
Landmark Maps 

The landmark-based maps consist of a set of distinctive point localizations 

that are referred to a global reference system. In structured domains such as 

indoor environments, landmarks are usually modeled as geometric primitives such 

as points, lines or surfaces. 
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 The main advantage of landmark-base maps is their representation 

compactness. By contrast, this kind of map requires the existence of structures or 

objects that are distinguishable enough from each other. Thus, an extra algorithm 

for recognizable and repeatedly detectable landmark extraction is needed. 

In practice, good landmarks may have similar traits, which often make them 

difficult to distinguish from each other. When this happens the problem of data 

association, also known as the correspondence problem, has to be addressed. “The 

correspondence problem is the problem of determining if sensor measurements 

taken at different points in time correspond to the same physical object in the 

world” [5]. It is a difficult problem, because the number of possible hypotheses 

can grow exponentially. 

Figure 2.6 shows a simulated landmark-based map, where the blue asterisks 

represent the landmarks and the small triangle the robot position. 

 

 

Figure 2.6: Simulated Landmark Map  
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2.2.2.  
Grid Maps 

A grid map, or occupancy grid, is a popular and intuitive method to describe 

an environment. Occupancy grids were originally developed at Carnegie Mellon 

University in 1983 for sonar navigation within a lab [7].  

Occupancy grids divide the environment up into a regular grid square, all of 

equal size. “Each of these grid squares correspond to a physical area in the 

environment and, as such, each square contains a different set of objects or 

portions of an object” [6]. An occupancy grid is an ideal representation of the 

environment, containing information on whether a square in the real environment 

is occupied or not.  

The occupancy grid representation can be generalized into two types: 

deterministic and stochastic [6], described as follows. 

 Deterministic map grids are the simplest representation, having two values for 

each grid square. Typically squares are considered as either Empty or 

Occupied, also sometimes is include a value for Unknown (or Unobserved). 

However, this representation is an exaggerated simplification for the sensors, 

since almost never a sensor will see a square of the environment which is both 

completely occupied and accurately observed.  

 Stochastic maps, besides of Occupied and Empty, have a gradual scale of 

various degrees of occupancy. What percentage of the square is believed to be 

occupied, or how transparent the object is to the sensor are some factors that 

affect the occupancy value. The stochastic representation and the 

corresponding observation model need to be properly tuned for the sensor 

used. 

Figure 2.7 shows a stochastic grid map, where the occupancy of each square 

is given in gray scale color, and darkest squares mean high probability of 

occupancy. 
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Figure 2.7: Grid Map: White regions mean unknown areas, light gray represents 

unoccupied areas, and darker gray to black represent increasingly occupied areas. 

 

This work uses occupancy grid maps for environment representation, 

specifically stochastic occupancy grid maps. 

 

2.3. 
Scan Matching 

“Many SLAM algorithms are based on the ability to match two range scans 

or to match a range scan to a map” [8]. Laser Range Fiders (LRF) are popular 

sensors to get the input for scan matching, since their high reliability and their low 

noise in many situations.  

The goal of scan matching is to find the relative displacement between the 

two positions at which the scans were taken. If a robot starts at position Pr (which 

is a reference pose), takes a scan Sr (reference scan), after that it moves through a 

static environment to a new pose Pn and takes another scan Sn (new scan), then 

scan matching seeks the difference of position Pn from posistion Pr (the relative 

translation and rotation) by aligning the two scans. 
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“The basis of most successful algorithms is the establishment of 

correspondences between primitives of the two scans” [8], i.e. point-to-point or 

feature-to-feature. 

Different routines are developed to use point-to-point matching approaches 

such as the Iterative Closest Point (ICP) and the Iterative Dual Correspondence 

(IDC), both proposed by Lu and Milios [9]; and another, The Iterative Closest 

Line (ICL) proposed by Alshawa [10].   

In [11] it is proposed a method that searches for features like corners and 

jump-edges from raw range scans. Another method based on feature extraction is 

HAYAI proposed in [12]. This method solves the self-localization problem for 

high speed robots. 

One method that does not use correspondences between scans is the Normal 

Distribution Transform proposed in [8].  This method transforms the discrete set 

of 2D points reconstructed from a single scan into a piecewise continuous 

differentiable probability density defined on the 2D plane.  

This work uses the NDT for scan matching but without using odometry 

information. But before getting to it; let’s briefly review some of methods used for 

scan matching including NTD.  

 

2.3.1.  
Point to Point Correspondence Methods. 

 The Iterative Closest Point (ICP) 

The most general matching point to point approach was introduced 

by Lu and Milios in [9]. This is essentially a variant of the ICP (Iterative 

Closest Point) algorithm applied to laser scan matching. 

A scan is a sequence of points which represent a 2D plane contour of 

the local environment. “Due to the existence of random sensing noise and 

self-occlusion, it may be impossible to align two scans perfectly” [9]. Thus 

this method assumes two types of discrepancies between scans: 
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o in the first type, there are small deviations of scan points from the true 

contour due to random sensing noise, and 

o the other type of discrepancy is the gross difference between the scans 

caused by occlusion. These discrepancy types are called outliers. 

Adopting these criterions, ICP finds the best alignment of the 

overlapping part in the sense of minimum least-square errors, while 

ignoring the outlier parts. That is way ICP also need of correspondence 

search and outlier detection algorithms.  

Lu and Milios [9] present two scan matching methods based on ICP. 

The first considers the two components (rotational and translational) 

separately; alternately fixing one, then optimizing the other. Given the 

rotation, least-square optimization is used to acquire translation.  

Their second method called Iterative Dual Correspondence (IDC) 

combines two ICP-like algorithms with different point-matching 

heuristics. 

 The Iterative Closest Line (ICL) 

“ICL is similar to ICP, except that instead of matching query points 

to reference points, the query points are matched to lines extracted from 

the reference points” [13].  

 

2.3.2.  
Feature to Feature Correspondence Methods. 

 Feature Based Laser Scan Matching for Accurate and high speed 

Mobile Robot Localization. 

Proposed by Aghamohammadi et al. [11].  This method divides the 

features into two types: features corresponding to the jump-edges and 

those corresponding to the corners detected in the scan. 

In order to detect jump-edges, this method uses the natural 

consecutive order of points in the scan. Thus it defines a dth which is the 
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maximum distance between two consecutive scan points. Beyond dth these 

two consecutive points can be considered as jump-edges. 

To obtain the second class of features, the corners, this method uses 

a line fitting algorithm. Thus the split-and-merge algorithm is used but 

only for line fitting. In this way, using two points taken of two consecutive 

lines, it searches for the farthest point to the straight line joining these two 

points. 

Finally, after extracting features for two consecutive scans, a 

matching algorithm, based on a dissimilarity function is calculated. 

This method is fast and it can be used for high speed mobile robot, 

but it suffers when the environment does not have corners or when it has 

circular walls, because no corners could be extracted and false jump-edges 

could be acquired. 

 The Highspeed and Yet Accurate Indoor/outdoor-tracking (HAYAI)  

HAYAI was proposed by Lingemann et al. [12]. This uses the 

inherent order of the scan data, allowing the application of linear filters for 

fast reliable feature detection. 

Thus, this method chooses extrema in the polar representation of a 

scan as natural features. These extrema correlate to corners and jump-

edges in Cartesian space. The usage of polar coordinates implicates a 

reduction by one dimension, since all operations deployed for feature 

extraction are fast linear filters. 

For feature detection, HAYAI filters the scan signal using three one 

dimensional filters ψ= [ψ-1, ψ0, ψ+1].The first one sharpens the data in 

order to emphasize the significant parts of the scan. The second one 

computes the derivation signal using a gradient filter. And, the last one 

smoothes the gradient signal to simplify the detection of zero crossing 

using a softening filter.  

After generating the sets of features from both scans, the matching 

between both sets is calculated. But instead of solving the hard 
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optimization problem of searching for an optimal match, HAYAI uses a 

heuristic approach, utilizing inherent knowledge about the problem of 

matching features, e.g., “the fact that the features topology cannot change 

fundamentally from one scan to the following” [12]. 

“Although this method is a fast and feature based method for scan 

matching, it suffers from the lack of satisfying robustness property of 

feature extraction. It is well-suited for high range sensors” [11]. 

 

2.3.3.  
The Normal Distribution Transform 

The assumed correspondences between two scans captured from two 

different poses of the robot are generally not true. That is why Biber [8] proposed 

a new method that does not need correspondences. Thus NDT makes an 

occupancy grid and subdivide the 2D plane into cells. To each cell, it assigns a 

normal distribution, which models the probability of measuring a point. “The 

result of the transform is a piecewise continuous and differentiable probability 

density, that can be used to match another scan using Newton’s algorithm” [8]. 

This work uses the NDT for scan matching, which will be explained in 

detail next. 

 The NDT representation of one scan is built as follows: first, it subdivides 

regularly into cells of constant size the 2D space around the robot. Then, for each 

cell that contains at least three points: 

1. collects all 2D-Points  xi=1…n  contained in this cell. 

2. calculates the mean: 
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3. calculates the covariance matrix 
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The probability of a 2D-point x contained in this cell is now modeled by the 

normal distribution N(q,∑): 
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Unlike to occupancy grid that represents the probability of a cell being 

occupied, the NDT represents the probability of measuring a point for each 

position within the cell. NDT proposes a cell size of 1000 mm by 1000 mm and 

this value will be adopted in this work. 

To minimize discretization effects, NDT uses four overlapping grids as 

follows: one grid with side length l of a single cell is place first, then a second 

one, shifted by half cell horizontally, a third one, shifted by half vertically and 

finally a fourth one, shifted by half horizontally and vertically. In this way, each 

2D point falls into four cells. Thus, if the probability density of a point is 

calculated the densities of all four cells are evaluated and the result is summed up. 

Figure 2.8 shows an example laser scan and a visualization of the resulting 

NDT. This visualization is created by evaluating a fine mesh of points; bright 

areas indicate high probability of being occupied.  

 

 

Figure 2.8: An example of NTD: the original laser scan (left) and the resulting 

probability density (right). 
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The spatial transformation T between two robot positions is given by: 
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where tx and ty describes the translation and ϕ the rotation between the two 

positions. As described in Section 2.3 the goal of the scan matching is to recover 

these values using the laser scans taken at two positions. The outline of NTD, 

given two scans, is as follows: 

1. first,  the NDT of the first is built; 

2. a estimate for the variables (tx ,ty ,ϕ), is initialized (by zero or by using 

odometry data); 

3. for each point of the second scan: a reconstructed 2D point into the 

coordinate frame of the first scan is mapped, according to the value of 

variables; 

4. the corresponding normal distribution for each mapped point is 

determined; 

5. the score for the variables is determined by evaluating the distribution for 

each mapped point and summing the result; 

6. a new estimate for variables are calculated by trying to optimize the score, 

this is done by performing one step of Newton’s Algorithm, and 

7. go to step 3 until a convergence criterion is met. 

The steps one to four are straightforward. The remaining is described using 

the following notation: 

 p = (tx ,ty  ,ϕ)
T 

: the vector of the variables to estimate. 

 xi : the reconstructed 2D point of laser scan point i of the second scan in 

the coordinate frame of the second scan. 
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 ix : the point xi mapped into the coordinate frame of the first scan 

according to the vector p, that is ix = T (xi , p) 

 i , qi : the covariance matrix and the mean of the corresponding normal 

distribution to point ix  looked up in the NDT of the first scan. 

“The mapping according to p could be considered optimal, if the sum 

evaluating the normal distribution of all points ix  with parameters i and qi is a 

maximum” [8]. NDT calls this sum the score of p, defined as: 
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NDT normalization problems are described as minimization problems, thus 

NDT adopts its notation to this convention. Therefore the function to minimize is 

the negative of score. 

NDT uses Newton’s algorithm iteratively to find the vector p = (tx ,ty ,ϕ)
T
 

that minimizes the function f = –score. Each iteration solves the equation: 

 gp ΔH   (2.16) 

 

where g is the transposed gradient of f  with entries 
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and H is the Hessian of f  with entries 
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The solution of this linear system is an increment pΔ  which is added to the 

current estimate: 

 ppp Δ   (2.19) 
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2.4. 
Genetic Algorithms  

The Genetic Algorithm (GA) is a search heuristic that imitates the process 

of natural evolution; this heuristic is routinely used to generate useful solutions to 

optimization and search problems. Problem solving using genetic algorithms isn´t 

new, the pioneering work of J. H. Holland in the 1970’s [14] showed significant 

contribution for engineering applications. 

GA´s are inspired by a biological process in which best individuals are 

likely to be the winners in a competing environment. The potential solution of a 

problem is an individual which can be represented by a set of variables. These 

variables are considered as the genes of a chromosome and they are usually 

structured by a sequence of bits.  A positive value (known as fitness value), 

obtained by a Fitness Function, reflects the degree of “quality” of the 

chromosome in order to solve the problem, and this value is narrowly related to its 

objective value. 

In the process of a genetic evolution, a  chromosome with high quality has 

the tendency to produce good-quality offsprings, which means better solutions to 

the problem. “In a practical application of GA, a population pool of chromosomes 

has to be installed, which can be randomly set initially” [15]. In each cycle of 

genetic process, a subsequent generation is created from the best chromosomes in 

the current population. This group of chromosomes, generally called “parents”, 

are selected via a specific selection routine. The roulette wheel selection [16] is 

one of the most commonly used techniques to provide selection mechanism; this 

selection is based on the fitness value of chromosomes.  

The parents are mixed and recombined to produce offsprings for the next 

generation. From this process of evolution, it is expected that the best 

chromosomes will create more offsprings, and thus having a higher probability of 

surviving in the subsequent generation. This emulates the survival-of-the-fittest 

mechanism in nature. The evolution cycle is repeated until a desired termination 

criterion is reached. The criterion used could be the number of evolution cycles, 

the amount of variation of individuals between different generations, or a 
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predefined fitness value. In order to achieve a GA evolution cycle, two 

fundamental operators, crossover and mutation, are required.  

The procedure described above can be applied in many different ways to 

solve a wide range of problems.  

However, in the design of a GA to solve a specific problem, there are 

always two major decisions: specifying the mapping between the chromosome 

structure and candidate solutions (representation problem) and defining a concrete 

fitness function.  

 

2.4.1.  
Chromosome Representation 

“Bit-string encoding is the most classical approach used by GA researchers 

because of its simplicity and traceability” [15]. A slight modification is the use of 

Gray code in the binary coding; “in practice, Gray-coded representation if often 

more successful for multi-variable function optimization applications” [17]. 

Real-valued chromosomes were introduced to deal with real variable 

problems. “Many works indicate that the floating point representation would be 

faster in computation” [15]. 

 

2.4.2.  
The Fitness Function 

“The Fitness Function is at the heart of an evolutionary computing 

application” [18]. It determines which solutions within a population are better at 

solving the particular problem[18], being an important link between GA and the 

system. The Fitness Function takes a chromosome as an input and outputs a 

number which represents  the measure of the chromosome performance. 

An ideal fitness function correlates closely with the algorithm goal, and 

besides may be computed quickly. Speed of execution is very important, thus, a 
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typical GA must be iterated many, many times, in order to produce a usable result 

for a non-trivial problem.  

Definition of the Fitness Function is not straightforward in many cases, and 

it is often performed iteratively if the solutions produced by GA are not what it is 

desired.  

 

2.4.3.  
Fundamental Operators 

The crossover operator is shown in Figure 2.9. The portion of the two 

chromosomes beyond the crossover point to the right is exchanged to form the 

offspring. An operation rate (pc) with a typical value between 0.6 - 1.0 is normally 

used as the probability of crossover. 

 

 

Figure 2.9: The crossover operator 

 

Although one-point crossover was inspired by biological processes, it has 

one major drawback in the certain combination of schema (encoded form of the 

chromosome): sets of strings that have one or more features in common cannot be 

combined in some situations. “A multipoint crossover can be introduced to 

overcome this problem” [15]. As a result, the generating offspring performance is 

much improved. 

The mutation operator, on the other hand, is applied to each offspring 

individually after the crossover exercise. Figure 2.10 shows the mutation process. 

It commutes each bit randomly with a probability pm with a typical value of less 

than 0.1 [15]. 
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Figure 2.10: The mutation operator 

 

The choice value of pm and pc can be a complex, nonlinear operation 

problem; furthermore, their settings are critically dependent upon the nature of the 

fitness function [15]. 

 

2.4.4.  
Genetic Algorithms to Solve Problems 

Arguably the most obvious application of GA is the multi-variable function 

optimization. By searching for some optimal value, many problems can be 

formulated; where the value is a complicated function of its input parameters. In 

some cases, the interest is on variable settings that lead to the greatest value of the 

function. In other cases, the exact optimum is not required, just a near optimum, 

or inclusive a value that represents an improvement over the previously best 

known value [17]. 

 

2.4.5. 
Differential Evolution 

Differential Evolution (DE), like GA, owned to the family of Evolutionary 

Computation. It is an optimization technique that uses an exceptionally simple 

evolution strategy, being significantly faster and robust at numerical optimization. 

It is more likely to find a function’s true global optimum. 

 “DE uses real coding of floating point numbers” [19], and the population is 

represented by NP individuals, where an individual is formed by a vector of D real 

variables, where D is the number of problem’s variables. 
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DE uses both, crossover and mutation operators. However, both operations 

are redefined in its context. DE creates a vector 'cx , a mutated form of any 

individual 
cx  (an individual randomly picked from the initial population NP), 

using the vector difference between two other randomly picked individuals 
ax  

and bx
 such that: )( bacc xxFxx '  , where F is an user-supplied scaling factor. 

The optimal value of F for most functions lies in the range of 0.4 to 1.0 [20].  This 

operation is known as mutating with vector differentials.  

After that, the crossover is applied between any individual member of the 

population xi and the mutated vector 'cx , by swapping the vector elements in the 

corresponding locations. Like GA, this is also done probabilistically, and the 

decision of performing (or not performing) crossover is determined by a crossover 

constant CR in the range 0 to 1.  

The new vector xt produced is known as the trial vector. “Thus, the trial 

vector is the child of two parents, a noisy random vector 'cx  and the target vector 

xi, against which it must compete” [19]. CR represents the probability that the 

child vector inherits the parameter values from the noisy random vector 'cx . When 

CR = 1, for example, every trial vector parameter comes from 'cx . If CR = 0, all but 

one trial vector parameter comes from the target vector xt. To ensure that xt differs 

from xi by at least one parameter, the final trial vector parameter always comes 

from the noisy random vector, even when CR = 0, so that it does not become an 

exact replica of the original parent vector. Thus, the trial vector is allowed to pass 

on the next generation if and only if, its fitness is higher than that of its parent 

vector xi, otherwise the parent vector yields to the next generation. Figure 2.11 

shows the process of DE. 
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Figure 2.11: Differential Evolution Process [21] 

 

Among all, just three factors control evolution under DE: the population 

size NP, the weight F applied to the random differential, and the crossover 

constant CR. 

 

2.4.6.  
Different Strategies of DE 

Depending on the type of problem, different strategies can be adopted in the 

DE algorithm. “The strategies can vary based on the vector to be perturbed, 

number of difference vectors considered for perturbation, and finally the type of 

crossover used” [19]. The following are the 10 different working strategies 

proposed by Price and Storn [21]. 

1. DE/best/1/exp 
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2. DE/rand/1/exp 

3. DE/rand-to-best/1/exp 

4. DE/best/2/exp 

5. DE/rand/2/exp 

6. DE/best/1/bin 

7. DE/rand/1/bin 

8. DE/rand-to-best/1/bin 

9. DE/best/2/bin 

10. DE/rand/2/bin 

 

The convention used above is DE/x/y/z. DE means Differential Evolution, x 

denotes a string representing the vector to be perturbed, y is the number of 

difference vectors used for perturbation of x, and z denotes the type of crossover 

being used (exp: exponential, bin: binomial).  

For perturbation with a single vector difference, out of the three distinct 

randomly chosen vectors, the weighted vector differential of any two vectors is 

added to the third one. In the same way for perturbation with two vector 

differences, five distinct vectors, other than the target vector, are chosen randomly 

from the current population. Out of these, the weighted vector difference of each 

pair of any four vectors is added to the fifth one for perturbation. 

In exponential crossover, the crossover is performed on the D variables in 

one loop until it is within the CR bound. In binomial crossover, the crossover is 

performed on each of the D variables whenever a randomly picked number 

between 0 and 1 is within the CR value. So, for high values of CR, the exponential 

and binomial crossovers yield similar results. In the binomial case, the last 

variable always comes from a random noisy vector to ensure that is different from 

the target vector, and hence the above procedure is applied up to D – 1 variables.  

“The strategy to be adopted for each problem is to be determined separately 

by trial and error” [19]. The best strategy for a given problem may not work well 

when applied to a different problem. 

In the next chapter, the presented analytical background is applied to the 

SLAM problem. 
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3. 
SLAM Solutions 

3.1.  
Gaussian Filter SLAM Solutions 

“Historically, Gaussian Filters constitute the earliest tractable 

implementations of the Bayes Filter for continuous spaces”. It could say that they 

are also by far the most popular family of techniques to date – despite a number of 

limitations [1]. 

Gaussian assumes the idea that beliefs are represented by multivariate 

normal distributions: 

  )}()(exp{)2det()( 1
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The distribution over the variable x is characterized by two sets of 

parameters: the mean λ and the covariance Σ. The mean has the same 

dimensionality of the state x. The covariance is a symmetric quadratic matrix, 

positive semi-definite, and its dimension is the dimensionality of the state x 

squared. Hence, the dimension of the covariance matrix depends quadratically on 

the dimension of the state vector x. 

 

3.1.1.  
Kalman Filter SLAM 

“Probably the best studied technique for implementing Bayes filter is the 

Kalman Filter” [1]. “The Kalman Filter (KF) was developed by R.E. Kalman, 

whose prominent paper on the subject was published in 1960” [4].   

The KF is an algorithm which processes data and estimates variable values. 

In SLAM context, the variable values to be estimated consist of the robot position 
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and landmark locations. The data to be processed may be actuator inputs, range 

sensor readings, motion sensors and digital cameras of the mobile robot. Thus, the 

KF utilizes all available data to simultaneously estimate robot position and 

generate a landmark map. In [22] it is explained that KF is a set of mathematical 

equations that provides an efficient computational (recursive) mean to estimate 

the estate of a process, in a way that minimizes the mean of the squared error. 

 “Under certain conditions, the estimates made by a KF are very good; in 

fact, they are in a sense “optimal” ” [4].  

The Kalman Filter represents probability distributions at time t by the mean 

λt and the covariance Σt. Thus, posterior distributions are Gaussian if the following 

three properties are fulfilled, in addition to the Markov assumptions of the Bayes 

filter[1]. 

1. the next state probability (or motion model), p(xt |ut ,x t -1) in eq. (2.3), 

must be a linear function in its arguments with added Gaussian noise [1]. 

This is expressed by the following equation:  

 tttttt uBxAx  1  (3.2) 

 

where xt  and xt-1 are state vectors, and ut is the control vector at time t, 

given by 
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At is a square matrix of size m x m, where m is the dimension of the state 

vector xt. Bt is of size m x q, where q is the dimension of the control 

vector ut. The random variable, εt in eq.(3.2), is a Gaussian random 

vector of size m, that models the uncertainty in the state transition. Its 

mean is zero and its covariance is denoted by Pt. A state transition of the 
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form in eq.(3.2) is called a linear Gaussian, “to reflect the fact that it is 

linear in its arguments with additive Gaussian noise” [1]. 

The probability p(xt |ut ,x t -1) is obtained by plugging eq.(3.2) into the 

multivariate normal distribution, eq. (3.1). The mean of the posterior 

state is given by Atxt-1+Btut  and the covariance by Pt, thus 
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2. the measurement probability (or perception model), p(z t|x t) in eq. (2.3),  

must also be linear in its arguments, with added Gaussian noise [1]: 

 tttt xHz    (3.5) 

 

Ht is a matrix of size k x m, where k is the dimension of the 

measurement vector zt. The vector δt describes the measurement noise 

with a multivariate Gaussian with zero mean and covariance Qt. In this 

way the measurement probability is given by the following multivariate 

normal distribution [1]: 
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3. finally, the initial probability p(x0) must be normally distributed and, 

denoted by the mean λ0 and the covariance Σ0 [1]: 
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These three assumptions are sufficient to ensure that the posterior p(xt) is 

always a Gaussian, for any point in time [1].  
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As described above, the Kalman Filter represents probability distributions at 

time t by the mean λt and the covariance Σt.  The equations of the Kalman Filter 

algorithm are depicted in Table 3.1. The inputs of the Kalman Filter is the 

distribution at time t1, represented by λt-1 and Σt-1, the control ut, and the 

measurement zt. The output is the distribution at time t, represented by λt and Σt. 

 

Table 3.1: The Kalman Filter Algorithm [1]. 

 Kalman_filter_algorithm ( tttt zu ,,, 11    )   

 1: 
ttttt uBA  1   (3.8) 

 2: 
t

T

tttt PAA  1  (3.9) 

 3:   1
 t

T

ttt

T

ttt QHHHK   (3.10) 

 4:  tttttt HzK     (3.11) 

 5: 
ttttt HK    (3.12) 

 6: return 
 tt ,

  

 

Let’s describe some of the parameters in above equations.  

 tt , are the predicted covariance and median, representing  
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in eq. (2.3), obtained by incorporating 

the control ut one step later, but before incorporating the measurement zt. 

 At is called the state transition matrix; it describes how one thinks the state 

will change due to factors not associated with control input. One very nice 

convention in SLAM is that landmarks will remain stationary. Except for 

the first row which correspond to changes in robot position, At will therefore 

appear as a diagonal matrix with each diagonal entry containing identity 

matrices (otherwise At would change location of landmarks, which are 

known to be stationary) [4]. If the robot can have a non-zero velocity at time 

step t, then the state may change even with no actuator input, and the first 

column of At can account for this. To simplify the analysis, let’s assume that 

the robot comes to a halt after each time step. In this case, the actuator input 
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fully specifies the most likely new location of the robot. This means that At 

is just the identity matrix, which could be disregarded. 

 Bt is a matrix that translates control input into a predicted change in state. Its 

values will depend on the representation of the control input. It will vary 

depending on the physical construction of the robot. Because the landmarks 

will remain stationary the only interesting entries of Bt will be in the first 

row. Thus, the idea of eq. (3.8) is that the best guess for the new state will 

be described exactly by the old robot position and how one believes the 

actuators will change this position. 

 Pt is the covariance of the process noise. It accounts for how moving will 

change the confidence on each individual pair of landmarks as well as robot-

landmarks pairs. The entries of Pt will depend on the distance landmarks are 

away from the robot and other known particularities of the environment 

and/or state [4].  

 Qt is the covariance matrix for the range sensor noise, it is used to keep 

track of one’s confidence in the range sensor readings. 

 Ht transforms one’s previous state estimate into a representation used by the 

sensors. In other words, if the sensors had perceived the world state exactly 

as predicted by 
t , they would have returned this information in the 

form
ttH  . Note that the purpose of Ht is very similar to that of Bt. 

 Finally, Kt is called the Kalman gain. It specifies the degree to which the 

measurement is incorporated into the new state estimate. The magnitudes of 

the values in Kt depend on the predicted covariance
t , relative to the 

combined values of the predicted covariance and sensor uncertainty Qt. 

The Kalman filter is a technique for filtering and prediction in linear 

systems. However, in most real world SLAM situations there will be some non-

linear aspect one might wish to account for. “For example, a robot that moves 

with constant translational and rotational velocity typically moves on a circular 

trajectory, which cannot be described by linear next estate transitions” [1]. Thus 
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the plain Kalman Filters, as discussed above is inapplicable to all but the most 

trivial robotics problems. 

 

3.1.2.  
Extended Kalman Filter SLAM 

The Extended Kalman Filter (EKF) overcomes the linearity assumption [1]. 

Here, in EKF, the assumption is that the next state probability p(xt |ut ,x t - 1), and 

the measurement probability p(z t|x t), are ruled by nonlinear functions f and h, 

respectively. 

   ),( 1ttt xufx   (3.13) 
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This model is a generalization of the linear Gaussian model underlying 

Kalman filters, as stated in eq. (3.2) and eq. (3.5). The function f replaces the 

matrices At and Bt in eq.(3.2) and h replaces Ht in eq. (3.5) [1]. However, the 

distribution is not longer a Gaussian when it is used nonlinear functions, f and h. 

In this way, the distribution update does not possess a closed-form solution. 

Therefore, the EKF calculates an approximation of the true distribution. “Thus, 

the EKF inherits from the Kalman filter the basic belief representation, but it 

differs in that this belief is only approximate, not exact as it was the case in linear 

Kalman Filters” [1].  

To manage this approximation EKF utilizes a (first order) Taylor expansion. 

The Taylor expansion constructs a linear approximation to a function f from its 

value and slope. The slope is given by the following partial derivative [1]:  
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Both the value of f and its slope depend on the argument of f.. Thus f is 

approximated by its value at λt-1 (and at ut), and the linear extrapolation is 

achieved by a term proportional to the gradient of f at λt-1 and ut [1]: 
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Written in form of Gaussians, the next state probability is approximated by: 
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The matrix Ft is often called the Jacobian. The value of the Jacobian 

depends on ut and λt-1, thus it differs for different time points. 

The same linearization is used for the measurement function h. Where, the 

Taylor expansion is developed around 
t , the state regarded most likely by the 

robot at the time when it linearizes h [1]: 
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where 
t

t

x

)h(x




)(' txh . Written in form of Gaussian, one gets: 
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Table 3.2 depicts the Extended Kalman Filter algorithm.  

 

Table 3.2: The EKF Algorithm [1] 

 EKF_algorithm (
tttt zu ,,, 11   )  

 1: ),( 1 ttt uf   
 (3.20) 

 2: 
t

T

tttt PFF  1  
 (3.21) 

 3:   1
 t

T

ttt

T

ttt QHHHK  
 (3.22) 

 4:  )( ttttt hzK    
 (3.23) 

 5: 
ttttt HK   

 (3.24) 

 6: return 
 tt ,

 
 

 

In some ways, the EKF is similar to the (linear) Kalman Filter. The 

difference is that the linear equations in Kalman Filters are replaced by their non-

linear generalization in EKFs. 

A detailed implementation of the EKF algorithm is shown in Section 4.1. 

 

3.2.   
Particle Filter SLAM Solutions 

 

3.2.1.  
Particle Filter Overview 

Particle Filters (PF) are alternatives to Gaussian techniques. They do not 

rely on a fixed functional form of the posterior distribution, such as Gaussians. 
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Instead, they approximate these posterior distributions by a finite number of 

values, each harshly corresponding to a region in state space.  

“The key idea of the PF is that any posterior distribution p(xt) can be 

represented by a set of random state samples drawn from this posterior” [1]. 

Figure 3.1 shows this idea for a Gaussian; instead of representing the distribution 

by a parametric form (the mean and covariance that defines the exponential of a 

normal distribution), PF represents it by a set of samples drawn from this 

Gaussian. As the number of samples goes to infinity, PF tends to converge 

uniformly to the correct posterior distribution. Thus this method can represent any 

arbitrary shape of distribution, making it good for non-Gaussian, multimodal 

distributions. 

 

 

Figure 3.1: Representation of a Gaussian by a set of particles 

 

In PF, the samples are called particles, thus the posterior p(xt) is represented 

by N weighted particles: 

 }...1/,{: Niwx i

t

i

tt   (3.25) 

 

The correspondence between the Bayes Filters and the approximation made 

by particles is given by 

 
ttxp )(   (3.26) 
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In this way, to compute p(xt) it is necessary to find Φt at each time, that is to 

find all values of
i

tx
 
and 

i

tw . As a Bayes Filter algorithm, the PF algorithm 

constructs the distribution p(xt) recursively from the distribution p(xt-1) one time 

step earlier. Thus, PF constructs the particle set Φt recursively from the set Φt-1. 

In Probabilistic Robotics, the process to generate samples 
i

tx  is achieved 

using the prior Φt-1 and the most recent control ut. The desired weight i

tw of each 

particle is given using the most recent measurement zt. Table 3.3 shows the most 

basic variant of the PF algorithm[1]. 

 

Table 3.3: Particle Filter Algorithm [1] 

   Particle Filter_algorithm (Φt-1, ut , zt) 

 

 1: 0 tt  

 2: for  i = 1  to  N  do
 

 3: sample i

tx ~ p(xt | ut ,
i

tx 1
) 

 4:  i

tw = p(zt |
i

tx ) 

 5: 
i

t

i

ttt wx ,  

 6: end for 

 7: for  i = 1  to  N  do 

 8: draw  i  with probability 
i

tw  

 9: add i

tx  to 
t

 

 10: end for 

 11: return 
t

 
 

The algorithm first samples by processing each particle i

tx 1  in the input 

particle set Φt-1 as follows: 

1. Line 3 of table Table 3.3 generates a estimate 
i

tx  for time t based on the 

particle 
i

tx 1  and the control ut. This step involves sampling for the next 

state transition p(x|ut ,xt-1). Thus the set of particles resulting from 

iterating line 3 N times represents the distribution 

 



 1

11

11 ),|(),|( t

tt

tttt dxuzxpxuxp
 
in eq. (2.3). 
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2. Line 4 computes for each particle 
i

tx  the corresponding weight 

(importance factor) 
i

tw using the measurement zt. Thus, each 
i

tw  is the 

probability of the measurement zt under the particle
i

tx , in the way of 

)|( i

t

i

t xzpw t . 

3. Finally lines 7 to 11 implement as the so-called resampling or 

importance resampling. This lines draw with replacement N particles 

from the temporary set t . The probability of drawing each particle is 

given by its importance factor (weight). The resulting set, Φt, is a set of 

N particles distributed according to the desired p(xt). 

Figure 3.2 shows the Particle Filter algorithm idea. The desired p(xt) is 

shown as a red line and the samples 
i

tx  as blue lines. 

 

 

Figure 3.2: Particle Filter idea. 

 

The PF computes the Bayes filter stated in eq. (2.3) from right to left, as 

shown in the following equation: 
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 (3.27) 

  

 

 

 

 

 

3.2.2.  
Fast SLAM 

The Fast SLAM was developed by Montemerlo, Thrun, Koller and 

Wegbreit [23]. Fast SLAM exploits the condition independence properties of the 

SLAM model to break up the problem of localizing and mapping into many 

separate problems. 

As it was seen in Section 3.1, the dimension of the covariance matrix Σt is 

the dimensionality of the state x squared. Thus, the number of elements in the 

covariance matrix depends quadratically on the number of elements in the state 

vector x. This is because the robot’s position uncertainty correlates landmark 

locations, as Figure 3.3 shows. Supposing an observation (L1, L2) made by the 

robot, then, through another observation for L1, one ends up to another position 

for L2. Now, if the assumption on L1 is again different, the conclusion on L2 also 

is. This is the consequence of not knowing the robot’s position precisely. As a 

result, this lack of knowledge on the robot’s position correlates the location of the 

landmarks.  

 

generating samples 
i

tx  from 

the prior distribution p(xt-1) 

using the motion model 

computing  the 

weights
i

tw  using 

the perception 

model 

resampling to 

obtain the 

desired 

distribution p(xt) 

prior distribution from 

the last step ( Φt-1 ) 

motion 

model  

perception 

model  

desired 

distribution ( Φt ) 
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Figure 3.3: Landmark correlation 

 

In this way, if one could know exactly the robot position, there should be no 

predictable relationship between the landmark observations. An important  point 

in SLAM is that the exact robot pose is not known, but insight of conditional 

independence of landmarks, given the pose, is enough to motivate FastSLAM,  

which manages each landmark separately [4] - decoupling into n (number of 

landmarks) independent estimation problems, one for each landmark. Thus, Fast 

SLAM decomposes the SLAM problem into a robot position problem, and a set of 

landmark location estimation problems that are conditioned on the robot position 

estimated. 

Mathematically, decorrelation of the landmark locations leads to a factored 

representation as following: 

 ),|,...,,(),|,( 1

tt

n

tt uzLLpuzmp t
R

t
R    

 
n

ttt

n

ttttt

n uzRLpuzRpuzLLp t
R ),,|(),|(),|,...,,( 1   (3.28) 

 

This factorization is exact and always applicable to the SLAM problem 

[23]. It decomposes the posterior over robot paths and maps into n+1 recursive 

estimators: one estimator over robot pats p(R
t
| z

t
, u

t
) and n separated landmark 

pose estimators p(Ln |z
t
,u

t
,R

t
)  conditioned on each hypothetical path. 

FastSLAM keeps track of many possible paths simultaneously (superscript t 

of the robot pose R
t
), as opposed to the traditional Kalman Filter, “which does not 

even keep track of a single path, but rather updates a single robot pose” [4]. Thus, 
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Fast SLAM records paths and when the algorithm terminates there will be a 

record of where the robot has been. 

Fast SLAM uses a modified PF for implementing the path estimator, 

p(R
t
| z

t
,u

t
), and the landmark pose estimators ),,|( ttt

n RuzLp  are realized by 

Kalman Filters, using separate filters for different landmarks. Because landmark 

estimation is conditioned on path estimation, each particle in PF has its own local 

landmark estimations. At time t, the i-th particle contains 

      
},...,,,,,,,{: ,,,2,2,1,1

, i

tn

i

tn

i

t

i

t

i

t

i

t

tii

t

i

t Rws    (3.29) 

 
 

 

 

 

 

where 
i

tn, and 
i

tn, , are the Gaussian parameters (mean and covariance 

respectively) related with the landmark position i

tnL , . To update the landmark-

map for a given path R
i,t

 each observed landmark is processed individually as an 

EKF measurement update from a known robot pose (unobserved landmarks are 

unchanged). 

Bearing the distribution at time t1 as a set of particles, one gets: 

 }...1/{: 11 Nisi

tt  
  (3.30) 

 

The first version of Fast SLAM algorithm [1] follows the following steps: 

1. for each particle extend its path, R
i,t-1

, to generate a new pose using the 

control ut and the motion model p(R t | u t ,R t -1). Mathematically this 

means that the distribution at time t1, p(R
t -1

| z
t - 1

, u
t -1

) becomes 

p(R
t
| z

t - 1
, u

t
). A set of temporal particles is obtained. 

2. update the estimation of landmarks, through the EKF 

 ),,|(),|(),,|( 111  ttt

ntnt

ttt

n uzRLpRLzpuzRLp   (3.31) 

 

weight robot’s 
path 

landmark 
1 

landmark 
2 

landmark 
n 
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and, using the new poses generated in the step 1 and the measurement zt, 

compute the new set of 
,

i

n t and 
,

i

n t . This set of means and covariances 

are added to the temporal particles set. 

3. assign the weight for each particle. This is computed using the result of 

step 1, p(R
t
| z

t - 1
, u

t
), where the measurement zt was not included, and 

using the distribution p(R
t
| z

t
,u

t
), where zt is included 

 
),|(

),|(
1,

,

ttit

ttit
i

t
uzRp

uzRp
w


   (3.32) 

 

after some considerations and probabilistic transformations, the above 

equation is given by: 
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(3.34) 

 

where zt is the sensor observation. Note that 
i

tẑ  is the predicted 

observation computed using the landmark position estimated in step 2 

and the robot poses generated in step 1. i

tH
 
is the Jacobian of the 

perception model. This set of importance factors (weights) are added to 

the temporal particles set. 

4. finally, resample. Each particle, in the temporal particle set, is drawn 

(with replacement) with a probability proportional to its importance 

factor. 

A detailed implementation of the Fast Slam 1.0 algorithm is shown in 

Section 4.2. 
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3.2.3. 
DP-SLAM 

The Fast SLAM is a good solution to the SLAM problem when there are 

thousands of landmarks that can be tracked accurately. However tracking 

landmarks is actually very difficult, particularly in environments with 

monochromatic areas or repeating patterns.  

If the robot is using a LRF, the map generated by the laser has no 

landmarks; is rather an occupancy grid, as described in Section 2.2.2. “The robot 

cannot use the range finder to relocate individual points in the grid. However with 

enough data, the robot might not need to worry about reacquiring landmarks in the 

first place” [4]. For example, if there was a contoured object in the environment, 

the robot might align entire occupancy maps by matching up the contour of that 

object. Distributed Particle SLAM (DP-SLAM) [6] attacks SLAM from this 

occupancy grid approach, while simultaneously utilizing the conditional 

independence insight discussed in Fast SLAM. 

“One of the steps in the Fast SLAM algorithm was to generate a new pose 

prediction and a corresponding map prediction” [4]. Thus, the new map prediction 

was based on the previous pose and the control input ut. It cannot predict how 

landmarks will move with respect to the robot anymore because landmarks are not 

dealt with. However it is possible to make a prediction as to how the occupancy 

grid will change. Figure 3.4 shows an example of occupancy grid prediction based 

on a movement of one cell to the right. 

 

 

Figure 3.4: Occupancy grid prediction based on a movement of one cell to the right. 
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Similarly to Fast SLAM, DP-SLAM uses PF, generating new particles 

(poses) by applying probabilistically generated movement vectors to old poses. 

Thus DP-SLAM uses the same method to generate samples based on the motion 

model and the control vector ut. 

However, because the map representation is an occupancy grid, the 

perception model is quite different consequently, the way to assign weights, and 

the map update are quite different too. 

 

3.2.3.1.  
DP-SLAM Map Representation 

DP-SLAM uses an occupancy grid mapping representation, specifically 

stochastic maps, where each square has a sliding scale of various degrees of 

occupancy, as it was seen in Section 2.2.2. 

“The idea of using probabilistic map representation is possibly as old as the 

topic of robotic mapping itself” [6]. Most of the earliest SLAM methods used 

probabilistic occupancy grids and were especially useful for sonar sensors 

susceptible to noisy and/or spurious measurements [6]. 

However, DP-SLAM concentrates on a model for Laser Range Finder. It 

has a method for representing uncertainty in the map, which takes into account the 

distance the laser travels through each grid square.  

Earlier approaches, to estimating the total probability of the scan, would 

trace the scan through the map, giving a weight to the measurement error 

associated with each potential obstacle by the probability that the scan has 

actually reached the obstacle [6]. “In an occupancy grid with partial occupancy, 

each cell is a potential obstacle” [6].  

Thus each grid square has the probability of stopping a laser ray, 

represented by [6]  

 
i

ix

iic exP




1),(  (3.35) 
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where xi is the distance that the laser ray travels through the square i and ρi is 

called the opacity of the square, as shown in Figure 3.5. 

 

 

Figure 3.5: Square representation  

 

The probability that an entire laser ray will have been stopped at some point 

along its trajectory is therefore the cumulative probability that the laser ray is 

interrupted by squares up to and including the last square, n, it reaches: 

  







n

ρx,
1

1

1

)),(1(),()()(
i

i

j
jjciicc xPxPPtruestoppedP    (3.36) 

 

 

where xi is the traveled distance (the laser ray travels through the square) and ρi 

the opacity of the square i, as shown in Figure 3.6. 

 

 

Figure 3.6: Interaction between the laser ray and the square representation 

 

Inside the summation in eq. (3.36), the first term is the probability that the 

laser ray would be obstructed in the square n. The second term represents the 

probability that each previous square did not obstruct the laser. 

Thus the probability that the laser ray will be interrupted a grid square j is 

P(stop=j), which is computed as the probability that the laser has reached square 

j1 and then stopped at j : 
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 )),(1)(()|( 1:11:1  jjcjjc P,ρxPjstopP ρxρx,   (3.37) 

 

where 1:1 jx  
and 1:1 jρ  have interpretations as fragments of the x  and ρ  vectors. 

Figure 3.7 illustrates this, where j=3, the vector },...,{ 21 nxxxx , and 

},...,{ 21 nρ .  
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xPxPePxPstopP cc

x

cc 


ρρ xx  

Figure 3.7: Example of application of eq. (3.37) for a given square j=3. 

 

DP-SLAM also defines a vector δ as a vector of differences, such that δi is 

the distance between the laser distance measurement (the stopping point) and grid 

square i along the trace of the laser ray. Thus, the conditional probability of the 

measurement, given that the laser ray that was interrupted in square i, is 

PL(δi|stop=i), for which  is made the assumption of normally distributed 

measurement noise. Notice that δi terms are only defined if the laser measurement 

observes a specific stopping point, as shown in Figure 3.8; eq. (3.38) is used to 

compute this probability. 

 

 

Figure 3.8: Distance between the square i and the stopping point of the laser ray 
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where σ is the standard deviation of the laser measurement. 

Clearly in eq.  (3.38), the lower distance δi (which means that square i is 

closer to the stopping point) the higher the probability. Basically, the idea of this 

vector of differences δ, is to create a probability distribution as shown in Figure 

2.5. 

Finally the probability of the laser measurement L, with an observed 

stopping point, is then the sum, over all grid squares in the range of the laser ray, 

of the product of the conditional probability of the measurement given that the ray 

has stopped at that point, and the probability that the ray stopped in each square: 

 



n

i
iL istopPistopPtruestoppedLP

1

),|()|(),( ρx   (3.39) 

 

To sum it all in a nutshell, DP-SLAM creates two Gaussians. The first 

Gaussian computes the probability distribution of stopping the laser ray by all 

squares along its trajectory (note that measurement zt must be extended by an 

arbitrary extra distance). The second Gaussian computes the probability 

distribution of the measurement zt (as shown in Figure 2.5) according to the 

distance between the stopping point and all squares along its trajectory. Finally 

the weight of this laser ray is obtained by multiplying both distributions.  Thus, 

the weight of an entire scan is the sum of all individual laser ray weight. 

To show how this perception model works, let’s discuss an example. 

Suppose that at time t1 two equals particles p1 and p2 (supposing that they were 

selected by resampling and hence they are copies of one particle at time t2), 

having same map m1 and m2 and having the same estimated robot pose R1 and R2 

as shown in the Figure 3.9 (a). 
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Figure 3.9: Example of computing the probability of a laser ray given two sampled 

robot poses. 

 

Now suppose that the robot performs a movement ut and then does a ray 

measurement zt. Using the motion model each estimated robot pose R1 and R2 has 

a new different location (predicted), as shown in Figure 3.9 (b) and (c). Weights 

are acquired by  putting the measurement zt (extending the measurement by an 

arbitrary extra distance – yellow line in the Figure 3.9 (b) and (c)) into the 

predicted robot positions R1 and R2  and then evaluating using eq. (3.39). 
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As illustrated in Figure 3.9 (b) and (c); the sampled robot pose R1 has a 

higher probability (or weight) than the sampled robot R2, as shown in the result 

(dark blue line) of multiplying )|( istopP iL  (light blue line) and 

),|( ρxistopPL   (green line). More details about the opacity parameter, ρ, and 

how the unknown squares (unobserved previously) are treated, can be found in 

[6].  

“DP-SLAM implements a PF over maps and robot poses, using an 

occupancy grid to represent the map to track the placement of objects in the 

environment” [6]. Thus, for a PF to properly track this joint distribution, each 

particle needs to maintain a separated, complete map. During the resampling in 

this PF, each particle could be resampled, and consequently copied, multiple 

times. However, because operations must be performed merely copying maps, a 

direct approach to this method, where a complete map is assigned to each particle, 

is impractical. “For a number of particles sufficient to achieve precise localization 

in a reasonably sized environment, this naïve approach would require gigabytes 

worth of data movement per update” [6]. 

 

3.2.3.2.  
Ancestry Tree 

The greater contribution of DP-SLAM is an efficient representation of the 

map, making map copying more efficient, reducing the memory required to 

represent large numbers of occupancy grids. DP-SLAM achieves this through a 

method called: Distributed Particle Mapping (DP-Mapping), “which exploits the 

significant redundancies between the different maps” [6]. 

A particle from the distribution at time t1 is called a “parent” and its 

successor (sampled particle) at time t is called “child”, while two children with the 

same parent are “siblings”. If a LRF sweeps out an area of size A << M (where M 

is the area of the total map) and if there are two siblings s1 and s2 (each one with a 

different pose), each sibling will make updates in at most an area of size A to the 

map it inherits form its parent. Thus the maps for s1 and s2 can differ of their 

parent in at most an area of size A, the remainder area of the map is identical. 
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Then DP-SLAM proposes recording a list of changes that each particle makes to 

its parent. 

 

Figure 3.10: Example of particle ancestry tree maintenance  

 

Thus DP-SLAM maintains a so called: particle ancestry tree, that does not 

forget the old particles, because to construct the entire map it is necessary not only 

one particle but also its ancestors. However this creates a new problem: the height 

of the particle ancestry tree will be linear with respect to the amount of iterations 

(each iteration will create a new set of particles). DP-SLAM solves this problem 

by defining a method of collapsing certain branches of the tree. Any particle that 
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does not produce any surviving children can simply be removed; this may cause a 

series of ancestor nodes removal. Additionally, when a particle has only a single 

child, it is possible to merge this particle child with the particle parent and can be 

treated as a single particle. This “pruning” technique is explained in Figure 3.10.  

Figure 3.10 (a) depicts the beginning of the process. At the top of the figure 

is a single particle, where the robot’s pose is represented by a red square, and the 

current map in gray scale. This one particle is resampled many times, to give a 

number of identical children. The, these new particles are each propagated 

forward using the motion model. Thus, in Figure 3.10 (b), each particle represents 

a different pose, and each has a different set of map updates. Then these particles 

are weighed, based on how well the new updates are in agreement with the 

existing map, and finally, the particles are randomly resampled proportionately 

based on these weights, see Figure 3.10 (c).  

At this point some particles have greater weight than others, and therefore 

were resampled more than once. Because the number of particles at each iteration 

is kept constant, consequently there are other particles which were not resampled. 

These particles (childless particles), can be removed from the ancestry tree, due to 

they will have no influence on any future particles, see Figure 3.10 (d). 

 In Figure 3.10 (e) and (f), the new set of particles are again propagated 

forward, and then weighed and resampled. However, on the right of Figure 3.10 

(f), there is a pair of childless particles which can be removed and when this is 

done, their common parent will no longer have any children. Thus, this older 

ancestor can also be removed, as shown in Figure 3.10 (g). Also on the left of 

Figure 3.10 (f), if the childless ancestor particle is removed, there will be a chain 

of ancestor particles (on the left of Figure 3.10 (g)), each with one child. 

Therefore, these nodes can all be merged into a single ancestor particle and 

consequently collapsing the chain (on the left of Figure 3.10 (h)). 

Maintaining the particle ancestry tree in this manner it is guaranteed that the 

tree will have a branching factor of at least two, and the depth of the tree will be 

no greater than the number of particles in each generation [6].  
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3.2.3.3.  
Hierarchical SLAM 

The DP-SLAM provides an accurate and efficient method for building 

maps. However, there are some trajectories, which cover a sufficient amount of 

distance before completing a cycle, for which the accuracy of the map can 

degrade [6]. Small errors are accumulated over several iterations, and although the 

resulting map may look locally consistent, there is a large total error, which is 

more evident when the robot closes a large loop. This behavior over large 

distances is known as “drift”. It is a significant problem faced by essentially all 

current SLAM algorithms [6]. 

As a consequence of violated assumptions or as a consequence of particle 

filtering it is hard to avoid drift. Errors come from three sources: insufficient 

number of particles, coarse precision, and resampling itself (particle depletion). 

The consequence of these errors is a gradual but inevitable accumulation resulting 

from faults to sample, differentiate, or remember a state vector that is sufficiently 

close to the true state.  

 

 

 

 

 

Figure 3.11: Simulated environment (60 x 40 m).  
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Figure 3.11 shows a loop-closed simulated environment. This map consists 

of 183 LRF scans. It was build using DP-SLAM (without hierarchical SLAM) 

with 2800 particles. This loop is large enough that particle diversity is insufficient 

to correct the small errors that occur.  

The reason that a non-hierarchical method cannot manage this data is the 

extreme longevity of the uncertainty. In a large loop, small ambiguities in the 

beginning of the map are not resolved for many thousand iterations [6]. Non 

hierarchical DP-SLAM requires a huge number of particles to maintain this early 

particle diversity. 

 

3.2.3.4.  
Hierarchical Algorithm 

DP-SLAM uses two levels Hierarchical-SLAM where the lowest level 

models the physical process (SLAM itself), while the higher level models errors 

in the lower level. 

“Since the total drift over trajectory is assumed to be a summation of many 

small, largely independent sources of error, it can be well approximated by 

Gaussian distribution” [6].  Thus DP-SLAM states that the effects of drift on low 

level maps can be precisely approximated by perturbations on the robot’s 

trajectory endpoints used to construct a low level map. 

DP-SLAM uses a standard SLAM algorithm for the low level mapping 

process. The low level algorithm input is a small portion of the robot’s trajectory, 

along with the associated observations (range scans). This low level SLAM 

process runs normally, and its output (a trajectory) is treated as distribution over 

motions (motion model) in the higher level SLAM process, to which additional 

noise from drift is added. So the output from each of small mapping is the input 

for a new SLAM process, working at a higher level of time steps.  
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Because the sampled trajectory is treated as an atomic motion, this defines 

the placement of the associated observation. “The observation model at the high 

level is then just the collection of observations that were made at each step along 

this trajectory” [6]. 

The high level SLAM loop for each high level particle is summarized as 

follows [6]: 

1. Sample a high level SLAM state (high level map and robot state). 

2. Perturb the sampled robot state by adding random drift. 

3. Sample a low level trajectory from the distributions over trajectories 

returned by the low level SLAM process. 

4. Compute a high-level weight by evaluating the trajectory and robot 

observations against the sampled high level map, starting from the 

perturbed robot state. 

5. Update the high level map based upon the new observations. 

Figure 3.12 shows an example of hierarchical SLAM. The entire map is 

divided into 10 small maps (light green and light blue to distinguish between 

them). Notice that when the loop is closing, the best path until there (represented 

by red lines) has a misalignment. This means that there is something wrong in its 

trajectory. Because it is using hierarchical DP-SLAM there is enough particle 

diversity and the ambiguities in the beginning of the map can be resolved for, 

now, 9 iterations (10 small maps). 

Thus, resolving ambiguities leads to the map from Figure 3.13. Here the 

best path (red lines) is different one and therefore the map it carries, a better one, 

is different too.  
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Figure 3.12: Mapping closing a loop. Each black dot is the perturbed endpoints of 

trajectories. 

 

 

 

Figure 3.13: Map after ambiguities are resolved. 

 

It is possible to implement the hierarchical SLAM for multiple levels for 

providing more robustness. This idea of hierarchical SLAM is not restricted to be 

used solely with DP-SLAM; this method could be effective when used with any 

other SLAM method [6]. 
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3.3. 
3D SLAM Review 

Existing SLAM methods produce a two-dimensional cross section of the 

world, and robot motion is restricted to motion within this plane. However the 

assumption of a 2D world is unrealistic: wheeled robots traveling across uneven 

terrain and underwater autonomous vehicles, can all move with six degrees of 

freedom, three translational and three angular. For robots to operate in this 

environment, it is not only need to track these three new degrees of motion, but 

also to maintain a three dimensional representation of the environment.   

3D mapping has some advantages compared with 2D [1]: 

 3D maps facilitate navigation. Many robot environments possess significant 

variation in occupancy in the vertical dimension. Modeling this can greatly 

reduce the danger of colliding with an obstacle. 

 Many robot tasks require three-dimensional information, such as tasks 

involving the localization and retrieval of objects or people. 

 3D maps carry much information for a potential user of the maps. If one 

builds a map only for the sake or robot navigation, then the SLAM 

enforcements would be very few. However, if the map is acquired for later 

use by a person, 3D information can be absolutely critical. 

Some methods exist for three-dimensional motion. They tend to represent 

the world in terms of a few sparse, pint-sized landmarks. These maps, while 

useful for localization, and possible for navigation, give very little information 

about the presence of objects in the world. In [24] a SLAM framework based on 

3D landmarks for indoor environment with stereo vision is shown. Reference [25] 

shows a real-time 3D SLAM is constructed using wide-angle vision. 

Carnegie Mellon University´s Mine Mapping project is a notable example 

of volumetric three dimensional maps, using a series of LRF set at different angles 

[26]. Using a combined method of both local and global scan matching 

techniques, a two-dimensional occupancy grid is created. Thus, with the 

corresponding trajectory from the robot, the remaining three-dimensional data are 
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filled in to create the volumetric maps. Reference [27] presents an EKF-based 3D 

SLAM, which uses planar features probabilistically extracted from dense three-

dimensional point clouds generated by a rotated 2D LRF. A similar work [28] 

presents SLAM from visual landmarks and 3D planes, modeling the environment 

as a set of planar surfaces and lines. These planar surfaces and lines are extracted 

by fusing data from a camera and a 3D LRF.  

Also DP-SLAM [6] proposes a 3D grid map representation. This 

representation brings two types of challenges, technical and dimensional. The 

technical problems are mainly issues of sensing. In particular, odometry is unable 

to detect any motion in the three new degrees of freedom. The dimensional 

challenges arise from a new dimension added to the problem. The resources 

needed to deal with SLAM grow exponentially, so that merely extending previous 

methods is infeasible on any computer architecture. 

However, this thesis is focused in indoor structured environments. 

Assuming a flat terrain, the localization given by the 2D DP-SLAM, can be used 

to project the corresponding 3D points. Thus a 3D map is constructed, composed 

by a set of points (a point cloud). This proposed method has similarities with the 

one presented in [26] where 3D maps are obtained by using the 2D pose 

information via the geometric projections. 

Chapter 5 will show some results by applying DP-SLAM in simulated data. 

After creating a 2D map, the DP-SLAM algorithm gives the best estimated path. 

Using this, the corresponding 3D points are projected. The implemented simulator 

is discussed in detail in the next chapter. 
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4. 
Detailed Implementation 

4.1.  
EKF SLAM 

The Extended Kalman Filter (EKF) fuses all available information about the 

system’s state to compute a state estimate. This is accomplished through a 

recursive three-stage cycle consisting of prediction, observation and update steps. 

 

1. Prediction 

This step involves computing 
t  and t .  

As seen in eq. (3.20), 
t depends on ut and λt-1. Using a naïve example, 

the control ut could be one of two types: the first specifies the 

translational and rotational velocities, and the second specifies odometry 

information (such as distance traveled, angle turned). That is: 
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Thus, the uncertainty of the control ut is given by its covariance matrices: 
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Using a landmark map representation, λt-1 is a vector containing the robot 

and landmark positions at one time step earlier. That is: 

 
 Ttntntttttt yLxLyLxLRRyRx 1111111111 ...   

 

        
 Robot position           Landmark 1 position          Landmark n position

 
 

 (4.3) 
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Figure 4.1 shows the robot position at the previous time step, t1, and the 

predicted robot position made by the odometry information in a Cartesian 

plane. The predicted state vector
t is given by  
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Figure 4.1: Robot position (red fill circle) at time t1 , and predicted robot position 

(white filled circle). 

 

Notice however, that it is not necessary to predict landmark positions. 

Thus, the predicted state vector 
t is now 

 Tnnt yLxLyLxLyLxLRyRxR ...2211   

where 

   Ttntntttt

T

nn yLxLyLxLyLxLyLxLyLxLyLxL 11121211112211 ......   

 

In order to compute the predicted covariance t , as in eq. (3.21), Ft is 

given by:  
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Notice that Ft is a matrix of size m x m, where m is the dimension of the 

state vector (3+2n), being n the number of landmarks. However since the 

environment is stationary, again, movement of landmarks does not need 

to be predicted, thus the remaining elements in Ft are zero. 

Pt is given by eq. (4.6) where U was described in eq. (4.2) and 
tuJf is 

given by:  
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 (4.7) 

 

In the same way, 
tuJf is of size m x 2; however the elements related to 

landmarks are zero. Thus the mean
t is the predicted state vector of size 

(3+2n) x 1 and 
t the predicted covariance matrix of size (3+2n) x 

(3+2n). 

 

2. Observation 

The observation step computes the innovation vector and the innovation 

covariance, that is  )( tt hz   and  QHH T

ttt 
 
in the eq. (3.23) 

and eq. (3.22), respectively. 

The perception function, )( th  , that represents the predicted landmark 

position seen from the predicted robot position is shown in Figure 4.2. 
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Figure 4.2: Predicted landmark position seen from the predicted robot position 

 

In the same Cartesian plane, the predicted distance and angle ( l and  ) 

from the predicted robot position to the landmark L1, is given by eq. 

(4.8): 
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Note that )( th  shown in eq. (4.8) is written for the Landmark 1, in the 

same way it must be computed for the n landmarks. Thus, the size of the 

vectors )( th   and the zt is 2n. 

To compute the matrix Ht, the Jacobian of h at t  
is given by 
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where 
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Notice however, that eq. (4.9) shows Ht using only the Landmark 1, thus 

the true size of Ht is 2 x (3+2n). 

 























































n

n
t

LLR

LLRh
H

...

...
)(

1

1

lll

  (4.10) 

 

and Qt represents the covariance matrix for the sensor noise: 

 



















0

0l

Q

 

 (4.11) 

 

 

3. Update 

Finally, this last step computes the desired λt and Σt, using eq. (3.22), 

eq. (3.23) and eq. (3.24). 

It is important to point out that in the beginning, where the robot starts the 

mapping process, it may not see all landmarks, or not even one. Therefore, as the 

robot moves through the environment, the state vector λt grows. Thus, when a new 

landmark is acquired, the state vector is augmented. Figure 4.3 shows how the 

robot sees a new landmark (p) at distance l and at angle α; eq. (4.12) and eq. 

(4.13) show how this is modeled. 
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Figure 4.3: New landmark Lp, is added to the state vector. 

 

 



































)sin(

)cos(









RRy

RRx

yL

xL

z

p

p

p

l

l 

 

(4.12) 

 
 

 

 















p

t

t
L


 :

 

 (4.13) 

 

As it was seen in Section 3.2.2, the covariance matrix Σt, represents the 

relationships landmarks-robot and landmarks-landmarks (because the robot’s pose 

uncertainty correlates landmark positions), these relationships are shown in eq. 

(4.14). 

 

 

 (4.14) 
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In the same way the covariance matrix Σt grows in dimension to include the 

new landmark. To do this, the covariance matrices, CLpLp (Lp to Lp), CRLp (robot to 

Lp) and CL1Lp … CLnLp (all old landmarks L1… Ln to Lp) are computed by eq. 

(4.15), eq. (4.16) and eq. (4.17), respectively. 
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where Jzp are the Jacobians: 
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Finally, the augmented covariance matrix looks like eq. (4.20), representing 

now: n:=n+1 landmarks. 
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(4.20) 

   

4.2. 
FastSLAM 

The Fast Slam algorithm receives as input the previous distribution p(xt-1), 

as a particle set }...1/{: 11 Nisi

tt   , the odometry (or control) information 

ut, and the landmark measurements zt. From the idea exposed in Section 2.2.4, the 

FastSLAM algorithm uses the following steps. 

1. Each particle i representing the robot position at time t1, i

tR 1 , from the 

set Φt-1, is moved following the control vector ut and the motion model.  
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Table 4.1 shows an algorithm [1] for sampling from the motion model 

p(R t | u t ,R t -1) to generate a random pose i

tR . Lines 1 and 2 perturb the 

commanded control parameters with noise, drawn from the error 

parameters α1 to α6 (a detailed explanation of these error parameters can 

be found in [1]). The noise values are then used to generate the sample’s 

new pose in lines 4 through 7. 
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Table 4.1: Sample Motion Model Algorithm [1]  

 Sample Motion Model_algorithm (Rt-1, ut )   

 1: )||||(ˆ
11 ttt vsamplevv      

 2: )||||(ˆ
43 ttt vsample      

 3: )||||(ˆ
65 ttvsample      

 4:  )ˆsin()sin( 1ˆ
ˆ

1ˆ
ˆ

1 tRRRxRx t
v

t
v

tt        

 5 )ˆcos()cos( 1ˆ
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1ˆ
ˆ

1 tRRRyRy t
v

t
v

tt        

 6: ttRR tt    ˆˆ
1    

 7: return Rt=(Rxt, Ryt,Rθt)   

 

Figure 4.4 illustrates the outcome of this sampling routine. A temporal 

particle set },...,{ˆ 21 p

ttt RRR  containing all the samples is created, 

where p is the number of samples (particles). 

 

 

Figure 4.4: Sampling. Each black dot represents a possible robot position. 

 

2. Update the estimation of landmarks, using the EKF, the set ̂  of robot 

poses samples created in step 1, and the landmark measurements zt.  

Because the j
th

 landmark positions ( 1t

i

j xL , 1t

i

j yL ) is known at time t1 

as well as the poses ( t

i xR , t

i yR ) and rotations ( t

iR  ) of each particle 
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(obtained in step 1), it is possible to compute the distance and angle 

between them, as shown in Figure 4.5, where 
i

jr̂
 and 

i

j̂  are the distance 

and angle between particle i and landmark j. 

 

 

Figure 4.5: Distance and rotation between particle i and landmark j. 

 

Thus, function h used by the EKF is given by: 

 










































t

i

t

i

t

i

jt

i

t

i

j

t

i

t

i

jt

i

t

i

j

i

j

i

j
i

j

RxRxLyRyL

yRyLxRxLr

h

 ))/()arctan((

)()(

ˆ

ˆ

11

2

1

2

1

  (4.22) 

 

and the Jacobian of 
i

jh , named
i

jH , is 
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In addition, the covariance of the landmark positions i

tj 1,   is known. 

Thus, the landmark updates are computed as follows: 

 QHHS Ti
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where tjz ,  is the j
th

 landmark sensor observation in zt and Q represents 

the covariance matrix for the sensor noise, that is: 
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The following figure shows the updated landmark j for the particle i, 

namely 
i

tjL , , represented by the blue arrow. 

 

 

Figure 4.6: Updated landmark j for the particle i.  



97 

 

Note that this update is made for landmark j and particle i, thus it must 

be repeated n x p times, being n the number of observed landmarks at 

time t (the unobserved landmarks are not updated) and p the number of 

particles. 

This set of median and covariance are added to the temporal particles 

set, as follows: 
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 (4.30) 

 

3. Assign the weight for each particle. Using the measurement vector zt, 

each particle of the temporal particle set ̂  is evaluated. 

Because the j
th

 updated landmark positions (
t

i

j xL , 
t

i

j yL ) and  the poses 

( t

i xR , t

i yR ) and rotations ( t

iR  ) of each particle is known (obtained in 

the 1), it is possible, once more, to compute the distance and angle 

between them, as shown in Figure 4.7, where 
i

jr
 and 

i

j  are the distance 

and angle between particle i and the updated landmark j. 

 

 

Figure 4.7: Distance and rotation between particle i and updated landmark j. 
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Now, the function 
i

jh
 
is 
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and the Jacobian of 
i

jh , defined as
i

jH , becomes 
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where 
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The updated covariance of the landmark positions i

tj ,  is also known. 

Thus, the importance factors (weights) can be computed, as follows: 

 

Table 4.2: Compute weights algorithm; 
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where, once again, tjz ,  is the j
th

 landmark sensor observation. This set of 

importance factors is added to the temporal particles set: 
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(4.33) 

 

4. Finally, resample. Each particle, in the temporal particle set, is drawn 

(with replacement) with a probability proportional to its importance 

factor. 

Prior to resampling, the weights of particles should be normalized such 

that they sum up to one. Then, compute the cumulative probability 

density function (cdf) which defines intervals that reflect each particle 

“share” of the total probability, as illustrated Figure 4.8. Draw p times 

one particle by generating p independent uniformly distributed random 

numbers r in the interval [0,1]; obviously the “heaviest” particles are 

more likely to be drawn. 

 

 

Figure 4.8: Cumulative probability distribution and a random number r. 

 

The output of resampling step is a new set Φt that possesses many 

duplicates, since particles are drawn with replacement. This new set is 

distributed according to the desired posterior p(xt). 

5. If the measurement vector zt, introduces a new landmark never seen 

before, this needs to be included into the set of particles, as follows. 
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The new observed landmark in zt consist of its distance rq and its angle 

ϕq referenced to the unknown true robot position, as shown in Figure 

4.9 and eq. (4.34).  

 

 

Figure 4.9: New observed landmark Lq. 

 

 















q

q

q

r

L
  

(4.34) 

 

The new landmark Lq must be included within each particle in the 

particle set through its mean and covariance. Thus, for each particle, 

function 
i

qh  and its Jacobian 
i

qH  are given by: 
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The mean is
 

i

j

i

tq h, and the covariance, i

tq, , is computed using the 

covariance matrix for the sensor noise Q: 
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Now the particle set Φt has a new landmark incorporated, making the 

number of total landmarks become n:=n+1. 

 

4.3.  
Simulator 

To test the grid mapping algorithm, it is necessary to acquire data from a 

LRF mounted on a robot that moves along a structured environment. It is also 

possible to evaluate the algorithm from simulations of both the environment and 

the LRF readings, as long as noise is introduced in the process. 

The simulation of the robot perception based on LRF provides several 

advantages. First of all, it is cheaper than experimenting with a real device. The 

simulator gives the opportunity to concentrate more on the intelligence algorithms 

such as localization and mapping (SLAM). Developing the simulator is easier 

than building a new robot or perception system [29], due to the testability of many 

configurations. 

The simulator used in this work is implemented on Matlab®, explaining as 

follows. 

 

4.3.1. 
3D Environment Simulation 

The element used in the simulator to represent the structured environment is 

the plane. All structured environment elements are approximated using planes; 

straight walls, curved walls, doors, windows, floors, ceilings, etc, can be modeled 

using a group of rectangles. Figure 4.10 shows an environment constructed in 

such a way.  
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Each rectangle in this simulator is defined by four points, from which their 

equation obtained. Thus taking, three points (a,b,c) of the four given points, the 

equation of the plane that contains this rectangle is given by: 

 0)()()(  zzyyxx aznaynaxn   (4.38)
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Figure 4.10: Simulated structured environment using rectangles. 

  

4.3.2. 
LRF Simulation 

The working principle of the LRF, also known as a LIDAR, is shown in 

Figure 4.11. In the presented simulation, laser ray data are assumed 1° apart, from 



103 

 

-90° to 90°.  Note that these values are adjustable parameters in the simulator, 

which can vary depending on the simulated LRF model. 

 

 

 

Figure 4.11: Laser ray from a simulated LRF. 

 

Other adjustable parameters from the simulator are shown in Table 4.3.  

 

Table 4.3: Adjustable parameters on simulated LRF. 

Parameter Units 

Field of view ± rad 

Operating range m 

Angular resolution rad 

Statistical Error ± mm, ±%, stdv (mm) 

 

 

To acquire 3D data, the simulated LRF can be routed along its axis X, from 

0° to 90° as shown in Figure 4.12, emulating a rotational support for the 2D LRF. 
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Figure 4.12: Simulated LRF rotation to acquire 3D data 

 

Each measured laser ray is modeled as a vector in the polar system (r, α, β), 

with the origin as the point where the rays come from, where r represents the 

measured range, the rotation in the Z axis is given by α, and the rotation in X is 

given by β.  

Simulated measurements are obtained by merging the simulated LRF 

routines with the models of the simulated environment. The point that defines the 

position of the LRF in the environment is the same point where the rays come 

from. Thus, the position and rotation of the LRF (in the environment and therefore 

in a global coordinate system) is given by four variables: x, y, z and θ, where θ is 

the rotation on an axis parallel to the Z axis of the global coordinate system. 

With the LRF’s rays and its position and rotation in the global coordinate 

system, the equation for each ray vector is constructed. Using the two points (a 

and b) that define a ray vector, the line equation in 3D is given by 
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Finally, virtual data is acquired equating the line equation (of each ray 

vector) and the plane equation (of each plane), solving it to find the intersection 

points, and then computing the distances r, between these points and the LRF. 

Figure 4.13 and Figure 4.14 show a scan where the position of the virtual 

LRF sensor is x = 2.0, y = 12.3, z = 0.4 and θ = 30° while the angle α ranges from -

90° to 90° (181 rays), with a constant angle β = 10°. 

 

 

Figure 4.13: Virtual LRF readings in a simulated environment (top view). 
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Figure 4.14: Virtual LRF readings in a simulated environment, from two different 

points of view. 

 

4.3.3.  
Error introduction in virtual data 

The LRF suffers from two types of errors: systematic and statistical. 

Systematic error can be reduced to acceptable limits by a good calibration or 

replacing the faulty sensor. However statistical errors are always present in the 

measurements. Thus for LRFs, each manufacturer gives in general the following 

three ways to represent the statistical error: 
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 By standard deviation. The standard deviations (stdv) of the 

measurements are given. For example the LRF SICK, model LMS200, 

has a stdv of 5mm, and the model LMS291 has a stdv of 10mm. 

 By a percentage of the measurement or by a fixed number. For 

instance, the LRF SICK, model LMS291-S05 has an error of +/- 10mm.  

 By a fixed number until a certain range, and beyond that by a 

percentage. For instance, the LRF HOKUYO, model URG-04LX, has an 

error of +/- 10mm in the range from 0 to 1m and, beyond that, 1% of the 

measurement. The model URG-04LX-UG01 has an error of +/- 30mm in 

the range from 0 to 1m and beyond that, 3% of the measurement.  

These ways of expressing the error can be simulated and introduced in the 

distances r, virtually measured from the presented simulator. 

The above presented simulator description just focused in its basic 

functionalities, however there are innumerable improvements that can be made, 

especially regarding the performance in time response. Solving equations for 

many planes/rectangles and lines is computationally expensive. Reference [30] a 

simulated 3D laser measurement system is presented, based on LMS SICK 200 

mounted on a rotational platform. This simulator uses multi core processing 

power to generate 3D data. In [31] a simulator for airborne altimetric LIDAR is 

presented. This simulator is conceived having three components: terrain 

component, sensor component and platform component. 

 

4.4.  
Scan Matching 

One of the objectives of this work is to map an environment without using 

odometry information. Thus, the unique available information is taken from the 

scans made by the Laser Range Finder (LRF). To estimate the robot movement, 

the alignment of two consecutive scans needs to be performed.  

It is important to notice that the scan matching searches for the displacement 

between two consecutive scans, but this displacement is not necessarily the robot 
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displacement, since LRF may be mounted away from the robot center. To 

calculate the robot movement it is necessary to know where the LRF is situated on 

the robot, specifically where the LRF is located with respect to the coordinate 

system of the robot. 

As described in Section 2.3.3, the scan matching method used in this work 

is the Normal Distribution Transform (NDT). This method was selected basically 

because it has a featureless representation of the environment, consequently it 

doesn’t need search for correspondences in the scans. 

NDT uses Newton´s algorithm to minimize the function  f = score. In most 

systems, the initial estimate of the solution is given by odometry information. But 

large error in the initial position estimate can contribute to the non-convergence of 

the algorithm. 

Therefore, to generate a robust algorithm, in this work a Genetic Algorithm 

(GA) is used for optimization, from the Differential Evolution routines described 

in Section 2.4.5. 

 

4.4.1.  
Differential Evolution Optimization for NDT 

First, let’s rewrite eq. (2.15)  
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The outline of this optimization, given two scans (the first and the second 

one), is as follows: 

1. Build the NDT of the first scan, as described in Section 2.3.3. 

2. Use the first scan to evaluate the distribution of its points using eq. 

(4.42). This means that the vector of parameters must be p =[0 0 0]
T
 and 

the score(p) will give a value that is the maximum possible. This is, 
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because the same scan is used to build the NDT and to evaluate the 

score. Let’s call this maximum value A. 

3. Filter the second scan, in order to eliminate regions with high density 

readings (this will be explained in Section 4.4.3). 

4. Initialize the ED algorithm, giving it the filtered second scan and the 

function Ascore(p) as the fitness function. That is, ED should minimize 

this function, estimating the vector p and evaluating the filtered second 

scan into the NDT of the first scan. 

The use of ED is robust and useful to estimate the vector p, which in this 2D 

case is composed by the translation (Δx, Δy) and rotation (Δθ) between scans. This 

tree displacement values are the variables to be codified; thus, one chromosome is 

composed as: 

 

 

Figure 4.15: Chromosome composition 

 

and are represented by real numbers. The fitness function, as exposed above, is 

given by: 
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 The Stopping Criterion 

The stopping criterion used in this optimization is given by two values. 

The first is the Fitness value; thus, the optimizations stops if the fitness values 

is less than 1.0 (this value was acquired empirically). The second stopping 

criterion is the number of generations, established in 50 generations; although 

this criterion value is varied for analysis purposes in Section 5.1.1. 
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 The Search Space 

Looking up in real data, references [32] and [33], most robot 

displacements are in its face direction; lateral movements are minimal because 

they are due to sliding. Another behavior in robots movements is that backward 

displacements are few and short.  Thus, the search space for the three variables 

in the estimated vector p is: 

 

Table 4.4: Search space for vector p 

Variable Min value Max value 

Δx -0.25 m 0.25 m 

Δy -0.50 m 1.00 m 

Δθ -20.00 °  20.00 ° 

 

In this way, the translation and rotation between two scans is limited by 

this search space. These values were empirically defined such that they 

guarantee enough similar information in two consecutive scans in order to 

mach them. 

This search space and the LRF’s scanning frequency (which will be 

discussed later) therefore might limit the maximum lineal and angular velocity 

of the robot. However, the LRF’s scans are sufficiently fast for most achievable 

robot speeds for non-airborne systems. Therefore, the search space plays a 

minor role in limiting the robot speed. 

 

 DE Parameters 

The following parameters used in DE for scan matching optimization 

were empirically acquired. 
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Table 4.5: DE Optimization Parameters. 

Parameter Value 

Population size (NP) 100 

Number of generations 50 

Scaling Factor (F) 1.00 

Crossover constant (CR) 0.95 

 

Some consideration should be taken into account before using this ED 

optimization, as explained next. 

 

4.4.2.  
Parameters and Considerations 

 

a. Environment considerations  

The environment to be mapped needs variety. E.g. long corridors 

without doors or any wall-shape variations will lead to poor scan 

matching performance, the ED will result in an estimated 

vector [0 0 0]p . How long these corridors can be without 

compromising scan matching depends on the LRF’s maximum range, 

e.g., if the LRF’s range is 8m, then the length of such corridor should 

be less than this value. But note that there are LRFs such as SICKs that 

have more than 50 meters in range. 

In the same way, the width of these corridors should be less than LRF’s 

range, to ensure that the robot will pickup data from both sides (left and 

right) of the sensor position.  

 

b. LRF Considerations  

Perhaps the most known LRF in Robotic is the SICK. SICK has a set of 

LRFs for many applications, and the most popular being the family of 
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LMS-200. Thus, for example, the SICK LMS-200-3016 model has the 

following main features [35]: 

 

Table 4.6: SICK LMS-200-3016 features. 

Field of view 180 ° 

 

Scanning Frequency 75 Hz 

Operating range 0 m … 80 m 

Angular resolution 0.25° , 0.5°, 1.0°  

Systematic Error +/- 15mm 

Statistical Error +/- 5mm 

 

The scanning frequency of the above SICK is 75Hz, meaning 13.33 ms 

per scan. Thus with such data, it is possible to calculate the maximum 

linear and angular velocity of the LRF in order to guarantee that the 

movement of the robot does not affect the LRF’s readings. 

The following simplified equations could help to estimate these 

maximum speed as a function of the LRF’s scanning frequency. 

 st fv *max   (4.44) 

 sr f*max    (4.45) 

 

where fs is the scanning frequency of the LRF, and the parameters εt and 

εr are the maximum error introduced by the robot’s movement into the 

scan readings. For example, if the desired error must be at most 5mm in 

translation, and the scanning frequency of the LRF is 75 Hz, then the 

maximum speed of the LRF is vmax = 0.375 m/s, while for a desired  

error of up to 0.25° in rotation, then wmax = 0.327 rad/s. 

Note that this maximum values in translation are referred to LRF 

speeds, which are not necessarily the same as the robot speed, 
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depending on where the LRF is mounted on the robot and if the robot is 

making a turn.  

 

4.4.3.  
Scan Filtering 

The value of eq. (4.42) is influenced by the density of the readings. Regions 

with higher reading density are produced when the robot is close to a wall, thus 

eq. (4.42) results in higher values in this regions, see Figure 4.16. This situation is 

not desirable, as seen in [35]. The ED optimization could give us mismatched 

scans, as Figure 4.17, since such oversampling in one small region could 

negatively affect the matching of regions further away.  

 

 

Figure 4.16: Density regions produced by a robot situated close to the right wall. 

 

 

 

 

Region with 
higher density 
of readings 
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Figure 4.17: Mismatched scans, showing the NDT of a first scan (grayscale) and a 
second scan (red dots). The right-bottom wall produces a high number of readings, 
bringing down the second scan and compromising the match.  

 

To overcome this situation this work uses the approach used by [36], 

replacing small clouds of close points by their center of gravity. This has the 

effect of smoothing the distribution of points over the scan. It also greatly reduces 

the number of scan points, without loosing too much information.  

The idea behind this filter is to move a circular window with fixed radius 

over the scan and to replace the readings inside the window with their center of 

gravity. The radius of the window defines the minimum distance between the 

points in the filtered scan. This radius has to be defined experimentally. Low 

values for this parameter do not solve the influence of the readings density, while 

high values may render the resulting scan too sparse. In this work, this parameter 

is set to 10 cm.  

Figure 4.18 shows the same scan points of Figure 4.16, before filtering (left) 

and after filtering (right). Reducing the number of scan points also improves the 

speed of the ED optimization. 

 

Region with 
higher density 
of readings 
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Figure 4.18: Scan filtering. Original scan with 181 points (left) and filtered scan with 

59 points (right). 

 

4.5. 
DP-SLAM 

The DP-SLAM algorithm is presented in this work in the form of 

flowcharts. The detailed implementation of DP-SLAM is too extensive to be 

presented here. However the code used in this work is free, available to download 

from [33]. This code was modified in this work to include scan matching as a 

motion model, as explained later. 

As explained in Section 3.2.3, DP-SLAM uses a hierarchical algorithm. The 

relationships between the low and high levels are shown in Figure 4.19. Here, the 

input data is composed by the odometry and the range scans. Thus, each position, 

estimated by the odometry reading, has attached its range scan. A piece of data is 

used as input to low level SLAM. The output is the best estimated trajectory 

attached with its corresponding range scans. 
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High Map t-1
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Return High Map +

 all B, C, D

High SLAM

 

Figure 4.19: DP-SLAM flow chart 

 

Figure 4.20 shows the low SLAM flowchart. Notice that, in the beginning, 

all los particles are located in an initial position, and using the firs data scan a low-

map is printed. This initial position and low-map is used by the subsequent t+1 

iteration. 
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Set of Odometry & 
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Figure 4.20: Low (level) DP-SLAM flow chart 

 

As show in Section 3.2.3, DP-SALAM uses a particle filter to track the 

robot position. Thus the motion model is used to predict (i.e. generate samples) 

and the perception model is used for particles weighing. A low-map is printed 

each iteration, using the best particle and its ancestors. Note that the best particle 

at iteration t, may not be a child of the best particle at iteration t1.  

The output of the Low SLAM (LSLAM) is used by the High SLAM 

(HSLAM), as shown in the Figure 4.19. Note that HSLAM is slightly similar to 

LSLAM, but instead of sampling robot positions, HSLAM samples robot 



118 

 

trajectories. Also both low an high, use the same perception model, but their laser 

variances are different. The LSLAM is the basic SLAM algorithm, working 

unperturbed while the HSLAM is working with slightly different data and as such, 

requires a different laser noise model. With a “rigid” trajectory passed up from the 

LSLAM, there is less room for minor perturbations, and certain amount of 

assumed drift. All of this is included in the high level laser variance, which needs 

to be correspondingly larger [6]. Empirical results show that using a standard 

deviation of 7cm at the higher level works well [6]. 

Finally the High SLAM output is the best High Map and robot path. 

 

4.5.1.  
Motion Model 

The motion model proposed by Eliazar [6], is shown in eq. (4.46).  
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The new position Rt=[Rxt , Ryt , Rθt] depends on the last robot position Rt-1 

and the parameters B, C and D. The value (Rθt-1 + B/2) is called the major axis 

movement, and both B and D are expected to be distributed normally distributed 

with respect to the reported odometry values b and d (amount of rotational and 

translational movement, respectively). But the mean of each B and D will scale 

linearly with both b and d, while the variance will scale with b
2
 and d

2
. C is an 

extra lateral translation term, which is present to model shift in the orthogonal 

direction of the major axis. This axis, called minor axis, is at angle (Rθt-1 + 

(B+π)/2). In this view, B, C and D are all conditionally Gaussian given b and d:  
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where μAx is the coefficient for the contribution of the odometry term x to the 

mean of the distribution over A. DP-SLAM uses an automatic parameter estimator 

to obtain these μAx.  

Note that the above implementations assume that odometry readings are 

available. This work, on the other hand, does not make use of odometry 

information. This is obtained instead from scan matching. In this way, the “scan 

odometry” consist of tree displacements: Δx, Δy, Δθ, displacements that are 

referenced to the current robot position. Because scan matching is used, no extra 

lateral displacement needs to be considered. In the implemented approach, two 

consecutive scans are taken from two different points in the environment, as 

shown in Figure 4.21. 

 

Figure 4.22 (left) shows the environment from the first, or current, robot 

position point of view, and (right) shows it from the second robot position.  
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Figure 4.21: Two consecutive robot positions in an environment.  

 

 

Figure 4.22: Environment seen from the current robot position (left) and second 

robot position (right).  

 

Thus, the scan matching process searches for an alignment of both scans, by 

rotating and translating the second scan onto the first scan coordinate system, to 

obtain the actual robot displacements Δx, Δy, Δθ. The aligned scans are shown in 

Figure 4.23.  
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Figure 4.23: Aligned scans in a global coordinate system, displacements ΔyR, ΔxR 

and ΔθR are related to the first scan coordinate system. 

Assuming a perfect scan matching, eq. (4.47) gives the new robot position 

by 
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where: 

 22 )()( yxd 
   

and
    21 atan2( , )i

tR y x       

 
 

 

However, because the scan matching process isn’t perfect, it will give us an 

approximation of Δx, Δy, and Δθ. It is expected that these approximations are 

distributed according to a distribution shape. The shape of this distribution must 

be acquired empirically by comparing the approximated displacement, after 

convergence of the scan matching, with actual position (estimated or simulated), 

as explained in Chapter 5. Table 4.7 shows an algorithm to sample from this scan 

matching motion model, (R t | u t ,R t -1), to generate a random poses i

tR . Lines 1 

through 3 perturb the “scan odometry” parameters with noise, drawn from the 

error parameters vx, vy and vθ (they will be explained in Chapter 5). The noise 

values are then used to generate the new sample pose in lines 4 through 8. of the 

algorithm. 
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Table 4.7: Sample scan matching motion model algorithm, where atan2(Δy, Δx) is 

defined as the generalization of the arc-tangent function of Δy/Δx over [0, 2π]. 

 Sample SM Motion Model algorithm (Rt-1, ut )   

 1: )(ˆ
xvsamplexx     

 2: )(ˆ
yvsampleyy     

 3: )(ˆ
 vsample    

 4: 22 )ˆ()ˆ( yxd 
 

  

 5: )ˆ,ˆ(atan221 xyR t  


   

 6: )cos(1 dRxRx tt      

 7: )sin(1 dRyRy tt      

 8:  ˆ
1  tt RR

   

 9: return Rt=(Rxt, Ryt,Rθt)   

Finally, the LSLAM output in Figure 4.20, using the proposed motion 

model, is a set of changes between positions zyx ˆ,ˆ,ˆ   and its corresponding 

range scans. 

 

4.5.2.  
High Motion Model 

As seen in Section 3.2.3.4, DP-SLAM states that the effects of drift on low 

level maps can be accurately approximated by perturbations to the endpoints of 

the robot trajectory used to construct a low level map.  

By sampling drift only at endpoints, it will fail to sample some of the 

internal structure that is possible in drifts, e.g., it will fail to distinguish between a 

linear drift and a spiral drift pattern with the same endpoints. However, the 

existence of significant, complicated drift patterns within a map segment would 

violate the assumption of moderate accuracy and local consistency within the low 

level mapper [6].  

The “motion” model in high SLAM is assumed to be Gaussian, and evenly 

distributed about the lateral axes. The specific values for these variances are 

highly mutable, affected by the specific SLAM algorithm used at the low level, 
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and the amount of resources used, as well as elements from the robot or the 

environment [6].  

Figure 4.24 shows how the high motion model works. As shown in Figure 

4.19 the first set of data received from the low SLAM is simply printed in the high 

map at zero position. This is shown in the Figure 4.24, the first set of data is a set 

of variables ,ˆ,ˆ,ˆ zyx   (represented by a red line) along with its scans 

(represented by the green region of the figure).  

 

 

Figure 4.24: High Motion Model 

 

The second set of data received from the low SLAM (black line) is not 

connected with the endpoint of the first set (red dot). Instead, it is linked with 

many samples (black dots), generated by applying the high motion model at the 

first endpoint (red dot). Notice, however, that Figure 4.24 shows the second set of 

scans (piece of map in blue color) only for one sample (the best sample); thus it is 

understood that high SLAM keeps a different map for each sample. Note that the 

motion model generates samples not only disturbing the endpoint position, but 

also the endpoint rotation. 

In the next chapter the presented algorithms are evaluated, both using 

simulated data and real experimental data taken from the literature. 
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5. 
Tests and results 

This chapter presents results obtained using the proposed method on 

simulated and real data. First, it is analyzed the scan matching optimization; after 

that, the Scan Matching Motion Model is detailed presented, then some 2D results 

are shown using DP-SLAM; and finally a simulated and a real 3D map example 

are presented. 

 

5.1. Scan Matching 

5.1.1. Optimization Parameters Influence 

Because this analysis uses simulated data, the truth robot displacement 

values, Δx, Δy, Δθ; are known exactly; this will help us to test the optimization 

parameters influence on the scan matching process. 

As shown in Section 4.4.2, the optimization using genetic algorithm 

depends on the size of the population and the number of generations. The Figure 

5.1 and Figure 5.2 present the error displacement obtained by scan matching, 

showing the population size influence in DE optimization (the number of 

generation is kept fixed, in this case generations = 50), this experiment has 366 

simulated robot poses and were acquired by simulating an standard deviation error 

of 15 mm.  

Notice that in Figure 5.1, small population leads to non-convergence and 

consequently the estimated displacement surfers from hug errors, as shown in this 

case for population size of 20 and 40.  

In the other hand Figure 5.2, shows the same experiment using a larger 

population; here the peaks have been significantly reduced in size and number 

(see the scale). 
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Figure 5.1: Error in displacement, Δx, Δy, Δθ, influenced by population size (20 and 

40) in DE optimization. 

 

 

Figure 5.2: Error in displacement, Δx, Δy, Δθ, influenced by population size (60 and 

100) in DE optimization. 

 

Figure 5.3 and Figure 5.4 show the error displacement, when the population 

size is fixed to 100 and the generation number is varied. The effect of generation 

increase is to improve the precision in displacement estimation. As seen in Figure 

5.3 (for 15 and 30 generations), although convergence has been guaranteed, there 

are not enough generations to significantly improve the estimation. 

On the other hand, Figure 5.4, shows a refined estimation by increasing the 

generation number (50 and 75 generations). 
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Figure 5.3: Error in displacement, Δx, Δy, Δθ, influenced by number of generations 

(15 and 30) in DE optimization.  

 

 

Figure 5.4: Error in displacement, Δx, Δy, Δθ, influenced by number of generations 

(50 and 75) in DE optimization. 

 

5.1.2. LRF Error Influence 

Another important scan matching parameter is the LRF error. Using the 

same simulated environment and simulated robot poses, error in laser range is 

introduced by adding a random value picked from a Gaussian distribution with 

zero mean and a variable standard deviation (stdv). In this case, the standard 

deviations are between 15mm and 80mm.  
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Figure 5.5 and Figure 5.6 show the LRF error influence in DE optimization. 

This simulation uses a fixed population size, 100, and a fixed number of 

generations, 50, showing that the greater the laser range error the worse the 

estimated displacement. Note however that DE optimization is robust, even if the 

error displacements increase. 

 

 

Figure 5.5: Displacement error, Δx, Δy, Δθ, influenced by LRF error (stdv= 15mm 

and stdv=25mm) in DE optimization. 

 

 

Figure 5.6: Displacement error, Δx, Δy, Δθ, influenced by LRF error (stdv= 40mm 

and stdv=80mm) in DE optimization. 
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As explained in the introduction of this work, although technology offers 

increasingly accurate position sensors, even small measurement errors can 

accumulate and compromise the localization accuracy. This becomes evident 

when programming a robot to return to its original position after traveling a long 

distance, based only on its sensor readings. In this case, our position “sensor” is 

the scan matching process.  

Figure 5.7 shows the accumulated error in robot position, where (robot 

poses are marked in capital letters according to Figure 5.8). This error represents 

the Euclidean distance between the estimated and true robot simulated robot 

position. Note that the error inevitably grows as the robot pose number increases. 

 

 

Figure 5.7: Accumulated error in robot position due to imperfect scan matching. 

 

Figure 5.8 shows the simulated environment used for all theses scan 

matching experiments. It also shows the true (red line) and estimated (blue line) 

robot path acquired by scan matching. Figure 5.9 shows the map for the estimated 

robot path, showing the growing misalignments due to accumulated small errors 

in scan matching process. 
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Figure 5.8: Robot trajectories, showing the true path (red line) and estimated path 

(blue line). a) Robot starts from zero position (red dot), goes through positions A, B, 

C and A. b) Robot traveling A, D, B. c) Robot completes the course through B, A, 

C, B and D.  

a

d

s 

a) 

b) 

c) 
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Figure 5.9: Map acquired using scan matching process in the simulated 

environment. 

 

5.1.3.  
Scan Matching in Real Data 

To analyze the proposed method using real experimental data, it is necessary 

to have the true robot position in the environment. But this would require 

expensive motion detector sensors and an external measurement, which are 

usually not available. Thus, in this work, the analysis made with real data 

collected from the literature focuses on the study of the convergence on DE 

optimization. As was seen in Section 4.4.1, the fitness function to minimize has 

been defined as A-score(p), which should be close to zero for a good match.  

The performance of the proposed method is evaluated with real data from 

four experiments from the literature.  

The first experiment comes from the second floor of the Duke University 

Computer Science Department (the second floor of the D-Wing of the LSRC 

building) [32]. This contains 551 robot poses and uses a LRF with 8m maximum 

range. This data includes odometry information, which is removed to show the 

efficiency of the presented approach using a single LRF. Figure 5.10 shows the 

fitness function value for each of the 550 robot displacements, acquired using the 
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proposed method. The fitness value will rarely be close to zero, because two 

consecutive will never be the same, unless the robot does not make any movement 

and the sensors didn’t have uncertainties.  The fitness values for “D-Wing” 

experiments show some peaks. Empirically, it is possible to state that values 

below 30 have a greater probability of convergence in DE optimization.  

 

 

Figure 5.10: Fitness values for “D-Wing” experiment. 

 

Since all fitness values are below 30, this experiment has a greater 

probability of not having non-convergence problems. This can be confirmed on 

the resulting map, shown in Figure 5.11. This figure shows the “D-Wing” 

experiment, which is a closed loop indoor structured environment. It can be 

observed also the resulting misalignment due to cumulative error in scan 

matching. 
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Figure 5.11: “D-Wing” experiment acquired using the proposed scan matching 

process, without the use of odometry data. 

 

The second experiment also comes from the Duke University Computer 

Science Department, a long stretch of the second floor of the C-Wing of LSRC – 

pharmacology [32]. This contains 1,106 robot poses and uses a LRF with 8m 

maximum range. Once again the odometry data is removed for tow show that it is 

not needed in the SLAM process using the presented methods. Figure 5.12 shows 

the fitness function value for each of the 1105 robot displacements, acquired using 

the proposed method.  
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Figure 5.12: Fitness values for “C-Wing” experiment 

 

This figure shows a few peaks (12 in total) larger than the empirically 

estimated threshold 30. They have a higher probability of resulting in non-

convergence in DE optimization. To determine their convergence, they have to be 

inspected by simple observation.  

Figure 5.13 shows the “C-Wing” experiment, which is also a loop closed 

indoor structured environment. Note also it the misalignment due to cumulative 

error in scan matching. 
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Figure 5.13: “C-Wing” experiment acquired using the proposed scan matching 

process, without the use of odometry data. 

 

The third experiment comes from the Department of DIIGA at the 

Engineering University in Ancona [33]. This set contains 9,382 robot poses and 

uses a LRF of 80m of maximum range. Once again the odometry data is removed. 

To decrease the computational effort, only 1 robot pose out of every 5 was used in 

this evaluation, resulting in a number of robot poses of only 1,875. In Figure 5.14 

the fitness function value is shown for each of the 1,874 robot displacements, 

calculated using the proposed method.  
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Figure 5.14: Fitness values for “Diiga” experiment. 

 

This figure shows some peaks (50 in total) greater than 30. They have a 

probability of being a non-convergence in DE optimization.  

The Figure 5.15 shows the “Diiga” experiment. 
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Figure 5.15: “Diiga” experiment acquired using the proposed scan matching 

process, without the use of odometry data. 

 

The fourth experiment comes from the Kvarntorp mine, near to Örebro, 

Sweden [37]. It contains 95 robot poses with 3D scans; again the odometry data 

was removed. 

Figure 5.16 shows the fitness function value for each of the 94 robot 

displacements, acquired using the proposed method. In this experiment, there are 

36 fitness values greater than 30. This means that 37% of the matches are poor 

matches, consequently this produces a poor map as shown in Figure 5.17. 
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Figure 5.16: Fitness values for “Mine” experiment 

 

 

Figure 5.17: Poor map of “Mina” experiment. 

 

This poor map is because scans were taken out of the search space 

parameters described in Section 4.4.2, Error! Reference source not found.. The 



139 

 

simple solution that comes out is to increase these parameter ranges. But this is a 

risky solution, because this could lead to false positives and the map would end up 

worse.  

 In this case de adopted solution was to increase the NTD cell size to 

4000mm (originally it was defined to 1000mm, as described in Section 2.3.3). 

This adopted solution has the effect of blurring the NDT representation and 

consequently facilitates the optimization convergence. However, this scaling 

increase only helps the translation optimization; rotations, on the other hand, can’t 

be scaled. Thus to solve this problem, misaligned matches are ran individually on 

DE optimization, increasing or decreasing the rotation search space depending on 

the case.  

Obviously, this is computationally intensive, but it is necessary to allow the 

proposed method to be successful even in the situations where the matching 

process is not guarantee. 

The resulting map, after increasing the NTD cell size, but before running 

individually misaligned matches, was already shown in Figure 5.17. The map 

after running individually misaligned matches and varying the rotation search 

space is shown in Figure 5.18.   
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Figure 5.18: “Mina” experiment acquired using scan matching process 

 

5.2.  
Motion Model 

The analysis made using the fitness value on DE optimization helps to 

determine the quality of the obtained map. But there are some fitness values (in 

special in the “Diiga” experiment) greater than 30. In these cases, it is advised to 

manually examine these critical parts from the map. This, of course, suggests the 

need of a non automatic mapping, for such large fitness values. These results can 

be viewed as a first mapping step. The scan matching errors are managed in a 

second mapping step: the motion model in DP-SLAM. 

In fact, computing the displacement error histogram (using the simulated 

experiment), they are distributed as Gaussians, as shown in Figure 5.19.  
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The distribution error in Δy (movement along robot’s facing direction) as 

shown in Figure 5.19(c), can be approximated by a Gaussian with zero mean and 

standard deviation of 0.02m plus another Gaussian with mean on 0.20m and 

standard deviation of 0.10m. However, because always the robot movement is 

along its facing direction (unless it has significant slippage), the distribution error 

in Δx is different, and can be approximated by a simple Gaussian, as shown in 

Figure 5.19(a). In the same way, the distribution error in Δθ can be approximated 

by a Gaussian, as shown in Figure 5.19(b). 

 

a) 

 

b) 

 

 c) 

 

 

 

Figure 5.19: Error distribution in displacement:  a) Δx,   b) Δθ   and   c) Δy 

 

These displacement errors in Δy are evident when looking in detail the maps 

acquired.  
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Figure 5.20 shows an example of this displacement error, taken from the 

experiment on a simulated environment from Section 5.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Misalignment in Δy (respect to the current robot position). 

 

The averages and standard deviations of these three movements are the 

parameters used in the proposed motion model. It is expected that scan matching 

in real data follows the same distribution shapes, but it doesn’t mean that the 

parameter values are the same.  

The most complicated error parameter is related to the robot’s face 

displacement, Δy. One important thing observed in real data, using the proposed 

scan matching, is that error displacements in this movement direction could 

depend on robot velocity. Figure 5.21 shows this idea: after a robot displacement 

in the time step Δt, the actual position is Rt = [Rxt Ryt Rθt], but the scan matching 

gives a displacement p= [Δx  Δy  Δθ] where Δy is near to cero or, in the best case, 

a value much lower than the actual displacement ΔyR. Thus the mean of the small 

misalignment   

in Δy 

Robot 
movement 
direction 
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Gaussian in Figure 5.19(c), would be in  λ, where λ = |Δt·VR| and VR is the robot 

velocity.  

 

a)  

b)  

 

Figure 5.21: a) The true robot displacement. b) The displacement given by scan 

matching, showing that the most common error is in Δy. 

 

Since one of the objectives in this work is no to use odometers, such robots 

with a single LRF cannot directly measure their velocity. However, it is possible 

to use the instants when the scans were taken and, in this way, compute  the robot 
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velocity(estimated using the displacement between scans on t-2 and t1 and the 

time interval between them). Note, however, that this value need not be exact and 

could be approximated; this is an advantageous consequence of using a 

probabilistic approach. 

Misalignments in Δy were also found in real data, as shown in Figure 5.22. 

Another important thing observed in real data is the fact that large displacement in 

Δy corresponds to small rotations Δθ; this behavior is shown in Figure 5.23. This 

fact gives a restriction to the proposed motion model. Thus only when scan 

matching reports a small rotation, the motion model will be able to sample from 

the small Gaussian in Figure 5.19(c). The standard deviation assumed for this 

small Gaussian is σ = (λ/2). On the other hand, the higher Gaussian in the same 

figure is assumed with zero mean and standard deviation: σ = 0.02m + abs(Δy/10). 

 

 

 

Figure 5.22: Misalignment in Δy (D-Wing experiment) 

 

Robot 
movement 
direction 

misalignment   

in Δy 
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Figure 5.23: Larger displacement in Δy correspond to small rotations Δθ (D-Wing 

experiment). 

 

The displacement error in Δx follows the distribution shape from Figure 

5.19(a), which is simpler than the Δy error distribution, since it could simply be 

approximated by a zero mean Gaussian with standard deviation σ = 0.02m + 

abs(Δx/10). In the same way the error in Δθ is approximated by a zero mean 

Gaussian with σ = 0.5°+abs(Δθ /10). 

The final motion model is shown in Table 5.1, Table 5.2 and Table 5.3. 

Note that this algorithm is a more detailed version than the one from Table 4.7. 

 

Table 5.1: Proposed Scan Matching Motion Model. 

 Sample SM Motion Model algorithm (Rt-1, ut )   

 1:  x/10)( + 0.02mˆ  abssampleAxx    

 2:    ,,y/10)( + 0.02mˆ abssampleByy    

 3:  )10/(5.0ˆ    abssampleA    

 4: 22 )ˆ()ˆ( yxd 
 

  

 5: )ˆ,ˆ(atan221 xyR t  


   

 6: )cos(1 dRxRx tt      

 7: )sin(1 dRyRy tt      

 8:  ˆ
1  tt RR

   

 9: return Rt=(Rxt, Ryt,Rθt)   
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Table 5.2: Approximate algorithm to sampling from normal distribution [1] 

 sampleA: sample_normal_distritubtion ( v  )   

 1: 



12

1

)1,1(
6 i

rand
v

return    

 

 

Table 5.3: Approximated Algorithm to sample from the Δy distribution error.  

 sampleB (v, λ , Δθ)   

 1: )1,0(randx     

 2: if (x > 0.95) && (Δθ < 3°)    

 3:      return    sampleA(λ/2) + λ   

 4: else   

 5:      return    sampleA(v)   

 

 

5.3. 
DP-SLAM 

From the incorporation of the motion model in the DP-SLAM algorithms, 

improved 2D maps are now obtained from the simulated environment and the 

experimental ones taken from the literature. 

Figure 5.24 shows the simulated environment as 2D grid map. This map 

was acquired using 1000 particles in the LSLAM and 1500 particles in the 

HSLAM, with a resolution of 50mm. 
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Figure 5.24: 2D grid map from the simulated environment experiment, obtained 

with DP-SLAM using the proposed motion model. 

 

 

Figure 5.25: Accumulated error position obtained with DP-SLAM using the 

proposed motion model, on simulated experiment. 

 

Figure 5.25 shows the accumulated error in robot position. Comparing this 

figure with Figure 5.7, it is clear that the error does not increase with time, being 

kept mostly under 300mm. Figure 5.26, Figure 5.27 and Figure 5.28 show the 

histograms of the errors in Δx, Δy, Δθ. 
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Figure 5.26: Error distribution in Δx obtained with DP-SLAM using the proposed 

motion model. 

 

 

 

Figure 5.27: Error distribution in Δy obtained with DP-SLAM using the proposed 

motion model. 
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Figure 5.28: Error distribution in Δθ obtained with DP-SLAM using the proposed 

motion model. 

 

Figure 5.29 shows another simulated environment that was also shown in  

Figure 3.11. The difference between them is that now the map is better 

because was built using hierarchical DP-SLAM. Thus, 1000 particles were used in 

the LSLAM and 1000 particles in the HSLAM, with a resolution of 50mm. 

 

 

Figure 5.29: 2D grid map from simulated environment presented in  
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Figure 3.11.  

Let’s now apply the proposed method to the experimental data from the 

literature. The first real experiment (D-Wing) in the form of 2D grid map is shown 

in Figure 5.30. This map was acquired using 500 particles in the LSLAM and 600 

particles in the HSLAM, and it has a resolution of 50mm. 

 

 

 

Figure 5.30: 2D grid map of “D-wing” experiment, acquired with DP-SLAM using 

the proposed motion model. 

 

The second real experiment (C-Wing) in the form of 2D grid map is shown 

in Figure 5.31. This map was acquired using 600 particles in the LSLAM and 

1,300 particles in the HSLAM, and a resolution of 40mm. 
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Figure 5.31: 2D grid map of “C-wing” experiment, acquired with DP-SLAM using 

the proposed motion model. 

 

The third real experiment (“Diiga”) in the form of 2D grid map is shown in 

Figure 5.32. This map was acquired using 600 particles in the LSLAM and 1800 

particles in the HSLAM, and it has a resolution of 40mm. 
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Figure 5.32: 2D grid map of “Diiga” experiment, acquired with DP-SLAM using the 

proposed motion model. 

 

Finally, the fourth real experiment (“Mine”) in the form of 2D grid map is 

shown in Figure 5.33. This map was acquired using only the LSLAM with 1,200 

particles, with a 50 mm of resolution. 
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Figure 5.33: 2D grid map of “Mine” experiment, acquired with DP-SLAM using the 

proposed motion model. 

 

5.4. 
3D Mapping 

The proposed mapping method using a single RLF uses Scan Matching and 

DP-SLAM to acquire 2D robot localization. Thus, as long as the parameter ranges 

shown in Error! Reference source not found. are satisfied, it will be possible to 

create as well 3D maps. However, almost all 3D data from available from 
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literature, in special in [33] and [38], are out of these parameter ranges. Most of 

them are from unstructured environments, and those that are from indoor 

structured environments only picked up 3D data from sparse robot positions, not 

frequent enough to satisfactorily apply DP-SLAM without the use of odometer 

readings. 

The previously simulated map is now used to evaluate the application of the 

proposed methods to 3D. The environment and LRF simulator presented in 

Section 4.3 is now applied to a 3D map. 

As discussed in Section 3.3, trajectory given by the 2D DP-SLAM can be 

used to project the remaining three-dimensional data. Figure 5.34 shows a 3D map 

of the simulated environment exposed in previous section. It is represented in the 

form of a 3D point cloud map.  

 

 

Figure 5.34: 3D point cloud map of the simulated environment. 



155 

 

 

Figure 5.35: 3D point cloud of the simulated environment (only three 3D scans are 

shown) 

 

 

Figure 5.36: 3D point cloud of the simulated environment (only four 3D scans are 

shown). 
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The “Mine” experiment, shown in the previous section, is the only 3D real 

environment used in this work. However, it is an example of 3D data acquired 

from sparse robot positions; for this reason, its original dimensions were reduced 

by a factor of four and, after processing, returned to its original values. 

Figure 5.37, Figure 5.38, Figure 5.39 and Figure 5.40 show the “Mine” 

experiment, but now in three dimensions, in the form of 3D point cloud map. This 

figures show only some 3D scans (not all) for visualization purposes. 

 

 

Figure 5.37: 3D point cloud of the “Mine” experiment. 
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Figure 5.38: 3D point cloud of the “Mine” experiment. 

 

 

 

Figure 5.39: 3D point cloud of the “Mine” experiment (top view). 
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Figure 5.40: 3D point cloud of the “Mine” experiment. 
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6. 
Conclusions 

This work explored the main SLAM solutions, given a detailed example for 

implementing the EKF-SLAM and FastSLAM; although the adopted solution, for 

the proposed application, was the DP-SLAM.  

Thus, to perform SLAM without odometry information, the following 

algorithms were implemented: 

 A simulator to acquire 3D data from structured environments; implemented 

on MatLab® platform. 

 A scan matching algorithm, to get robot displacement without odometry 

information, based in genetic algorithm optimization for the Normal 

Distribution Transform; also implemented on MatLab® platform, using the 

Differential Evolution library acquired from reference [21]. 

 A modified DP-SLAM, which included a new motion model: the scan 

matching motion model; implemented on Visual C++ platform. 

This method can deal as well with 3D environments, as long as the LRF is 

mounted on a rotating platform on the mobile robot, to allow both horizontal and 

vertical scans. As the robot moves, the LRF acquires 2D scans. Where and when 

3D data is required, the robot stops and the platform rotates synchronized with the 

LRF to perform further 2D scans on different plane orientations. After traveling 

through a desired path, the acquired data is processed to obtain 2D or 3D maps. 

In this way, the main contribution of this thesis is the application of DP-

SLAM without the need for odometry information, just by using a single LRF. 

Furthermore, this comes with some considerations and advices, along with 

specific conclusions, detailed next. 
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6.1. 
DP-SLAM Conclusions 

DP-SLAM is a powerful tool in 2D mapping so that, it doesn’t need a 

separated loop detection algorithm.  

Such a high performance comes with a high computational cost. Thus, DP-

SLAM is an off-line mapping algorithm, due to the huge data it manages. The 

smallest experiment (“Mine”) took about 1 hour to be evaluated and the longest 

(“Diiga”) took about 5 hours, using a processor AMD Turion 64 with 2.1GHz. 

The time complexity of DP-SLAM is analyzed in detail in [6]. 

The Motion Model in DP-SLAM has a considerable influence in the 

mapping performance. Poor models will need a huge number of particles to obtain 

moderate results. Thus, the Scan Matching Motion Model proposed in this work 

could be improved to include holonomic robots, so that they can manage both Δx 

displacement errors as well as in Δy errors. 

The “low map” size in LSLAM (“piece of data” in Figure 4.19) as proposed 

by [6] is a function of the number of iterations. Thus, [6] proposes between 75 to 

150 iterations. But in the analysis in this thesis, these values didn’t give good 

results. Basically, 150 iterations don’t guarantee that the robot travels enough 

distance to be considered a low map. The robot could get hundreds of scans 

without leaving the same room. In all experiments made by DP-SLAM in this 

work, a low map is only created when robot travels about 3m in an approximately 

straight path. It was observed that, when a low map is created (the LSLAM 

algorithm finishes) within a fast robot rotation, the next low map (that uses a 

portion of the previous map) suffers major ambiguities and tends to produces poor 

particles. 

In LSLAM, DP-SLAM uses the current map for particle weighing. The best 

particle is used to grow the map, adding the new observation. If the robot 

displacement is higher than the LRF’s maximum range, then DP-SLAM does not 

have enough pieces of the map for particle weighing. Thus, it is recommended to 

have a LRF with maximum range large enough to avoid this undesired situation.  
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As a way of demonstrating the proposed method performance, the simulated 

map (Figure 5.8) is compared with the acquired map using DP-SLAM (Figure 

5.24). Thus, in order to compare them, the contours (walls) of both maps are 

selected and then converted to bitmaps. In this case the pixel to pixel comparison 

gives 93.34% of similarity, this mean 6.66% of wrong pixels. 

 

6.2.  
Scan Matching Conclusions 

The time of convergence in DE optimization depends on population size and 

generation number. Population size of 100 with 50 generations takes 

approximately 18s using a processor AMD Turion 64 with 2.1GHz. This 

relatively long time, coupled with time consumed by DP-SLAM algorithm, make 

the proposed method an offline but robust solution.  

Errors in Scan Matching, the first or any other, are outweighed by the 

motion model proposed in Section 5.2. Note also that the first scan or any other 

have the same level of reliability; thus, if the first scan, and consequently the first 

grid map, is not good, it can be improved by the subsequent iterations (subsequent 

scans), in the sense of a probabilistic fusion. 

Misalignments found in scan matching (for Δy displacement) are due to the 

cell size defined in Section 2.3.3. I.e. small details in the environment are blurred 

in NDT representation, which leads to unclear limits in alignment. One solution 

would be to reduce the cell size, but this creates an NDT representation with sharp 

shape; this case, DE optimization would need a quite larger population to achieve 

convergence. However, with some considerations, the cell size could be 

dynamically defined, depending on the measured LRF values. Thus, if LRF 

returns small distances, for instance less than 3m, then the cell size would be 

reduced to 500 mm. For higher distances, 1m of cell size would be a good choice. 

This idea was not implemented in this thesis, but it suggests future works to 

determine the distance threshold for each cell size choice. 
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The LRF’s maximum range, as in DP-SLAM, is a very important parameter 

in scan matching. Larger maxima mean more data (about the environment) in one 

scan, which helps to improve the alignment. 

The scan matching proposed was implemented in Matlab®, while DP-

SLAM was implemented in C++ (using the code from [32]). It is possible, of 

course, to use the same computer language for Scan Matching and DP-SLAM. To 

increase the algorithm speed, it is recommended to implement the scan matching 

in C++ as well. A powerful library for evolutionary computing, GCOM [38], can 

help in such task. This is a suggestion for future works.  

There are solutions for 3D scan matching in non-planar terrain [39], [40] 

and [41]. Thus, they could be used as a basis to extend the proposed method to a 

3D mapping in uneven terrain, using as well a single LRF without odometry 

information.  

 

6.3. 
3D Mapping Conclusions 

The 3D maps presented in Section 5.4 use point cloud representation. Thus, 

the quality of these maps depends on LRF error, because they are simply plotted 

using the 2D trajectory given by DP-SLAM. However, DP-SLAM fuses 

probabilistic observations made for each cell, so, as the cell is more often 

observed as occupied, the darker it becomes. This idea could be applied in 3D 

representations as well. Thus, 3D observation may also be fused, similarly to what 

is done in 2D. Note that this does not mean using a 3D cell for localization or 

perception model: this means only using the 3D cells to print a 3D map output by 

fusing the available observations made at each 3D cell. This idea, however, was 

not implemented in this thesis but it is another suggestion for future works. 

Another representation for 3D maps could be in the form of geometric 

planes. The Delaunay triangulation is a popular algorithm to create a simplified 

representation of the environment in the form of triangles acquired from a point 

cloud. There are commercial and open source software [42] specialized in 

processing this kind of data.
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