

Luis Ernesto Ynoquio Herrera

MOBILE ROBOT SIMULTANEOUS LOCALIZATION AND

MAPPING USING DP-SLAM WITH A SINGLE

LASER RANGE FINDER

M.Sc. Thesis

Thesis presented to obtain the M.Sc. title at the
Mechanical Engineering Department at PUC-Rio.

Advisor: Marco Antonio Meggiolaro

Rio de Janeiro

Abril 2011

Luis Ernesto Ynoquio Herrera

MAPEAMENTO E LOCALIZAÇÃO SIMULTÂNEA

DE ROBÔS MÓVEIS USANDO DP-SLAM E UM ÚNICO

MEDIDOR LASER POR VARREDURA

Dissertação apresentada como requisito parcial para
obtenção do grau de Mestre pelo Programa de Pós-
Graduação em Engenharia Mecânica do Departamento de
Engenharia Mecânica do Centro Técnico Científico da
PUC-Rio. Aprovada pela Comissão Examinadora abaixo
assinada.

Prof. Marco Antonio Meggiolaro
Orientador

Pontifícia Universidade Católica do Rio de Janeiro

Prof. Karla Tereza Figueiredo Leite
Pontifícia Universidade Católica do Rio de Janeiro

Prof. Liu Hsu

Universidade Federal do Rio de Janeiro

Prof. Mauro Speranza Neto
Pontifícia Universidade Católica do Rio de Janeiro

Rio de Janeiro, 7 de abril de 2011

Abstract

Luis Ernesto, Ynoquio Herrera; Meggiolaro, Marco Antonio (Orientador).

Mobile Robot Simultaneous Localization and Mapping Using DP-

SLAM with a Single Laser Range Finder Rio de Janeiro 2011, 168p.

M.Sc. Dissertation – Mechanical Engineering Department, Pontifícia

Universidade Católica do Rio de Janeiro.

Simultaneous Localization and Mapping (SLAM) is one of the most

widely researched areas of Robotics. It addresses the mobile robot problem of

generating a map without prior knowledge of the environment, while keeping

track of its position. Although technology offers increasingly accurate position

sensors, even small measurement errors can accumulate and compromise the

localization accuracy. This becomes evident when programming a robot to

return to its original position after traveling a long distance, based only on its

sensor readings. Thus, to improve SLAM´s performance it is necessary to

represent its formulation using probability theory. The Extended Kalman Filter

SLAM (EKF-SLAM) is a basic solution and, despite its shortcomings, it is by

far the most popular technique. Fast SLAM, on the other hand, solves some

limitations of the EKF-SLAM using an instance of the Rao-Blackwellized

particle filter. Another successful solution is to use the DP-SLAM approach,

which uses a grid representation and a hierarchical algorithm to build accurate

2D maps. All SLAM solutions require two types of sensor information:

odometry and range measurement. Laser Range Finders (LRF) are popular range

measurement sensors and, because of their accuracy, are well suited for

odometry error correction. Furthermore, the odometer may even be eliminated

from the system if multiple consecutive LRF scans are matched. This works

presents a detailed implementation of these three SLAM solutions, focused on

structured indoor environments. The implementation is able to map 2D

environments, as well as 3D environments with planar terrain, such as in a

typical indoor application. The 2D application is able to automatically generate a

stochastic grid map. On the other hand, the 3D problem uses a point cloud

representation of the map, instead of a 3D grid, to reduce the SLAM

computational effort. The considered mobile robot only uses a single LRF,

without any odometry information. A Genetic Algorithm is presented to

optimize the matching of LRF scans taken at different instants. Such matching is

able not only to map the environment but also localize the robot, without the

need for odometers or other sensors. A simulation program is implemented in

Matlab® to generate virtual LRF readings of a mobile robot in a 3D

environment. Both simulated readings and experimental data from the literature

are independently used to validate the proposed methodology, automatically

generating 3D maps using just a single LRF.

Key Words

Mobile Robots, Bayesian Filter, Scan Matching, Simultaneous Localization

and Mapping, Laser Range Finder.

Resumo

Luis Ernesto, Ynoquio Herrera; Meggiolaro, Marco Antonio (Orientador).

Mapeamento e Localização Simultânea de Robôs Móveis usando DP-

SLAM e um Único Medidor Laser por Varredura Rio de Janeiro 2011,

168p. Dissertação de Mestrado – Departamento de Engenharia Mecânica,

Pontifícia Universidade Católica do Rio de Janeiro.

SLAM (Mapeamento e Localização Simultânea) é uma das áreas mais

pesquisadas na Robótica móvel. Trata-se do problema, num robô móvel, de

construir um mapa sem conhecimento prévio do ambiente e ao mesmo tempo

manter a sua localização nele. Embora a tecnologia ofereça sensores cada vez

mais precisos, pequenos erros na medição são acumulados comprometendo a

precisão na localização, sendo estes evidentes quando o robô retorna a uma

posição inicial depois de percorrer um longo caminho. Assim, para melhoria do

desempenho do SLAM é necessário representar a sua formulação usando teoria

das probabilidades. O SLAM com Filtro Extendido de Kalman (EKF-SLAM) é

uma solução básica, e apesar de suas limitações é a técnica mais popular. O Fast

SLAM, por outro lado, resolve algumas limitações do EKF-SLAM usando uma

instância do filtro de partículas conhecida como Rao-Blackwellized. Outra

solução bem sucedida é o DP-SLAM, o qual usa uma representação do mapa em

forma de grade de ocupação, com um algoritmo hierárquico que constrói mapas

2D bastante precisos. Todos estes algoritmos usam informação de dois tipos de

sensores: odômetros e sensores de distância. O Laser Range Finder (LRF) é um

medidor laser de distância por varredura, e pela sua precisão é bastante usado na

correção do erro em odômetros. Este trabalho apresenta uma detalhada

implementação destas três soluções para o SLAM, focalizado em ambientes

fechados e estruturados. Apresenta-se a construção de mapas 2D e 3D em

terrenos planos tais como em aplicações típicas de ambientes fechados. A

representação dos mapas 2D é feita na forma de grade de ocupação. Por outro

lado, a representação dos mapas 3D é feita na forma de nuvem de pontos ao

invés de grade, para reduzir o custo computacional. É considerado um robô

móvel equipado com apenas um LRF, sem nenhuma informação de odometria.

O alinhamento entre varreduras laser é otimizado fazendo o uso de Algoritmos

Genéticos. Assim, podem-se construir mapas e ao mesmo tempo localizar o robô

sem necessidade de odômetros ou outros sensores. Um simulador em Matlab® é

implementado para a geração de varreduras virtuais de um LRF em um ambiente

3D (virtual). A metodologia proposta é validada com os dados simulados, assim

como com dados experimentais obtidos da literatura, demonstrando a

possibilidade de construção de mapas 3D com apenas um sensor LRF.

Palavras-Chave

Robótica Móvel, Filtros Bayesianos, Alinhamento de Varreduras Laser,

Mapeamento e Localização Simultânea, Medidor Laser de Varredura

Summary

1 Introduction and Problem Definition 20

1.1. Introduction 20

1.1.1. Robotics 20

1.1.2. Uncertainty in Robotics 21

1.2. Problem Definition 21

1.2.1. Localization overview 22

1.2.2. Mapping overview 24

1.2.3. Simultaneous Localization and Mapping 25

1.3. Motivation 26

1.4. Objective 27

1.5. Organization of the Thesis 28

2 . Theoretical Basis 29

2.1. Probabilistic Robotics 29

2.1.1. Bayes Filter and SLAM 30

2.1.2. Motion Model 33

2.1.3. Perception Model 36

2.2. Map Representation 38

2.2.1. Landmark Maps 38

2.2.2. Grid Maps 40

2.3. Scan Matching 41

2.3.1. Point to Point Correspondence Methods. 42

2.3.2. Feature to Feature Correspondence Methods. 43

2.3.3. The Normal Distribution Transform 45

2.4. Genetic Algorithms 49

2.4.1. Chromosome Representation 50

2.4.2. The Fitness Function 50

2.4.3. Fundamental Operators 51

2.4.4. Genetic Algorithms to Solve Problems 52

2.4.5. Differential Evolution 52

2.4.6. Different Strategies of DE 54

3 . SLAM Solutions 56

3.1. Gaussian Filter SLAM Solutions 56

3.1.1. Kalman Filter SLAM 56

3.1.2. Extended Kalman Filter SLAM 61

3.2. Particle Filter SLAM Solutions 63

3.2.1. Particle Filter Overview 63

3.2.2. Fast SLAM 67

3.2.3. DP-SLAM 71

3.3. 3D SLAM Review 84

4 . Detailed Implementation 86

4.1. EKF SLAM 86

4.2. FastSLAM 93

4.3. Simulator 101

4.3.1. 3D Environment Simulation 101

4.3.2. LRF Simulation 102

4.3.3. Error introduction in virtual data 106

4.4. Scan Matching 107

4.4.1. Differential Evolution Optimization for NDT 108

4.4.2. Parameters and Considerations 111

4.4.3. Scan Filtering 113

4.5. DP-SLAM 115

4.5.1. Motion Model 118

4.5.2. High Motion Model 122

5 . Tests and results 124

5.1. Scan Matching 124

5.1.1. Optimization Parameters Influence 124

5.1.2. LRF Error Influence 126

5.1.3. Scan Matching in Real Data 130

5.2. Motion Model 139

5.3. DP-SLAM 145

5.4. 3D Mapping 152

6 . Conclusions 158

6.1. DP-SLAM Conclusions 159

6.2. Scan Matching Conclusions 160

6.3. 3D Mapping Conclusions 161

7 . References 163

List of figures

Figure 1.1: Localization Overview (search for landmarks) 23

Figure 1.2: Localization Overview (location updated) ... 23

Figure 1.3: Mapping Overview ... 24

Figure 1.4: Simultaneous Localization and Mapping .. 25

Figure 2.1: SLAM like a Dynamic Bayes Network .. 33

Figure 2.2: Robot pose .. 34

Figure 2.3: The motion model, showing posterior distributions of the

robot’s pose upon executing the motion command illustrated by the

red striped line. The darker a location, the more likely it is. 35

Figure 2.4: Robot in a map getting measurements from its LRF. 37

Figure 2.5: Given an actual measurement and an expected distance, the

probability of getting that measurement is given by the red line in the

graph. ... 37

Figure 2.6: Simulated Landmark Map .. 39

Figure 2.7: Grid Map: White regions mean unknown areas, light gray

represents unoccupied areas, and darker gray to black represent

increasingly occupied areas. .. 41

Figure 2.8: An example of NTD: the original laser scan (left) and the

resulting probability density (right). ... 46

Figure 2.9: The crossover operator .. 51

Figure 2.10: The mutation operator .. 52

Figure 2.11: Differential Evolution Process. ... 54

Figure 3.1: Representation of a Gaussian by a set of particles 64

Figure 3.2: Particle Filter idea. ... 66

Figure 3.3: Landmark correlation ... 68

Figure 3.4: Occupancy grid prediction based on a movement of one cell

to the right. ... 71

Figure 3.5: Square representation.. 73

Figure 3.6: Interaction between the laser ray and the square

representation .. 73

Figure 3.7: Example of application of eq. (3.37) for a given square j=3. 74

Figure 3.8: Distance between the square i and the stopping point of the

laser ray ... 74

Figure 3.9: Example of computing the probability of a laser ray given two

sampled robot poses. ... 76

Figure 3.10: Example of particle ancestry tree maintenance 78

Figure 3.11: Simulated environment (60 x 40 m). ... 80

Figure 3.12: Mapping closing a loop. Each black dot is the perturbed

endpoints of trajectories. .. 83

Figure 3.13: Map after ambiguities are resolved. ... 83

Figure 4.1: Robot position (red fill circle) at time t1 , and predicted robot

position (white filled circle). .. 87

Figure 4.2: Predicted landmark position seen from the predicted robot

position .. 89

Figure 4.3: New landmark Lp, is added to the state vector.................................. 91

Figure 4.4: Sampling. Each black dot represents a possible robot position. 94

Figure 4.5: Distance and rotation between particle i and landmark j. 95

Figure 4.6: Updated landmark j for the particle i. ... 96

Figure 4.7: Distance and rotation between particle i and updated

landmark j. ... 97

Figure 4.8: Cumulative probability distribution and a random number r. 99

Figure 4.9: New observed landmark Lq. ... 100

Figure 4.10: Simulated structured environment using rectangles. 102

Figure 4.11: Laser ray from a simulated LRF. .. 103

Figure 4.12: Simulated LRF rotation to acquire 3D data 104

Figure 4.13: Virtual LRF readings in a simulated environment (top view). 105

Figure 4.14: Virtual LRF readings in a simulated environment, from two

different points of view. .. 106

Figure 4.15: Density regions produced by a robot situated close to the

right wall. .. 113

Figure 4.16: Mismatched scans, showing the NDT of a first scan

(grayscale) and a second scan (red dots). The right-bottom wall

produces a high number of readings, bringing down the second scan

and compromising the match. .. 114

Figure 4.17: Scan filtering. Original scan with 181 points (left) and filtered

scan with 59 points (right). ... 115

Figure 4.18: DP-SLAM flow chart ... 116

Figure 4.19: Low (level) DP-SLAM flow chart ... 117

Figure 4.20: Two consecutive robot positions in an environment. 119

Figure 4.21: Environment seen from the current robot position (left) and

second robot position (right). .. 120

Figure 4.22: Aligned scans in the first scan coordinate system. 120

Figure 4.23: High Motion Model ... 123

Figure 5.1: Error in displacement, Δx, Δy, Δθ, influenced by population

size (20 and 40) in DE optimization. ... 125

Figure 5.2: Error in displacement, Δx, Δy, Δθ, influenced by population

size (60 and 100) in DE optimization. ... 125

Figure 5.3: Error in displacement, Δx, Δy, Δθ, influenced by number of

generations (15 and 30) in DE optimization. ... 126

Figure 5.4: Error in displacement, Δx, Δy, Δθ, influenced by number of

generations (50 and 75) in DE optimization. ... 126

Figure 5.5: Displacement error, Δx, Δy, Δθ, influenced by LRF error (stdv=

15mm and stdv=25mm) in DE optimization. ... 127

Figure 5.6: Displacement error, Δx, Δy, Δθ, influenced by LRF error (stdv=

40mm and stdv=80mm) in DE optimization. ... 127

Figure 5.7: Accumulated error in robot position due to imperfect scan

matching. ... 128

Figure 5.8: Robot trajectories, showing the true path (red line) and

estimated path (blue line). a) Robot starts from zero position (red

dot), goes through positions A, B, C and A. b) Robot traveling A, D,

B. c) Robot completes the course through B, A, C, B and D. 129

Figure 5.9: Map acquired using scan matching process in the simulated

environment. .. 130

Figure 5.10: Fitness values for “D-Wing” experiment. 131

Figure 5.11: “D-Wing” experiment acquired using the proposed scan

matching process, without the use of odometry data. 132

Figure 5.12: Fitness values for “C-Wing” experiment 133

Figure 5.13: “C-Wing” experiment acquired using the proposed scan

matching process, without the use of odometry data. 134

Figure 5.14: Fitness values for “Diiga” experiment. .. 135

Figure 5.15: “Diiga” experiment acquired using the proposed scan

matching process, without the use of odometry data. 136

Figure 5.16: Fitness values for “Mine” experiment ... 137

Figure 5.17: Poor map of “Mina” experiment. ... 137

Figure 5.18: “Mina” experiment acquired using scan matching process 139

Figure 5.19: Error distribution in displacement: a) Δx, b) Δθ and c) Δy 140

Figure 5.20: Misalignment in Δy (respect to the current robot position). 141

Figure 5.21: a) The true robot displacement. b) The displacement given

by scan matching, showing that the most common error is in Δy. 142

Figure 5.22: Misalignment in Δy (D-Wing experiment) 143

Figure 5.23: Larger displacement in Δy correspond to small rotations Δθ

(D-Wing experiment). ... 144

Figure 5.24: 2D grid map from the simulated environment experiment,

obtained with DP-SLAM using the proposed motion model. 146

Figure 5.25: Accumulated error position obtained with DP-SLAM using

the proposed motion model, on simulated experiment. 146

Figure 5.26: Error distribution in Δx obtained with DP-SLAM using the

proposed motion model. ... 147

Figure 5.27: Error distribution in Δy obtained with DP-SLAM using the

proposed motion model. ... 147

Figure 5.28: Error distribution in Δθ obtained with DP-SLAM using the

proposed motion model. ... 148

Figure 5.29: 2D grid map from simulated environment presented in Figure

3.11. ... 148

Figure 5.30: 2D grid map of “D-wing” experiment, acquired withDP-SLAM

using the proposed motion model. ... 149

Figure 5.31: 2D grid map of “C-wing” experiment, acquired with DP-SLAM

using the proposed motion model. ... 150

Figure 5.32: 2D grid map of “Diiga” experiment, acquired with DP-SLAM

using the proposed motion model. ... 151

Figure 5.33: 2D grid map of “Mine” experiment, acquired with DP-SLAM

using the proposed motion model. ... 152

Figure 5.34: 3D point cloud map of the simulated environment. 153

Figure 5.35: 3D point cloud of the simulated environment (only three 3D

scans are shown) ... 154

Figure 5.36: 3D point cloud of the simulated environment (only four 3D

scans are shown). .. 154

Figure 5.37: 3D point cloud of the “Mine” experiment. 155

Figure 5.38: 3D point cloud of the “Mine” experiment. 156

Figure 5.39: 3D point cloud of the “Mine” experiment (top view). 156

Figure 5.40: 3D point cloud of the “Mine” experiment. 157

List of tables

Table 3.1: The Kalman Filter Algorithm [1]. .. 59

Table 3.2: The EKF Algorithm [1] ... 63

Table 3.3: Particle Filter Algorithm [1] .. 65

Table 4.1: Sample Motion Model Algorithm [1] ... 94

Table 4.2: Compute weights algorithm; .. 98

Table 4.3: Adjustable parameters on simulated LRF. 103

Table 4.4: Search space for vector p .. 110

Table 4.5: DE Optimization Parameters. .. 111

Table 4.6: SICK LMS-200-3016 features. .. 112

Table 4.7: Sample scan matching motion model algorithm, where

atan2(Δy, Δx) is defined as the generalization of the arc-tangent

function of Δy/Δx over [0, 2π]. ... 121

Table 5.1: Proposed Scan Matching Motion Model. ... 144

Table 5.2: Approximate algorithm to sampling from normal distribution [1] 145

Table 5.3: Approximated Algorithm to sample from the Δy distribution error..... 145

List of Variables

At : State transition matrix

Bt : Matrix that translates control input into a predicted change in state

d : Measured data

f : function that represents the motion model in EKF-SLAM

h : function that represents the perception model in EKF-SLAM

i

jh : function that represents the perception model for the particle i

i

jH : The Jacobian of
i

jh at
jL

Ht : The Jacobian of h at t

tuJf : The Jacobian of f at ut

Kt : Kalman gain

L: Set of landmarks with known exact location

i

tnL , : Position of landmark n, related with particle i, at time t

Lt1 Lt2 … Ltn : n-th landmark estimated at time t

Lq : New observed landmark

η : Normalizer

p : Vector of the parameters to estimate (in DE)

pc : Probability of crossover

pm : Probability of mutation

Pt : Covariance of the process noise

Pr : Reference robot position

Pn : New robot position

Q : Covariance matrix for the sensor noise in EKF-SLAM

R0 , R1, . . . Rt : Robot position at time t

Rx, Ry, Rθ : Robot position in two-dimensional planar coordinates

R
i,t

: Robot path, related with particle i, until time t

Snew : New scan

Sref : Reference scan

tx : Translation in x

ty : Translation in y

U : Uncertainty of the control ut in EKF-SLAM

ut : Control at time t

i

tw : Weight of particle i at time t

i

tx : Particle i at time t

Z0 , Z1, Zt : Map estimated at time t

xi : Distance that the laser ray travels through the square i

xt : State variable at time t

zt : Sensor measurement at time t

tjz , : The j
th

 landmark sensor observation in zt

Δx, Δy, Δθ : displacements that are referenced to the current robot position

λt : Gaussian mean at time t

i

tn, : Mean related with the landmark position i

tnL ,

ρi : Opacity of the square i

Σt : Gaussian covariance at time t

tt , : Predicted covariance and mean at time t

i

tn, : Covariance related with the landmark position i

tnL ,

ϕ : Rotation in z

Φt : Set of particles at time t

List of Abbreviations

SLAM : Simultaneous Localization and Mapping

LRF : Laser Range Finder

GPS: Global Positioning System

KF : Kalman Filter

PF : Particle Filter

EKF-SLAM : Extended Kalma Filter SLAM

FastSLAM : Fast SLAM

DP-SLAM : Distributed Particle SLAM

ICP : Iterative Closest Point

IDC : Iterative Dual Correspondence

ICL : Iterative Closest Line

HAYAI : The Highspeed and Yet Accurate Indoor/outdoor-tracking

NDT : Normal Distributed Transform

GA : Genetic Algorithm

GP : Genetic Programming

DE : Differential Evolution

LSLAM : Low SLAM

HSLAM: High SLAM

Stdv : Standard Deviation

19

20

1
Introduction and Problem Definition

1.1.
Introduction

1.1.1.
Robotics

“Robotics is the science of perceiving and manipulation the physical world

through computer-controlled mechanical devices” [1].

The word robot was first introduced in 1921 by the Czech novelist Karel

Čapek in his satirical drama entitled: Rossum´s Universal Robots. It is derived

from the Czech word robota, which literally means “forced laborer” or “slave

laborer” [2]. From there this word was popularized by science fiction, assigning it

to machines with anthropomorphic characteristics, fitted with action and decision

capabilities, similar or higher than humans [3]. Examples of successful robotics

system include mobile platforms for planetary exploration, robotics arms in

assembly lines, cars traveling autonomously on highways, actuated arms that

assist surgeons and so on.

Mobile robot systems operate in increasingly unstructured environments,

inherently unpredictable. “As a result, robotics is moving into areas where sensor

input becomes increasingly important, and where robot software has to be robust

enough to cope with a range of situations – often too many to anticipate them all”

[1]. Robotics is becoming a software science, where the target is to develop sturdy

software that enables robots to overcome the numerous challenges in unstructured

and dynamic environments.

http://en.wikipedia.org/wiki/Karel_%C4%8Capek
http://en.wikipedia.org/wiki/Karel_%C4%8Capek

21

1.1.2.
Uncertainty in Robotics

Uncertainty in robotics arises from five different factors [1]:

1. Environment. Environments such as private homes and highways are

highly dynamic and unpredictable

2. Sensors. Limitation in sensors arises from their range and resolution. In

addition, sensors are subject to noise.

3. Robots. “Robot actuation involves motors that are, at least to some

extent, unpredictable, due to effects such as control noise and wear-and-

tear” [1].

4. Models. Models are idealization of the real world. They only partially

model the physical processes of the robot and its environment.

5. Computation. “Robots are real-time systems, which limits the amount

of computation that can be carried out” [1]. Many algorithms are

approximate, reaching timely response through slaughtering accuracy.

“Traditionally such uncertainty has mostly been ignored in Robotics” [1].

However, as robots are moving away into increasingly unstructured environments,

the ability to deal with uncertainty is crucial for building successful systems.

1.2.
Problem Definition

The scope of this work is related to the SLAM problem. SLAM

(Simultaneous Localization and Mapping) is one of the most widely researched

subfields of robotics, in special in mobile robotic systems.

Let’s consider a mobile robot which is using wheels connected to a motor,

actuators and a camera. Consider that the robot is manipulated by an operator

mapping inaccessible places. The actuators allow the robot to move around, and

the camera provides visual information for the operator to know where objects are

22

and how the robot is oriented in reference to them. What the human operator is

doing is an example of SLAM.

“Thus, the SLAM subfield of Robotics attempts to provide a way for robots

to perform SLAM autonomously. A solution to the SLAM problem would allow a

robot to make maps without any human assistance whatsoever” [4].

In the following, the SLAM idea is graphically presented (example taken

from [4]).

1.2.1.
Localization overview

Let’s consider a mobile robot in an environment which contains beacons or

landmarks (points in the environment with a known exact location) from which

the robot can calculate its distance and direction. Assume that the robot starts in

some true known location R0 (e.g. the red filled circle in Figure 1.1), and it has

knowledge of a set L containing several landmark locations. When the robot

moves a given distance in a certain direction (the movement vector u1) to location

R1, it actually moves along some other vector to some location R 1́ which is nearby

R1, due to uncertainties in the actuators. Landmarks need to be relocated to

determine the new robot position. Because the actuators are imprecise, the

landmarks could not be reacquired by assuming they have moved inversely to u1.

Thus, the robot must search for the landmarks, starting near the expected location

of the landmark and expanding outwards. Figure 1.1 presents this situation.

Note that R 1́ and vector u’1 correspond to estimates rather than the actual

values. Once the landmarks are reacquired, a new robot location estimate, R1, can

be made as shown in Figure 1.2.

23

Figure 1.1: Localization Overview (search for landmarks)

Figure 1.2: Localization Overview (location updated)

It is important to stress that R1 is the location updated based on new

observations, and therefore it is an estimated (white filled circle) robot position

rather than the true position (red filled circle), which is impossible to perfectly

measure.

24

1.2.2.
Mapping overview

Mapping is, in a way, the opposite of localization. In mapping, it is assumed

that the robot exactly knows where it is at all times. What the robot does not

know, in the mapping context, is the locations of landmarks. Thus, the robot must

locate landmarks to build a map Zt={Lt1 Lt2 … Ltn}, where Ltn is the n
th

 landmark

estimate at time step t. Of course Zt only contains approximations of the actual

landmark locations. As the robot moves, the map is usually more accurate.

Let’s follow the same example from the previous section, beginning at R0

and moving along u1 to R1. The robot will acquire the set of landmarks, but in this

situation the perceived landmarks locations will have shifted from their expected

location due to sensor inaccuracies instead of odometry inaccuracies. The

landmarks can be relocated by searching nearby where the robot expects to find

them. Thus, the robot will have built a new map Z1, consisting of new locations of

the landmarks in Z0. Figure 1.3 demonstrates the process. For simplicity, in this

example preservation of landmarks is assumed; in reality some landmarks are lost

and new landmarks are acquired.

Figure 1.3: Mapping Overview

To generate a new map, Z2, combining information of Z0 and Z1 but

containing only one instance of each landmark, the robot can choose one of many

25

options. For example, it can choose any point on the line connecting L0n and L1n

(note that L0n and L1n are two conflicting perceived locations of landmark n).

 Whichever the method selected for incorporating new sensor readings, it

seems safe to assume that Zt will improve as time t increases.

1.2.3.
Simultaneous Localization and Mapping

The Localization Overview and the Mapping Overview presented before

require something as an input that is unavailable in practice. Localization requires

accurate landmark locations as input and conversely Mapping requires exact robot

localization. This suggests that the two processes are related and could be

combined into a single solution.

Suppose a robot starts moving from some known origin. It uses the Mapping

process to construct a preliminary map. It then moves to a new location and

updates its expected location as in Localization step. Finally, the new calculated

pose is used to once again generate a new map, which is combined with the

original map as described in Section 1.2.2. By repeating this process, one can

provide a map for input into the Localization, and a location for input into the

Mapping. Figure 1.4 demonstrates the basic Simultaneous Localization and

Mapping idea.

Figure 1.4: Simultaneous Localization and Mapping

26

One thing to notice with this combined localization and mapping algorithm

is that one does not provide completely accurate input to either the mapping or the

localization components.

1.3.
Motivation

Petrobras operates in oil and gas exploitation at Amazon, in the province of

Urucu (AM), at the Solimões River, about 650 km from Manaus City. To drain

this production, it has been built two gas pipelines: Coari-Manaus and Urucu

Porto Velho, with 420 Km of extension from Manaus as well.

In order to monitor these almost one thousand kilometers of pipeline in a

hard access region and to avoid environment disasters, it was built a robotic

amphibian vehicle, named Hybrid Environmental Robot (HER).

HER is able to move in many different grounds of Amazon: water, ground

and aquatic microfiber, and it is also able to monitor different scenarios using

many sensors, as shown in Figure 1.5. Moving into such an extended and remote

areas and collecting data samples has become an important issue; thus, a precise

position perception is needed, allowing the possibility for navigation and

demarcation in areas of interest.

Figure 1.5: The Hybrid Environment Robot (HER)

27

HER acquires its position using a GPS system. However, it is prone to

failure because of obstructions in satellite signal, caused by local vegetation. In

this case, HER needs to acquire its position in a different way, in order to continue

its mission or to search places with better satellite reception. The use of odometers

is not a good choice due to frequent slipping on the ground; beyond, it does not

have any utility over water. Localization by cameras also does not presents good

results due to high similarity between vegetation images, making hard a reliable

keypoints establishment. Inertial platforms would help in the localization of the

robot, but would not have any utility to detect obstacles.

So, the use of a Laser Range Finder (LFR) represents great advantages,

cause it is able, not only to locate the robot or mapping the environment, but also

to detect obstacles on the robot´s path.

1.4.
Objective

The objective of this work is to perform SLAM with limited sensor

capabilities. More specifically, it is shown that localization and mapping can be

performed without odometry measurements, just by using a single Laser Range

Finder (LRF).

To accomplish that, first a detailed explanation of SLAM algorithms

implementations is given, focusing on the: EKF-SLAM, FastSLAM, and DP-

SLAM methods. Then, a Genetic Algorithm is implemented for Normal

Distribution Transform (NDT) optimization, in order to obtain robot displacement

without odometry information. An implementation for 3D mapping is shown,

using DP-SLAM, which does not use predetermined landmarks (not dealing either

with data association problems). Finally a virtual 3D environment is simulated

including virtual Laser Range Finder (LRF) readings, to validate the presented

methodology. Experimental data from actual LRF readings are also used to

evaluate the performance of the algorithms.

28

1.5.
Organization of the Thesis

This thesis is divided into six chapters, described as follows:

Chapter 2 comprises the theory necessary for Probabilistic Robotic. The

basic concepts of representing uncertainties in a planar robot environment are

shown. Also the main algorithms for scan matching are given, emphasizing on the

Normal Distribution Transform(NDT). Concluding with Genetic Algorithms and

Differential Evolution (DE).

Chapter 3 describes the principal algorithms for the SLAM solutions,

including EKF-SLAM, FastSLAM and DP-SLAM. Besides, is presented a review

for 3D SLAM solutions and 3D mapping.

Chapter 4 gives a detailed implementation of the principal SLAM solutions:

EKF-SLAM, FastSLAM and DP-SLAM. Is explained also, the simulated Laser

Range Finder (RLF) in a structured environment, developed for testing the

proposed methods. In addition, is explained the NDT optimization using

Differential Evolution, in order to get robot displacements without odometry

information.

Chapter 5 presents the results obtained in simulated and real data acquired

from the literature.

Chapter 6 presents comments and conclusions to the performed work.

29

2.
Theoretical Basis

2.1.
Probabilistic Robotics

“The key idea of Probabilistic Robotics is to represent uncertainty explicitly,

using the calculus of probability theory” [1]. In other words, instead of relying on

a single “best guess” probabilistic algorithms represent information by

probabilistic distributions. By doing so, probabilistic robotics can mathematically

represent ambiguity and degree of belief, enabling them to accommodate all

sources of uncertainty.

The advantage of probabilistically programming robots, compared to other

approaches that do not explicitly represent uncertainty, is simply because:

“A robot that carries a notion of its own uncertainty and that acts

accordingly is superior to one that does not.” [1].

Probabilistic approaches are typically more robust under sensor limitation,

sensor noise, environment dynamics, and so on. They are well suited to complex

and unstructured environments, where the ability to deal with uncertainty is quite

important. “Probabilistic algorithms are broadly applicable to virtually every

problem involving perception and action in the real world” [1].

All these advantages, however, come at a price. The two most cited

limitations of probabilistic algorithms are: a need to approximate and

computational inefficiency. Because probabilistic algorithms consider entire

probability densities, they are less efficient than non-probabilistic ones.

Computing exact posterior distributions is typically infeasible, since distributions

over the continuum possess infinitely many dimensions (most robot worlds are

continuous). Sometimes, uncertainty can be approximated with a compact

parametric model (e.g. discrete distributions or Gaussians); in other cases, a more

complicated representations most be employed.

30

“At the core of probabilistic robotics is the idea of estimating state from

sensor data” [1]. This sensor data are not directly observable, but that can be

inferred. A robot has to rely on its sensors to gather information, while this

information is only partial, and corrupted by noise. Thus, state estimation seeks to

recover state variables from data.

2.1.1.
Bayes Filter and SLAM

In Probabilistic Robotics, all quantities related in estimation such as sensor

measurements, controls, state of the robot and its environment might be modeled

as random variables. Random variables can take on multiple values, and they

behave according to probabilistic laws. Probabilistic inference is the process of

calculating these laws.

“Bayes rule is the archetype of probabilistic inference” [5]. It plays a

predominant role in probabilistic robotics. Therefore, it is the basic principle

underlying virtually every single successful SLAM algorithm. The Bayes rule is

stated as [1]:

)(|)|(xpxdpdxp (2.1)

If the quantity to learn is x (e.g. a map), using measurement data d (e.g.

odometry, range scans), then Bayes rule tells that the estimation problem can be

solved by multiplying two terms: p(x|d) and p(x). The term p(x|d) is a

generative model, it describes the process of generating sensor measurements

under different worlds x . The term p(x) is called the prior. It specifies the

willingness before the arrival of any data. Finally, η is a normalizer that is

necessary to ensure that the left- hand side of Bayes rule is indeed a valid

probability distribution [5].

In robotic mapping there are two different types of data: sensor

measurements and controls. Let´s denote sensor measurement (e.g. camera

31

images, LRF scans) by the variable z, and the control (e.g. motion command,

odometry) by u. Let us assume that the data is collected in alternation:

 ...,,,, 2211 uzuz (2.2)

where subscripts are used as time index.

“In the field of robot mapping, the single dominating scheme for integrating

such temporal data is known as Bayes Filter” [5].

The Bayes Filter is the extension of Bayes rule to temporal estimation

problems[5]. It is a recursive estimator to compute posterior probability

distributions over quantities that cannot be observed directly – such as a map or

robot position. Let’s call this unknown quantity the state xt, where t is the time

index. The generic Bayes filter calculates a posterior probability over the state xt

using the recursive equation [1]:

 1

11

11),|(),|()|(),|(t

tt

tttttt

tt

t dxuzxpxuxpxzpuzxp (2.3)

where the superscript
t
 refers to all data leading up to time t, that is:

 },...,,{ 21 tt zzzz (2.4)

 },...,,{ 21 tt uuuu (2.5)

Note that Bayes filter is recursive, that is, the posterior probability

p(x t |z
t
,u

t
) is calculated from the same probability one time step earlier. The

initial probability at time t = 0 is p(x0 |z
0
,u

0
) = p(x0).

In the context of robotic mapping the state x t contains all unknown

quantities that are typically two: the map and the robot’s pose in the environment.

When using probabilistic techniques, the mapping problem is one where both the

map and the robot pose have to be estimated in the same time altogether. Using m

to denote the map and R for the robot’s pose, the following Bayes Filter is

obtained [1]:

32

),|,(tt

tt uzmp R

 11

11

1111),|,(),,|,(),|(tt

tt

tttttttttt dmduzmpmumpmzp RRRRR

(2.6)

If assumed a static world, the time index can be omitted when referring to

the map m. Also, most approaches assume that the robot motion is independent of

the map. And finally, using the Markov assumption, which postulates that past

and future data are independent if one knows the current state xt, the state xt can be

estimated using only the state xt-1 one step earlier. This results in a convenient

form of the Bayes Filter for the robot mapping problem [5]:

),|,(tt

t uzmp R

 1

11

11),|,(),|(),|(t

tt

tttttt RRRRR duzmpupmzp

(2.7)

This estimator does not require integration over maps m, as it was the case

for the previous one from eq. (2.6). The static world assumption is quite

important, because such integration is difficult due to the high dimensionality of

the space of all maps.

In eq. (2.7) two distributions probabilities have to be specified: p(Rt|ut, Rt-1)

and p(zt|Rt,m). Both are generative models of the robot and its environment.

The probability distribution p(Rt|ut, Rt-1), often called to as motion model,

specifies the effect of the control u on the state. It describes the probability that

the control u, if executed at the world state Rt-1, leads to the state Rt.

The probability p(zt|Rt,m), often called to as perception model, describes in

probabilistic terms how sensor measurements z are generated for different poses

Rt and maps m.

However, eq. (2.7) cannot be implemented on a digital computer in its

general stated form. This is because the posterior over the space of all maps and

robot poses is a probability distribution over a continuous space, hence possesses

infinitely many dimensions. Therefore, any working mapping algorithm has to

take additional assumptions. These assumptions and their implications on the

33

resulting algorithms and maps constitute the main differences between the

different solutions to the SLAM.

Figure 2.1 shows a generative probabilistic model (dynamic Bayes network)

that underlies the essential of SLAM.

Figure 2.1: SLAM like a Dynamic Bayes Network

In particular, the robot poses, denoted by R1, R2, …, Rt, evolve over time as

a function of the controls, denoted by u1, u2, …, ut. The map is composed (as it

will be seen later) by landmarks and each measurement of them, denoted by z1, z2,

…, zt, which are a function of its position L1, L2, …, Ln and of the robot pose at the

time the measurement was taken.

Note that in this SLAM equation analysis the odometery ut is assumed to be

known, and this assumption will be kept till the Section 4.5.1 where odometry is

replaced by Scan Matching.

2.1.2.
Motion Model

“Robot motion models play an important role in modern robotics

algorithms” [6]. The main purpose of a motion model is to model the relationship

between a control input to the robot and a change in the robot´s configuration,

34

pose and map. Good models will capture not only systematic errors, but it will

also capture the stochastic nature of the motion. The same control input will

almost never produce the same result. “Thus, the effects of a robot’s action are,

therefore, best described as distributions” [6].

This thesis focuses entirely on kinematics for mobile robots operating in

planar environments. Kinematics describes the effect of control actions on the

configuration of a robot. A rigid mobile robot is commonly described by six

variables, its three-dimensional Cartesian coordinates and its three Euler angles

(roll, pitch, yaw) referred to an external coordinate frame. But in a planar

environment, the position of a mobile robot is summarized by three variables: its

two-dimensional planar coordinates referred to an external coordinate frame,

along with its angular orientation.

R

Ry

Rx

R

(2.8)

Figure 2.2 illustrates a robot pose in a plane.

Figure 2.2: Robot pose

The orientation of a robot is often called bearing, or heading direction.

35

The probabilistic kinematic model, or motion model, plays the role of the

state transition model in Mobile Robotics. As described in the previous section,

this model is the probability distribution:

),|(1ttt RR up

 (2.9)

Figure 2.3 shows two examples that illustrate the motion model for a rigid

mobile robot in a planar environment. The robot’s initial pose, in both cases, is

Rt-1. The distribution p(Rt|ut, Rt-1) is visualized in the form of a gray shaded area:

darker areas mean more probability in robot position. In both figures, the robot

moves forward some distance, during which it may accumulate translational and

rotational errors. The right figure shows a larger spread of uncertainty due to a

more complicated motion.

Figure 2.3: The motion model, showing posterior distributions of the robot’s pose

after executing the motion command ut (red striped line). The darker a location, the

more likely it is.

There are two motion models usually used. “The first model assumes that

the motion data ut specifies the velocity commands given to the robot’s motors”

[1]. Many commercial mobile robots (e.g. differential drive, synchro drive) are

actuated by independent translational and rotational velocities. The second model,

which is used in this work, assumes that ut contains odometry information

(distance traveled, angle turned).

36

However, odometry is only available as the robot moves. Hence it cannot be

used for motion planning, such as collision avoidance [1]. “Technically, odometry

are sensor measurements, not controls” [1]. But it is common to simply consider

odometry as if it was a control input signal.

2.1.3.
Perception Model

“The perception model comprises the second domain-specific model in

probabilistic robotics, next to the motion model” [1]. In probabilistic terms, the

Perception Model describes how sensor measurements z are generated for

different poses R and maps m. As described before, this is modeled by:

),|(mRzp tt (2.10)

The Perception Model account for the uncertainty in the robot’s sensors.

Thus, it explicitly models noise in sensor measurement. It could say that better

results are acquired by a more accurate Perception Model. However, it is almost

impossible to accurately model a sensor; reference [1] gives two primarily

reasons[1]: “First, developing an accurate perception model can be extremely

time-consuming; and second, an accurate model may require state variables that

are not known, such as the surface material” [1]. In this way Probabilistic

Robotics, instead of modeling the Perception Model by a deterministic function

z=f(x), accommodates the inaccuracies of Perception Model by a conditional

probability density, p(z|x). “Herein lies a key advantage of probabilistic

techniques over classical robotics” [1].

Figure 2.4 shows a robot in an environment getting measurements from its

Laser Range Finder (LRF). Given a position and the map of the environment, it is

possible to use ray-tracing to get expected measurements for each rangefinder

angle.

The result of modeling the sensor is shown in Figure 2.5. For a particular

expected distance, the sensor will give a value near that distance with some

37

probability. So, given an actual measurement and an expected distance, it is

possible to find the probability of getting that measurement using the graph from

Figure 2.5.

Figure 2.4: Robot in a map getting measurements from its LRF.

Figure 2.5: Given an actual measurement and an expected distance, the probability

of getting that measurement is given by the red line in the graph.

38

Today’s robots use a variety of sensor types, such as tactile sensors, range

finder sensors, sonar sensors or cameras. The model specifications depend on the

sensor type.

2.2.
Map Representation

There are many reasons to have a representation of the robot’s environment.

Some of the purposes of having a map are listed in the following:

 Localization. The robot localization is possible making a correspondence

between a given map and the observation of the robot’s environment.

 Motion planning. Once the robot is located and given a target position, all

necessary movements in the map can be compute to successfully move to the

target.

 Collision avoidance. Using a map and robot’s localization the navigation is

possible without collisions.

 Human use. The map constructed by the robot can be used for exploration

tasks in potentially hazardous environments.

In general, the map representation can be grouped into three main types:

Geometric, Topological and Hybrid. However the general tendency in SLAM is to

use geometric representation. Thus, this representation has also a subdivision:

Landmark (or feature maps) and Grid maps.

2.2.1.
Landmark Maps

The landmark-based maps consist of a set of distinctive point localizations

that are referred to a global reference system. In structured domains such as

indoor environments, landmarks are usually modeled as geometric primitives such

as points, lines or surfaces.

39

 The main advantage of landmark-base maps is their representation

compactness. By contrast, this kind of map requires the existence of structures or

objects that are distinguishable enough from each other. Thus, an extra algorithm

for recognizable and repeatedly detectable landmark extraction is needed.

In practice, good landmarks may have similar traits, which often make them

difficult to distinguish from each other. When this happens the problem of data

association, also known as the correspondence problem, has to be addressed. “The

correspondence problem is the problem of determining if sensor measurements

taken at different points in time correspond to the same physical object in the

world” [5]. It is a difficult problem, because the number of possible hypotheses

can grow exponentially.

Figure 2.6 shows a simulated landmark-based map, where the blue asterisks

represent the landmarks and the small triangle the robot position.

Figure 2.6: Simulated Landmark Map

40

2.2.2.
Grid Maps

A grid map, or occupancy grid, is a popular and intuitive method to describe

an environment. Occupancy grids were originally developed at Carnegie Mellon

University in 1983 for sonar navigation within a lab [7].

Occupancy grids divide the environment up into a regular grid square, all of

equal size. “Each of these grid squares correspond to a physical area in the

environment and, as such, each square contains a different set of objects or

portions of an object” [6]. An occupancy grid is an ideal representation of the

environment, containing information on whether a square in the real environment

is occupied or not.

The occupancy grid representation can be generalized into two types:

deterministic and stochastic [6], described as follows.

 Deterministic map grids are the simplest representation, having two values for

each grid square. Typically squares are considered as either Empty or

Occupied, also sometimes is include a value for Unknown (or Unobserved).

However, this representation is an exaggerated simplification for the sensors,

since almost never a sensor will see a square of the environment which is both

completely occupied and accurately observed.

 Stochastic maps, besides of Occupied and Empty, have a gradual scale of

various degrees of occupancy. What percentage of the square is believed to be

occupied, or how transparent the object is to the sensor are some factors that

affect the occupancy value. The stochastic representation and the

corresponding observation model need to be properly tuned for the sensor

used.

Figure 2.7 shows a stochastic grid map, where the occupancy of each square

is given in gray scale color, and darkest squares mean high probability of

occupancy.

41

Figure 2.7: Grid Map: White regions mean unknown areas, light gray represents

unoccupied areas, and darker gray to black represent increasingly occupied areas.

This work uses occupancy grid maps for environment representation,

specifically stochastic occupancy grid maps.

2.3.
Scan Matching

“Many SLAM algorithms are based on the ability to match two range scans

or to match a range scan to a map” [8]. Laser Range Fiders (LRF) are popular

sensors to get the input for scan matching, since their high reliability and their low

noise in many situations.

The goal of scan matching is to find the relative displacement between the

two positions at which the scans were taken. If a robot starts at position Pr (which

is a reference pose), takes a scan Sr (reference scan), after that it moves through a

static environment to a new pose Pn and takes another scan Sn (new scan), then

scan matching seeks the difference of position Pn from posistion Pr (the relative

translation and rotation) by aligning the two scans.

42

“The basis of most successful algorithms is the establishment of

correspondences between primitives of the two scans” [8], i.e. point-to-point or

feature-to-feature.

Different routines are developed to use point-to-point matching approaches

such as the Iterative Closest Point (ICP) and the Iterative Dual Correspondence

(IDC), both proposed by Lu and Milios [9]; and another, The Iterative Closest

Line (ICL) proposed by Alshawa [10].

In [11] it is proposed a method that searches for features like corners and

jump-edges from raw range scans. Another method based on feature extraction is

HAYAI proposed in [12]. This method solves the self-localization problem for

high speed robots.

One method that does not use correspondences between scans is the Normal

Distribution Transform proposed in [8]. This method transforms the discrete set

of 2D points reconstructed from a single scan into a piecewise continuous

differentiable probability density defined on the 2D plane.

This work uses the NDT for scan matching but without using odometry

information. But before getting to it; let’s briefly review some of methods used for

scan matching including NTD.

2.3.1.
Point to Point Correspondence Methods.

 The Iterative Closest Point (ICP)

The most general matching point to point approach was introduced

by Lu and Milios in [9]. This is essentially a variant of the ICP (Iterative

Closest Point) algorithm applied to laser scan matching.

A scan is a sequence of points which represent a 2D plane contour of

the local environment. “Due to the existence of random sensing noise and

self-occlusion, it may be impossible to align two scans perfectly” [9]. Thus

this method assumes two types of discrepancies between scans:

43

o in the first type, there are small deviations of scan points from the true

contour due to random sensing noise, and

o the other type of discrepancy is the gross difference between the scans

caused by occlusion. These discrepancy types are called outliers.

Adopting these criterions, ICP finds the best alignment of the

overlapping part in the sense of minimum least-square errors, while

ignoring the outlier parts. That is way ICP also need of correspondence

search and outlier detection algorithms.

Lu and Milios [9] present two scan matching methods based on ICP.

The first considers the two components (rotational and translational)

separately; alternately fixing one, then optimizing the other. Given the

rotation, least-square optimization is used to acquire translation.

Their second method called Iterative Dual Correspondence (IDC)

combines two ICP-like algorithms with different point-matching

heuristics.

 The Iterative Closest Line (ICL)

“ICL is similar to ICP, except that instead of matching query points

to reference points, the query points are matched to lines extracted from

the reference points” [13].

2.3.2.
Feature to Feature Correspondence Methods.

 Feature Based Laser Scan Matching for Accurate and high speed

Mobile Robot Localization.

Proposed by Aghamohammadi et al. [11]. This method divides the

features into two types: features corresponding to the jump-edges and

those corresponding to the corners detected in the scan.

In order to detect jump-edges, this method uses the natural

consecutive order of points in the scan. Thus it defines a dth which is the

44

maximum distance between two consecutive scan points. Beyond dth these

two consecutive points can be considered as jump-edges.

To obtain the second class of features, the corners, this method uses

a line fitting algorithm. Thus the split-and-merge algorithm is used but

only for line fitting. In this way, using two points taken of two consecutive

lines, it searches for the farthest point to the straight line joining these two

points.

Finally, after extracting features for two consecutive scans, a

matching algorithm, based on a dissimilarity function is calculated.

This method is fast and it can be used for high speed mobile robot,

but it suffers when the environment does not have corners or when it has

circular walls, because no corners could be extracted and false jump-edges

could be acquired.

 The Highspeed and Yet Accurate Indoor/outdoor-tracking (HAYAI)

HAYAI was proposed by Lingemann et al. [12]. This uses the

inherent order of the scan data, allowing the application of linear filters for

fast reliable feature detection.

Thus, this method chooses extrema in the polar representation of a

scan as natural features. These extrema correlate to corners and jump-

edges in Cartesian space. The usage of polar coordinates implicates a

reduction by one dimension, since all operations deployed for feature

extraction are fast linear filters.

For feature detection, HAYAI filters the scan signal using three one

dimensional filters ψ= [ψ-1, ψ0, ψ+1].The first one sharpens the data in

order to emphasize the significant parts of the scan. The second one

computes the derivation signal using a gradient filter. And, the last one

smoothes the gradient signal to simplify the detection of zero crossing

using a softening filter.

After generating the sets of features from both scans, the matching

between both sets is calculated. But instead of solving the hard

45

optimization problem of searching for an optimal match, HAYAI uses a

heuristic approach, utilizing inherent knowledge about the problem of

matching features, e.g., “the fact that the features topology cannot change

fundamentally from one scan to the following” [12].

“Although this method is a fast and feature based method for scan

matching, it suffers from the lack of satisfying robustness property of

feature extraction. It is well-suited for high range sensors” [11].

2.3.3.
The Normal Distribution Transform

The assumed correspondences between two scans captured from two

different poses of the robot are generally not true. That is why Biber [8] proposed

a new method that does not need correspondences. Thus NDT makes an

occupancy grid and subdivide the 2D plane into cells. To each cell, it assigns a

normal distribution, which models the probability of measuring a point. “The

result of the transform is a piecewise continuous and differentiable probability

density, that can be used to match another scan using Newton’s algorithm” [8].

This work uses the NDT for scan matching, which will be explained in

detail next.

 The NDT representation of one scan is built as follows: first, it subdivides

regularly into cells of constant size the 2D space around the robot. Then, for each

cell that contains at least three points:

1. collects all 2D-Points xi=1…n contained in this cell.

2. calculates the mean:

i

ix
n

1
q (2.11)

3. calculates the covariance matrix

i

T

ii xx
n

))((
1

qq (2.12)

46

The probability of a 2D-point x contained in this cell is now modeled by the

normal distribution N(q,∑):

2

)()(
exp~)(

1
qq xx

xp
T

 (2.13)

Unlike to occupancy grid that represents the probability of a cell being

occupied, the NDT represents the probability of measuring a point for each

position within the cell. NDT proposes a cell size of 1000 mm by 1000 mm and

this value will be adopted in this work.

To minimize discretization effects, NDT uses four overlapping grids as

follows: one grid with side length l of a single cell is place first, then a second

one, shifted by half cell horizontally, a third one, shifted by half vertically and

finally a fourth one, shifted by half horizontally and vertically. In this way, each

2D point falls into four cells. Thus, if the probability density of a point is

calculated the densities of all four cells are evaluated and the result is summed up.

Figure 2.8 shows an example laser scan and a visualization of the resulting

NDT. This visualization is created by evaluating a fine mesh of points; bright

areas indicate high probability of being occupied.

Figure 2.8: An example of NTD: the original laser scan (left) and the resulting

probability density (right).

47

The spatial transformation T between two robot positions is given by:

y

x

t

t

y

x

y

x
T

cossin

sincos

'

'
:

(2.14)

where tx and ty describes the translation and ϕ the rotation between the two

positions. As described in Section 2.3 the goal of the scan matching is to recover

these values using the laser scans taken at two positions. The outline of NTD,

given two scans, is as follows:

1. first, the NDT of the first is built;

2. a estimate for the variables (tx ,ty ,ϕ), is initialized (by zero or by using

odometry data);

3. for each point of the second scan: a reconstructed 2D point into the

coordinate frame of the first scan is mapped, according to the value of

variables;

4. the corresponding normal distribution for each mapped point is

determined;

5. the score for the variables is determined by evaluating the distribution for

each mapped point and summing the result;

6. a new estimate for variables are calculated by trying to optimize the score,

this is done by performing one step of Newton’s Algorithm, and

7. go to step 3 until a convergence criterion is met.

The steps one to four are straightforward. The remaining is described using

the following notation:

 p = (tx ,ty ,ϕ)
T

: the vector of the variables to estimate.

 xi : the reconstructed 2D point of laser scan point i of the second scan in

the coordinate frame of the second scan.

48

 ix : the point xi mapped into the coordinate frame of the first scan

according to the vector p, that is ix = T (xi , p)

 i , qi : the covariance matrix and the mean of the corresponding normal

distribution to point ix looked up in the NDT of the first scan.

“The mapping according to p could be considered optimal, if the sum

evaluating the normal distribution of all points ix with parameters i and qi is a

maximum” [8]. NDT calls this sum the score of p, defined as:

i

iiii qxqx
score

2

)(Σ)(
exp)(

1

i

T

p (2.15)

NDT normalization problems are described as minimization problems, thus

NDT adopts its notation to this convention. Therefore the function to minimize is

the negative of score.

NDT uses Newton’s algorithm iteratively to find the vector p = (tx ,ty ,ϕ)
T

that minimizes the function f = –score. Each iteration solves the equation:

 gp ΔH (2.16)

where g is the transposed gradient of f with entries

i

i
p

f
g

 (2.17)

and H is the Hessian of f with entries

ji

ji
pp

f
H

 (2.18)

The solution of this linear system is an increment pΔ which is added to the

current estimate:

 ppp Δ (2.19)

49

2.4.
Genetic Algorithms

The Genetic Algorithm (GA) is a search heuristic that imitates the process

of natural evolution; this heuristic is routinely used to generate useful solutions to

optimization and search problems. Problem solving using genetic algorithms isn´t

new, the pioneering work of J. H. Holland in the 1970’s [14] showed significant

contribution for engineering applications.

GA´s are inspired by a biological process in which best individuals are

likely to be the winners in a competing environment. The potential solution of a

problem is an individual which can be represented by a set of variables. These

variables are considered as the genes of a chromosome and they are usually

structured by a sequence of bits. A positive value (known as fitness value),

obtained by a Fitness Function, reflects the degree of “quality” of the

chromosome in order to solve the problem, and this value is narrowly related to its

objective value.

In the process of a genetic evolution, a chromosome with high quality has

the tendency to produce good-quality offsprings, which means better solutions to

the problem. “In a practical application of GA, a population pool of chromosomes

has to be installed, which can be randomly set initially” [15]. In each cycle of

genetic process, a subsequent generation is created from the best chromosomes in

the current population. This group of chromosomes, generally called “parents”,

are selected via a specific selection routine. The roulette wheel selection [16] is

one of the most commonly used techniques to provide selection mechanism; this

selection is based on the fitness value of chromosomes.

The parents are mixed and recombined to produce offsprings for the next

generation. From this process of evolution, it is expected that the best

chromosomes will create more offsprings, and thus having a higher probability of

surviving in the subsequent generation. This emulates the survival-of-the-fittest

mechanism in nature. The evolution cycle is repeated until a desired termination

criterion is reached. The criterion used could be the number of evolution cycles,

the amount of variation of individuals between different generations, or a

50

predefined fitness value. In order to achieve a GA evolution cycle, two

fundamental operators, crossover and mutation, are required.

The procedure described above can be applied in many different ways to

solve a wide range of problems.

However, in the design of a GA to solve a specific problem, there are

always two major decisions: specifying the mapping between the chromosome

structure and candidate solutions (representation problem) and defining a concrete

fitness function.

2.4.1.
Chromosome Representation

“Bit-string encoding is the most classical approach used by GA researchers

because of its simplicity and traceability” [15]. A slight modification is the use of

Gray code in the binary coding; “in practice, Gray-coded representation if often

more successful for multi-variable function optimization applications” [17].

Real-valued chromosomes were introduced to deal with real variable

problems. “Many works indicate that the floating point representation would be

faster in computation” [15].

2.4.2.
The Fitness Function

“The Fitness Function is at the heart of an evolutionary computing

application” [18]. It determines which solutions within a population are better at

solving the particular problem[18], being an important link between GA and the

system. The Fitness Function takes a chromosome as an input and outputs a

number which represents the measure of the chromosome performance.

An ideal fitness function correlates closely with the algorithm goal, and

besides may be computed quickly. Speed of execution is very important, thus, a

51

typical GA must be iterated many, many times, in order to produce a usable result

for a non-trivial problem.

Definition of the Fitness Function is not straightforward in many cases, and

it is often performed iteratively if the solutions produced by GA are not what it is

desired.

2.4.3.
Fundamental Operators

The crossover operator is shown in Figure 2.9. The portion of the two

chromosomes beyond the crossover point to the right is exchanged to form the

offspring. An operation rate (pc) with a typical value between 0.6 - 1.0 is normally

used as the probability of crossover.

Figure 2.9: The crossover operator

Although one-point crossover was inspired by biological processes, it has

one major drawback in the certain combination of schema (encoded form of the

chromosome): sets of strings that have one or more features in common cannot be

combined in some situations. “A multipoint crossover can be introduced to

overcome this problem” [15]. As a result, the generating offspring performance is

much improved.

The mutation operator, on the other hand, is applied to each offspring

individually after the crossover exercise. Figure 2.10 shows the mutation process.

It commutes each bit randomly with a probability pm with a typical value of less

than 0.1 [15].

52

Figure 2.10: The mutation operator

The choice value of pm and pc can be a complex, nonlinear operation

problem; furthermore, their settings are critically dependent upon the nature of the

fitness function [15].

2.4.4.
Genetic Algorithms to Solve Problems

Arguably the most obvious application of GA is the multi-variable function

optimization. By searching for some optimal value, many problems can be

formulated; where the value is a complicated function of its input parameters. In

some cases, the interest is on variable settings that lead to the greatest value of the

function. In other cases, the exact optimum is not required, just a near optimum,

or inclusive a value that represents an improvement over the previously best

known value [17].

2.4.5.
Differential Evolution

Differential Evolution (DE), like GA, owned to the family of Evolutionary

Computation. It is an optimization technique that uses an exceptionally simple

evolution strategy, being significantly faster and robust at numerical optimization.

It is more likely to find a function’s true global optimum.

 “DE uses real coding of floating point numbers” [19], and the population is

represented by NP individuals, where an individual is formed by a vector of D real

variables, where D is the number of problem’s variables.

53

DE uses both, crossover and mutation operators. However, both operations

are redefined in its context. DE creates a vector 'cx , a mutated form of any

individual
cx (an individual randomly picked from the initial population NP),

using the vector difference between two other randomly picked individuals
ax

and bx
 such that:)(bacc xxFxx ' , where F is an user-supplied scaling factor.

The optimal value of F for most functions lies in the range of 0.4 to 1.0 [20]. This

operation is known as mutating with vector differentials.

After that, the crossover is applied between any individual member of the

population xi and the mutated vector 'cx , by swapping the vector elements in the

corresponding locations. Like GA, this is also done probabilistically, and the

decision of performing (or not performing) crossover is determined by a crossover

constant CR in the range 0 to 1.

The new vector xt produced is known as the trial vector. “Thus, the trial

vector is the child of two parents, a noisy random vector 'cx and the target vector

xi, against which it must compete” [19]. CR represents the probability that the

child vector inherits the parameter values from the noisy random vector 'cx . When

CR = 1, for example, every trial vector parameter comes from 'cx . If CR = 0, all but

one trial vector parameter comes from the target vector xt. To ensure that xt differs

from xi by at least one parameter, the final trial vector parameter always comes

from the noisy random vector, even when CR = 0, so that it does not become an

exact replica of the original parent vector. Thus, the trial vector is allowed to pass

on the next generation if and only if, its fitness is higher than that of its parent

vector xi, otherwise the parent vector yields to the next generation. Figure 2.11

shows the process of DE.

54

Figure 2.11: Differential Evolution Process [21]

Among all, just three factors control evolution under DE: the population

size NP, the weight F applied to the random differential, and the crossover

constant CR.

2.4.6.
Different Strategies of DE

Depending on the type of problem, different strategies can be adopted in the

DE algorithm. “The strategies can vary based on the vector to be perturbed,

number of difference vectors considered for perturbation, and finally the type of

crossover used” [19]. The following are the 10 different working strategies

proposed by Price and Storn [21].

1. DE/best/1/exp

55

2. DE/rand/1/exp

3. DE/rand-to-best/1/exp

4. DE/best/2/exp

5. DE/rand/2/exp

6. DE/best/1/bin

7. DE/rand/1/bin

8. DE/rand-to-best/1/bin

9. DE/best/2/bin

10. DE/rand/2/bin

The convention used above is DE/x/y/z. DE means Differential Evolution, x

denotes a string representing the vector to be perturbed, y is the number of

difference vectors used for perturbation of x, and z denotes the type of crossover

being used (exp: exponential, bin: binomial).

For perturbation with a single vector difference, out of the three distinct

randomly chosen vectors, the weighted vector differential of any two vectors is

added to the third one. In the same way for perturbation with two vector

differences, five distinct vectors, other than the target vector, are chosen randomly

from the current population. Out of these, the weighted vector difference of each

pair of any four vectors is added to the fifth one for perturbation.

In exponential crossover, the crossover is performed on the D variables in

one loop until it is within the CR bound. In binomial crossover, the crossover is

performed on each of the D variables whenever a randomly picked number

between 0 and 1 is within the CR value. So, for high values of CR, the exponential

and binomial crossovers yield similar results. In the binomial case, the last

variable always comes from a random noisy vector to ensure that is different from

the target vector, and hence the above procedure is applied up to D – 1 variables.

“The strategy to be adopted for each problem is to be determined separately

by trial and error” [19]. The best strategy for a given problem may not work well

when applied to a different problem.

In the next chapter, the presented analytical background is applied to the

SLAM problem.

56

3.
SLAM Solutions

3.1.
Gaussian Filter SLAM Solutions

“Historically, Gaussian Filters constitute the earliest tractable

implementations of the Bayes Filter for continuous spaces”. It could say that they

are also by far the most popular family of techniques to date – despite a number of

limitations [1].

Gaussian assumes the idea that beliefs are represented by multivariate

normal distributions:

)}()(exp{)2det()(1

2
12

1

xxxp T (3.1)

The distribution over the variable x is characterized by two sets of

parameters: the mean λ and the covariance Σ. The mean has the same

dimensionality of the state x. The covariance is a symmetric quadratic matrix,

positive semi-definite, and its dimension is the dimensionality of the state x

squared. Hence, the dimension of the covariance matrix depends quadratically on

the dimension of the state vector x.

3.1.1.
Kalman Filter SLAM

“Probably the best studied technique for implementing Bayes filter is the

Kalman Filter” [1]. “The Kalman Filter (KF) was developed by R.E. Kalman,

whose prominent paper on the subject was published in 1960” [4].

The KF is an algorithm which processes data and estimates variable values.

In SLAM context, the variable values to be estimated consist of the robot position

57

and landmark locations. The data to be processed may be actuator inputs, range

sensor readings, motion sensors and digital cameras of the mobile robot. Thus, the

KF utilizes all available data to simultaneously estimate robot position and

generate a landmark map. In [22] it is explained that KF is a set of mathematical

equations that provides an efficient computational (recursive) mean to estimate

the estate of a process, in a way that minimizes the mean of the squared error.

 “Under certain conditions, the estimates made by a KF are very good; in

fact, they are in a sense “optimal” ” [4].

The Kalman Filter represents probability distributions at time t by the mean

λt and the covariance Σt. Thus, posterior distributions are Gaussian if the following

three properties are fulfilled, in addition to the Markov assumptions of the Bayes

filter[1].

1. the next state probability (or motion model), p(xt |ut ,x t -1) in eq. (2.3),

must be a linear function in its arguments with added Gaussian noise [1].

This is expressed by the following equation:

 tttttt uBxAx 1 (3.2)

where xt and xt-1 are state vectors, and ut is the control vector at time t,

given by

tm

t

t

t

x

x

x

x

,

,2

,1

and

tq

t

t

t

u

u

u

u

,

,2

,1

 (3.3)

At is a square matrix of size m x m, where m is the dimension of the state

vector xt. Bt is of size m x q, where q is the dimension of the control

vector ut. The random variable, εt in eq.(3.2), is a Gaussian random

vector of size m, that models the uncertainty in the state transition. Its

mean is zero and its covariance is denoted by Pt. A state transition of the

58

form in eq.(3.2) is called a linear Gaussian, “to reflect the fact that it is

linear in its arguments with additive Gaussian noise” [1].

The probability p(xt |ut ,x t -1) is obtained by plugging eq.(3.2) into the

multivariate normal distribution, eq. (3.1). The mean of the posterior

state is given by Atxt-1+Btut and the covariance by Pt, thus

),|(1ttt xuxp

)}()(exp{)2det(1

1

12
12

1

tttttt

T

tttttt uBxAxPuBxAxP

 (3.4)

2. the measurement probability (or perception model), p(z t|x t) in eq. (2.3),

must also be linear in its arguments, with added Gaussian noise [1]:

 tttt xHz (3.5)

Ht is a matrix of size k x m, where k is the dimension of the

measurement vector zt. The vector δt describes the measurement noise

with a multivariate Gaussian with zero mean and covariance Qt. In this

way the measurement probability is given by the following multivariate

normal distribution [1]:

)}()(exp{)2det()|(1

2
12

1

tttt

T

tttttt xHzQxHzQxzp

 (3.6)

3. finally, the initial probability p(x0) must be normally distributed and,

denoted by the mean λ0 and the covariance Σ0 [1]:

)}()(exp{)2det()(00

1

0002
12

1

00

xxxp T

 (3.7)

These three assumptions are sufficient to ensure that the posterior p(xt) is

always a Gaussian, for any point in time [1].

59

As described above, the Kalman Filter represents probability distributions at

time t by the mean λt and the covariance Σt. The equations of the Kalman Filter

algorithm are depicted in Table 3.1. The inputs of the Kalman Filter is the

distribution at time t1, represented by λt-1 and Σt-1, the control ut, and the

measurement zt. The output is the distribution at time t, represented by λt and Σt.

Table 3.1: The Kalman Filter Algorithm [1].

 Kalman_filter_algorithm (tttt zu ,,, 11)

 1:
ttttt uBA 1 (3.8)

 2:
t

T

tttt PAA 1 (3.9)

 3: 1
 t

T

ttt

T

ttt QHHHK (3.10)

 4: tttttt HzK (3.11)

 5:
ttttt HK (3.12)

 6: return
 tt ,

Let’s describe some of the parameters in above equations.

 tt , are the predicted covariance and median, representing

 1

11

11),|(),|(t

tt

tttt dxuzxpxuxp

in eq. (2.3), obtained by incorporating

the control ut one step later, but before incorporating the measurement zt.

 At is called the state transition matrix; it describes how one thinks the state

will change due to factors not associated with control input. One very nice

convention in SLAM is that landmarks will remain stationary. Except for

the first row which correspond to changes in robot position, At will therefore

appear as a diagonal matrix with each diagonal entry containing identity

matrices (otherwise At would change location of landmarks, which are

known to be stationary) [4]. If the robot can have a non-zero velocity at time

step t, then the state may change even with no actuator input, and the first

column of At can account for this. To simplify the analysis, let’s assume that

the robot comes to a halt after each time step. In this case, the actuator input

60

fully specifies the most likely new location of the robot. This means that At

is just the identity matrix, which could be disregarded.

 Bt is a matrix that translates control input into a predicted change in state. Its

values will depend on the representation of the control input. It will vary

depending on the physical construction of the robot. Because the landmarks

will remain stationary the only interesting entries of Bt will be in the first

row. Thus, the idea of eq. (3.8) is that the best guess for the new state will

be described exactly by the old robot position and how one believes the

actuators will change this position.

 Pt is the covariance of the process noise. It accounts for how moving will

change the confidence on each individual pair of landmarks as well as robot-

landmarks pairs. The entries of Pt will depend on the distance landmarks are

away from the robot and other known particularities of the environment

and/or state [4].

 Qt is the covariance matrix for the range sensor noise, it is used to keep

track of one’s confidence in the range sensor readings.

 Ht transforms one’s previous state estimate into a representation used by the

sensors. In other words, if the sensors had perceived the world state exactly

as predicted by
t , they would have returned this information in the

form
ttH . Note that the purpose of Ht is very similar to that of Bt.

 Finally, Kt is called the Kalman gain. It specifies the degree to which the

measurement is incorporated into the new state estimate. The magnitudes of

the values in Kt depend on the predicted covariance
t , relative to the

combined values of the predicted covariance and sensor uncertainty Qt.

The Kalman filter is a technique for filtering and prediction in linear

systems. However, in most real world SLAM situations there will be some non-

linear aspect one might wish to account for. “For example, a robot that moves

with constant translational and rotational velocity typically moves on a circular

trajectory, which cannot be described by linear next estate transitions” [1]. Thus

61

the plain Kalman Filters, as discussed above is inapplicable to all but the most

trivial robotics problems.

3.1.2.
Extended Kalman Filter SLAM

The Extended Kalman Filter (EKF) overcomes the linearity assumption [1].

Here, in EKF, the assumption is that the next state probability p(xt |ut ,x t - 1), and

the measurement probability p(z t|x t), are ruled by nonlinear functions f and h,

respectively.

),(1ttt xufx (3.13)

)(tt xhz

(3.14)

This model is a generalization of the linear Gaussian model underlying

Kalman filters, as stated in eq. (3.2) and eq. (3.5). The function f replaces the

matrices At and Bt in eq.(3.2) and h replaces Ht in eq. (3.5) [1]. However, the

distribution is not longer a Gaussian when it is used nonlinear functions, f and h.

In this way, the distribution update does not possess a closed-form solution.

Therefore, the EKF calculates an approximation of the true distribution. “Thus,

the EKF inherits from the Kalman filter the basic belief representation, but it

differs in that this belief is only approximate, not exact as it was the case in linear

Kalman Filters” [1].

To manage this approximation EKF utilizes a (first order) Taylor expansion.

The Taylor expansion constructs a linear approximation to a function f from its

value and slope. The slope is given by the following partial derivative [1]:

1

1
1

),(
:,'

t

tt
tt

x

xuf
xuf (3.15)

62

Both the value of f and its slope depend on the argument of f.. Thus f is

approximated by its value at λt-1 (and at ut), and the linear extrapolation is

achieved by a term proportional to the gradient of f at λt-1 and ut [1]:

))(,('),(),(11111 tttttttt xufufxuf

tF:

)(),(),(1111 ttttttt xFufxuf (3.16)

Written in form of Gaussians, the next state probability is approximated by:

),|(1ttt xuxp

 T

ttttttt xFufxP)](),([exp{)2det(1112
12

1

)]}(),([111

1

 ttttttt xFufxP

 (3.17)

The matrix Ft is often called the Jacobian. The value of the Jacobian

depends on ut and λt-1, thus it differs for different time points.

The same linearization is used for the measurement function h. Where, the

Taylor expansion is developed around
t , the state regarded most likely by the

robot at the time when it linearizes h [1]:

))((')()(ttttt xhhxh

tH:

)()()(ttttt xHhxh (3.18)

where
t

t

x

)h(x

)(' txh . Written in form of Gaussian, one gets:

63

)|(tt xzp

 T

tttttt xHhzQ)]()([exp{)2det(
2
12

1

)]}()([1

tttttt xHhzQ

 (3.19)

Table 3.2 depicts the Extended Kalman Filter algorithm.

Table 3.2: The EKF Algorithm [1]

 EKF_algorithm (
tttt zu ,,, 11)

 1:),(1 ttt uf
 (3.20)

 2:
t

T

tttt PFF 1
 (3.21)

 3: 1
 t

T

ttt

T

ttt QHHHK
 (3.22)

 4:)(ttttt hzK
 (3.23)

 5:
ttttt HK

 (3.24)

 6: return
 tt ,

In some ways, the EKF is similar to the (linear) Kalman Filter. The

difference is that the linear equations in Kalman Filters are replaced by their non-

linear generalization in EKFs.

A detailed implementation of the EKF algorithm is shown in Section 4.1.

3.2.
Particle Filter SLAM Solutions

3.2.1.
Particle Filter Overview

Particle Filters (PF) are alternatives to Gaussian techniques. They do not

rely on a fixed functional form of the posterior distribution, such as Gaussians.

64

Instead, they approximate these posterior distributions by a finite number of

values, each harshly corresponding to a region in state space.

“The key idea of the PF is that any posterior distribution p(xt) can be

represented by a set of random state samples drawn from this posterior” [1].

Figure 3.1 shows this idea for a Gaussian; instead of representing the distribution

by a parametric form (the mean and covariance that defines the exponential of a

normal distribution), PF represents it by a set of samples drawn from this

Gaussian. As the number of samples goes to infinity, PF tends to converge

uniformly to the correct posterior distribution. Thus this method can represent any

arbitrary shape of distribution, making it good for non-Gaussian, multimodal

distributions.

Figure 3.1: Representation of a Gaussian by a set of particles

In PF, the samples are called particles, thus the posterior p(xt) is represented

by N weighted particles:

 }...1/,{: Niwx i

t

i

tt (3.25)

The correspondence between the Bayes Filters and the approximation made

by particles is given by

ttxp)((3.26)

65

In this way, to compute p(xt) it is necessary to find Φt at each time, that is to

find all values of
i

tx

and

i

tw . As a Bayes Filter algorithm, the PF algorithm

constructs the distribution p(xt) recursively from the distribution p(xt-1) one time

step earlier. Thus, PF constructs the particle set Φt recursively from the set Φt-1.

In Probabilistic Robotics, the process to generate samples
i

tx is achieved

using the prior Φt-1 and the most recent control ut. The desired weight i

tw of each

particle is given using the most recent measurement zt. Table 3.3 shows the most

basic variant of the PF algorithm[1].

Table 3.3: Particle Filter Algorithm [1]

 Particle Filter_algorithm (Φt-1, ut , zt)

 1: 0 tt

 2: for i = 1 to N do

 3: sample i

tx ~ p(xt | ut ,
i

tx 1
)

 4: i

tw = p(zt |
i

tx)

 5:
i

t

i

ttt wx ,

 6: end for

 7: for i = 1 to N do

 8: draw i with probability
i

tw

 9: add i

tx to
t

 10: end for

 11: return
t

The algorithm first samples by processing each particle i

tx 1 in the input

particle set Φt-1 as follows:

1. Line 3 of table Table 3.3 generates a estimate
i

tx for time t based on the

particle
i

tx 1 and the control ut. This step involves sampling for the next

state transition p(x|ut ,xt-1). Thus the set of particles resulting from

iterating line 3 N times represents the distribution

 1

11

11),|(),|(t

tt

tttt dxuzxpxuxp

in eq. (2.3).

66

2. Line 4 computes for each particle
i

tx the corresponding weight

(importance factor)
i

tw using the measurement zt. Thus, each
i

tw is the

probability of the measurement zt under the particle
i

tx , in the way of

)|(i

t

i

t xzpw t .

3. Finally lines 7 to 11 implement as the so-called resampling or

importance resampling. This lines draw with replacement N particles

from the temporary set t . The probability of drawing each particle is

given by its importance factor (weight). The resulting set, Φt, is a set of

N particles distributed according to the desired p(xt).

Figure 3.2 shows the Particle Filter algorithm idea. The desired p(xt) is

shown as a red line and the samples
i

tx as blue lines.

Figure 3.2: Particle Filter idea.

The PF computes the Bayes filter stated in eq. (2.3) from right to left, as

shown in the following equation:

67

 1

11

11),|(),|()|(),|(t

tt

tttttt

tt

t dxuzxpxuxpxzpuzxp

 (3.27)

3.2.2.
Fast SLAM

The Fast SLAM was developed by Montemerlo, Thrun, Koller and

Wegbreit [23]. Fast SLAM exploits the condition independence properties of the

SLAM model to break up the problem of localizing and mapping into many

separate problems.

As it was seen in Section 3.1, the dimension of the covariance matrix Σt is

the dimensionality of the state x squared. Thus, the number of elements in the

covariance matrix depends quadratically on the number of elements in the state

vector x. This is because the robot’s position uncertainty correlates landmark

locations, as Figure 3.3 shows. Supposing an observation (L1, L2) made by the

robot, then, through another observation for L1, one ends up to another position

for L2. Now, if the assumption on L1 is again different, the conclusion on L2 also

is. This is the consequence of not knowing the robot’s position precisely. As a

result, this lack of knowledge on the robot’s position correlates the location of the

landmarks.

generating samples
i

tx from

the prior distribution p(xt-1)

using the motion model

computing the

weights
i

tw using

the perception

model

resampling to

obtain the

desired

distribution p(xt)

prior distribution from

the last step (Φt-1)

motion

model

perception

model

desired

distribution (Φt)

68

Figure 3.3: Landmark correlation

In this way, if one could know exactly the robot position, there should be no

predictable relationship between the landmark observations. An important point

in SLAM is that the exact robot pose is not known, but insight of conditional

independence of landmarks, given the pose, is enough to motivate FastSLAM,

which manages each landmark separately [4] - decoupling into n (number of

landmarks) independent estimation problems, one for each landmark. Thus, Fast

SLAM decomposes the SLAM problem into a robot position problem, and a set of

landmark location estimation problems that are conditioned on the robot position

estimated.

Mathematically, decorrelation of the landmark locations leads to a factored

representation as following:

),|,...,,(),|,(1

tt

n

tt uzLLpuzmp t
R

t
R

n

ttt

n

ttttt

n uzRLpuzRpuzLLp t
R),,|(),|(),|,...,,(1 (3.28)

This factorization is exact and always applicable to the SLAM problem

[23]. It decomposes the posterior over robot paths and maps into n+1 recursive

estimators: one estimator over robot pats p(R
t
| z

t
, u

t
) and n separated landmark

pose estimators p(Ln |z
t
,u

t
,R

t
) conditioned on each hypothetical path.

FastSLAM keeps track of many possible paths simultaneously (superscript t

of the robot pose R
t
), as opposed to the traditional Kalman Filter, “which does not

even keep track of a single path, but rather updates a single robot pose” [4]. Thus,

69

Fast SLAM records paths and when the algorithm terminates there will be a

record of where the robot has been.

Fast SLAM uses a modified PF for implementing the path estimator,

p(R
t
| z

t
,u

t
), and the landmark pose estimators),,|(ttt

n RuzLp are realized by

Kalman Filters, using separate filters for different landmarks. Because landmark

estimation is conditioned on path estimation, each particle in PF has its own local

landmark estimations. At time t, the i-th particle contains

},...,,,,,,,{: ,,,2,2,1,1

, i

tn

i

tn

i

t

i

t

i

t

i

t

tii

t

i

t Rws (3.29)

where
i

tn, and
i

tn, , are the Gaussian parameters (mean and covariance

respectively) related with the landmark position i

tnL , . To update the landmark-

map for a given path R
i,t

 each observed landmark is processed individually as an

EKF measurement update from a known robot pose (unobserved landmarks are

unchanged).

Bearing the distribution at time t1 as a set of particles, one gets:

 }...1/{: 11 Nisi

tt
 (3.30)

The first version of Fast SLAM algorithm [1] follows the following steps:

1. for each particle extend its path, R
i,t-1

, to generate a new pose using the

control ut and the motion model p(R t | u t ,R t -1). Mathematically this

means that the distribution at time t1, p(R
t -1

| z
t - 1

, u
t -1

) becomes

p(R
t
| z

t - 1
, u

t
). A set of temporal particles is obtained.

2. update the estimation of landmarks, through the EKF

),,|(),|(),,|(111 ttt

ntnt

ttt

n uzRLpRLzpuzRLp (3.31)

weight robot’s
path

landmark
1

landmark
2

landmark
n

70

and, using the new poses generated in the step 1 and the measurement zt,

compute the new set of
,

i

n t and
,

i

n t . This set of means and covariances

are added to the temporal particles set.

3. assign the weight for each particle. This is computed using the result of

step 1, p(R
t
| z

t - 1
, u

t
), where the measurement zt was not included, and

using the distribution p(R
t
| z

t
,u

t
), where zt is included

),|(

),|(
1,

,

ttit

ttit
i

t
uzRp

uzRp
w

 (3.32)

after some considerations and probabilistic transformations, the above

equation is given by:

)}ˆ()ˆ(exp{)2det(1

2
12

1

i

tt

i

t

Ti

tt

i

t

i

t zzUzzUw

 (3.33)

 QHHU i

t

i

nt

Ti

t

i

t ,1
(3.34)

where zt is the sensor observation. Note that
i

tẑ is the predicted

observation computed using the landmark position estimated in step 2

and the robot poses generated in step 1. i

tH

is the Jacobian of the

perception model. This set of importance factors (weights) are added to

the temporal particles set.

4. finally, resample. Each particle, in the temporal particle set, is drawn

(with replacement) with a probability proportional to its importance

factor.

A detailed implementation of the Fast Slam 1.0 algorithm is shown in

Section 4.2.

71

3.2.3.
DP-SLAM

The Fast SLAM is a good solution to the SLAM problem when there are

thousands of landmarks that can be tracked accurately. However tracking

landmarks is actually very difficult, particularly in environments with

monochromatic areas or repeating patterns.

If the robot is using a LRF, the map generated by the laser has no

landmarks; is rather an occupancy grid, as described in Section 2.2.2. “The robot

cannot use the range finder to relocate individual points in the grid. However with

enough data, the robot might not need to worry about reacquiring landmarks in the

first place” [4]. For example, if there was a contoured object in the environment,

the robot might align entire occupancy maps by matching up the contour of that

object. Distributed Particle SLAM (DP-SLAM) [6] attacks SLAM from this

occupancy grid approach, while simultaneously utilizing the conditional

independence insight discussed in Fast SLAM.

“One of the steps in the Fast SLAM algorithm was to generate a new pose

prediction and a corresponding map prediction” [4]. Thus, the new map prediction

was based on the previous pose and the control input ut. It cannot predict how

landmarks will move with respect to the robot anymore because landmarks are not

dealt with. However it is possible to make a prediction as to how the occupancy

grid will change. Figure 3.4 shows an example of occupancy grid prediction based

on a movement of one cell to the right.

Figure 3.4: Occupancy grid prediction based on a movement of one cell to the right.

72

Similarly to Fast SLAM, DP-SLAM uses PF, generating new particles

(poses) by applying probabilistically generated movement vectors to old poses.

Thus DP-SLAM uses the same method to generate samples based on the motion

model and the control vector ut.

However, because the map representation is an occupancy grid, the

perception model is quite different consequently, the way to assign weights, and

the map update are quite different too.

3.2.3.1.
DP-SLAM Map Representation

DP-SLAM uses an occupancy grid mapping representation, specifically

stochastic maps, where each square has a sliding scale of various degrees of

occupancy, as it was seen in Section 2.2.2.

“The idea of using probabilistic map representation is possibly as old as the

topic of robotic mapping itself” [6]. Most of the earliest SLAM methods used

probabilistic occupancy grids and were especially useful for sonar sensors

susceptible to noisy and/or spurious measurements [6].

However, DP-SLAM concentrates on a model for Laser Range Finder. It

has a method for representing uncertainty in the map, which takes into account the

distance the laser travels through each grid square.

Earlier approaches, to estimating the total probability of the scan, would

trace the scan through the map, giving a weight to the measurement error

associated with each potential obstacle by the probability that the scan has

actually reached the obstacle [6]. “In an occupancy grid with partial occupancy,

each cell is a potential obstacle” [6].

Thus each grid square has the probability of stopping a laser ray,

represented by [6]

i

ix

iic exP

1),((3.35)

73

where xi is the distance that the laser ray travels through the square i and ρi is

called the opacity of the square, as shown in Figure 3.5.

Figure 3.5: Square representation

The probability that an entire laser ray will have been stopped at some point

along its trajectory is therefore the cumulative probability that the laser ray is

interrupted by squares up to and including the last square, n, it reaches:

n

ρx,
1

1

1

)),(1(),()()(
i

i

j
jjciicc xPxPPtruestoppedP (3.36)

where xi is the traveled distance (the laser ray travels through the square) and ρi

the opacity of the square i, as shown in Figure 3.6.

Figure 3.6: Interaction between the laser ray and the square representation

Inside the summation in eq. (3.36), the first term is the probability that the

laser ray would be obstructed in the square n. The second term represents the

probability that each previous square did not obstruct the laser.

Thus the probability that the laser ray will be interrupted a grid square j is

P(stop=j), which is computed as the probability that the laser has reached square

j1 and then stopped at j :

74

)),(1)(()|(1:11:1 jjcjjc P,ρxPjstopP ρxρx, (3.37)

where 1:1 jx
and 1:1 jρ have interpretations as fragments of the x and ρ vectors.

Figure 3.7 illustrates this, where j=3, the vector },...,{ 21 nxxxx , and

},...,{ 21 nρ .

),(1),(1)1()),(1)(,(),|3(22112:12:133
3

3

xPxPePxPstopP cc

x

cc

ρρ xx

Figure 3.7: Example of application of eq. (3.37) for a given square j=3.

DP-SLAM also defines a vector δ as a vector of differences, such that δi is

the distance between the laser distance measurement (the stopping point) and grid

square i along the trace of the laser ray. Thus, the conditional probability of the

measurement, given that the laser ray that was interrupted in square i, is

PL(δi|stop=i), for which is made the assumption of normally distributed

measurement noise. Notice that δi terms are only defined if the laser measurement

observes a specific stopping point, as shown in Figure 3.8; eq. (3.38) is used to

compute this probability.

Figure 3.8: Distance between the square i and the stopping point of the laser ray

75

 2

2

2

2

1
)|(

i

eistopP iL

 (3.38)

where σ is the standard deviation of the laser measurement.

Clearly in eq. (3.38), the lower distance δi (which means that square i is

closer to the stopping point) the higher the probability. Basically, the idea of this

vector of differences δ, is to create a probability distribution as shown in Figure

2.5.

Finally the probability of the laser measurement L, with an observed

stopping point, is then the sum, over all grid squares in the range of the laser ray,

of the product of the conditional probability of the measurement given that the ray

has stopped at that point, and the probability that the ray stopped in each square:

n

i
iL istopPistopPtruestoppedLP

1

),|()|(),(ρx (3.39)

To sum it all in a nutshell, DP-SLAM creates two Gaussians. The first

Gaussian computes the probability distribution of stopping the laser ray by all

squares along its trajectory (note that measurement zt must be extended by an

arbitrary extra distance). The second Gaussian computes the probability

distribution of the measurement zt (as shown in Figure 2.5) according to the

distance between the stopping point and all squares along its trajectory. Finally

the weight of this laser ray is obtained by multiplying both distributions. Thus,

the weight of an entire scan is the sum of all individual laser ray weight.

To show how this perception model works, let’s discuss an example.

Suppose that at time t1 two equals particles p1 and p2 (supposing that they were

selected by resampling and hence they are copies of one particle at time t2),

having same map m1 and m2 and having the same estimated robot pose R1 and R2

as shown in the Figure 3.9 (a).

76

Figure 3.9: Example of computing the probability of a laser ray given two sampled

robot poses.

Now suppose that the robot performs a movement ut and then does a ray

measurement zt. Using the motion model each estimated robot pose R1 and R2 has

a new different location (predicted), as shown in Figure 3.9 (b) and (c). Weights

are acquired by putting the measurement zt (extending the measurement by an

arbitrary extra distance – yellow line in the Figure 3.9 (b) and (c)) into the

predicted robot positions R1 and R2 and then evaluating using eq. (3.39).

77

As illustrated in Figure 3.9 (b) and (c); the sampled robot pose R1 has a

higher probability (or weight) than the sampled robot R2, as shown in the result

(dark blue line) of multiplying)|(istopP iL (light blue line) and

),|(ρxistopPL (green line). More details about the opacity parameter, ρ, and

how the unknown squares (unobserved previously) are treated, can be found in

[6].

“DP-SLAM implements a PF over maps and robot poses, using an

occupancy grid to represent the map to track the placement of objects in the

environment” [6]. Thus, for a PF to properly track this joint distribution, each

particle needs to maintain a separated, complete map. During the resampling in

this PF, each particle could be resampled, and consequently copied, multiple

times. However, because operations must be performed merely copying maps, a

direct approach to this method, where a complete map is assigned to each particle,

is impractical. “For a number of particles sufficient to achieve precise localization

in a reasonably sized environment, this naïve approach would require gigabytes

worth of data movement per update” [6].

3.2.3.2.
Ancestry Tree

The greater contribution of DP-SLAM is an efficient representation of the

map, making map copying more efficient, reducing the memory required to

represent large numbers of occupancy grids. DP-SLAM achieves this through a

method called: Distributed Particle Mapping (DP-Mapping), “which exploits the

significant redundancies between the different maps” [6].

A particle from the distribution at time t1 is called a “parent” and its

successor (sampled particle) at time t is called “child”, while two children with the

same parent are “siblings”. If a LRF sweeps out an area of size A << M (where M

is the area of the total map) and if there are two siblings s1 and s2 (each one with a

different pose), each sibling will make updates in at most an area of size A to the

map it inherits form its parent. Thus the maps for s1 and s2 can differ of their

parent in at most an area of size A, the remainder area of the map is identical.

78

Then DP-SLAM proposes recording a list of changes that each particle makes to

its parent.

Figure 3.10: Example of particle ancestry tree maintenance

Thus DP-SLAM maintains a so called: particle ancestry tree, that does not

forget the old particles, because to construct the entire map it is necessary not only

one particle but also its ancestors. However this creates a new problem: the height

of the particle ancestry tree will be linear with respect to the amount of iterations

(each iteration will create a new set of particles). DP-SLAM solves this problem

by defining a method of collapsing certain branches of the tree. Any particle that

79

does not produce any surviving children can simply be removed; this may cause a

series of ancestor nodes removal. Additionally, when a particle has only a single

child, it is possible to merge this particle child with the particle parent and can be

treated as a single particle. This “pruning” technique is explained in Figure 3.10.

Figure 3.10 (a) depicts the beginning of the process. At the top of the figure

is a single particle, where the robot’s pose is represented by a red square, and the

current map in gray scale. This one particle is resampled many times, to give a

number of identical children. The, these new particles are each propagated

forward using the motion model. Thus, in Figure 3.10 (b), each particle represents

a different pose, and each has a different set of map updates. Then these particles

are weighed, based on how well the new updates are in agreement with the

existing map, and finally, the particles are randomly resampled proportionately

based on these weights, see Figure 3.10 (c).

At this point some particles have greater weight than others, and therefore

were resampled more than once. Because the number of particles at each iteration

is kept constant, consequently there are other particles which were not resampled.

These particles (childless particles), can be removed from the ancestry tree, due to

they will have no influence on any future particles, see Figure 3.10 (d).

 In Figure 3.10 (e) and (f), the new set of particles are again propagated

forward, and then weighed and resampled. However, on the right of Figure 3.10

(f), there is a pair of childless particles which can be removed and when this is

done, their common parent will no longer have any children. Thus, this older

ancestor can also be removed, as shown in Figure 3.10 (g). Also on the left of

Figure 3.10 (f), if the childless ancestor particle is removed, there will be a chain

of ancestor particles (on the left of Figure 3.10 (g)), each with one child.

Therefore, these nodes can all be merged into a single ancestor particle and

consequently collapsing the chain (on the left of Figure 3.10 (h)).

Maintaining the particle ancestry tree in this manner it is guaranteed that the

tree will have a branching factor of at least two, and the depth of the tree will be

no greater than the number of particles in each generation [6].

80

3.2.3.3.
Hierarchical SLAM

The DP-SLAM provides an accurate and efficient method for building

maps. However, there are some trajectories, which cover a sufficient amount of

distance before completing a cycle, for which the accuracy of the map can

degrade [6]. Small errors are accumulated over several iterations, and although the

resulting map may look locally consistent, there is a large total error, which is

more evident when the robot closes a large loop. This behavior over large

distances is known as “drift”. It is a significant problem faced by essentially all

current SLAM algorithms [6].

As a consequence of violated assumptions or as a consequence of particle

filtering it is hard to avoid drift. Errors come from three sources: insufficient

number of particles, coarse precision, and resampling itself (particle depletion).

The consequence of these errors is a gradual but inevitable accumulation resulting

from faults to sample, differentiate, or remember a state vector that is sufficiently

close to the true state.

Figure 3.11: Simulated environment (60 x 40 m).

81

Figure 3.11 shows a loop-closed simulated environment. This map consists

of 183 LRF scans. It was build using DP-SLAM (without hierarchical SLAM)

with 2800 particles. This loop is large enough that particle diversity is insufficient

to correct the small errors that occur.

The reason that a non-hierarchical method cannot manage this data is the

extreme longevity of the uncertainty. In a large loop, small ambiguities in the

beginning of the map are not resolved for many thousand iterations [6]. Non

hierarchical DP-SLAM requires a huge number of particles to maintain this early

particle diversity.

3.2.3.4.
Hierarchical Algorithm

DP-SLAM uses two levels Hierarchical-SLAM where the lowest level

models the physical process (SLAM itself), while the higher level models errors

in the lower level.

“Since the total drift over trajectory is assumed to be a summation of many

small, largely independent sources of error, it can be well approximated by

Gaussian distribution” [6]. Thus DP-SLAM states that the effects of drift on low

level maps can be precisely approximated by perturbations on the robot’s

trajectory endpoints used to construct a low level map.

DP-SLAM uses a standard SLAM algorithm for the low level mapping

process. The low level algorithm input is a small portion of the robot’s trajectory,

along with the associated observations (range scans). This low level SLAM

process runs normally, and its output (a trajectory) is treated as distribution over

motions (motion model) in the higher level SLAM process, to which additional

noise from drift is added. So the output from each of small mapping is the input

for a new SLAM process, working at a higher level of time steps.

82

Because the sampled trajectory is treated as an atomic motion, this defines

the placement of the associated observation. “The observation model at the high

level is then just the collection of observations that were made at each step along

this trajectory” [6].

The high level SLAM loop for each high level particle is summarized as

follows [6]:

1. Sample a high level SLAM state (high level map and robot state).

2. Perturb the sampled robot state by adding random drift.

3. Sample a low level trajectory from the distributions over trajectories

returned by the low level SLAM process.

4. Compute a high-level weight by evaluating the trajectory and robot

observations against the sampled high level map, starting from the

perturbed robot state.

5. Update the high level map based upon the new observations.

Figure 3.12 shows an example of hierarchical SLAM. The entire map is

divided into 10 small maps (light green and light blue to distinguish between

them). Notice that when the loop is closing, the best path until there (represented

by red lines) has a misalignment. This means that there is something wrong in its

trajectory. Because it is using hierarchical DP-SLAM there is enough particle

diversity and the ambiguities in the beginning of the map can be resolved for,

now, 9 iterations (10 small maps).

Thus, resolving ambiguities leads to the map from Figure 3.13. Here the

best path (red lines) is different one and therefore the map it carries, a better one,

is different too.

83

Figure 3.12: Mapping closing a loop. Each black dot is the perturbed endpoints of

trajectories.

Figure 3.13: Map after ambiguities are resolved.

It is possible to implement the hierarchical SLAM for multiple levels for

providing more robustness. This idea of hierarchical SLAM is not restricted to be

used solely with DP-SLAM; this method could be effective when used with any

other SLAM method [6].

84

3.3.
3D SLAM Review

Existing SLAM methods produce a two-dimensional cross section of the

world, and robot motion is restricted to motion within this plane. However the

assumption of a 2D world is unrealistic: wheeled robots traveling across uneven

terrain and underwater autonomous vehicles, can all move with six degrees of

freedom, three translational and three angular. For robots to operate in this

environment, it is not only need to track these three new degrees of motion, but

also to maintain a three dimensional representation of the environment.

3D mapping has some advantages compared with 2D [1]:

 3D maps facilitate navigation. Many robot environments possess significant

variation in occupancy in the vertical dimension. Modeling this can greatly

reduce the danger of colliding with an obstacle.

 Many robot tasks require three-dimensional information, such as tasks

involving the localization and retrieval of objects or people.

 3D maps carry much information for a potential user of the maps. If one

builds a map only for the sake or robot navigation, then the SLAM

enforcements would be very few. However, if the map is acquired for later

use by a person, 3D information can be absolutely critical.

Some methods exist for three-dimensional motion. They tend to represent

the world in terms of a few sparse, pint-sized landmarks. These maps, while

useful for localization, and possible for navigation, give very little information

about the presence of objects in the world. In [24] a SLAM framework based on

3D landmarks for indoor environment with stereo vision is shown. Reference [25]

shows a real-time 3D SLAM is constructed using wide-angle vision.

Carnegie Mellon University´s Mine Mapping project is a notable example

of volumetric three dimensional maps, using a series of LRF set at different angles

[26]. Using a combined method of both local and global scan matching

techniques, a two-dimensional occupancy grid is created. Thus, with the

corresponding trajectory from the robot, the remaining three-dimensional data are

85

filled in to create the volumetric maps. Reference [27] presents an EKF-based 3D

SLAM, which uses planar features probabilistically extracted from dense three-

dimensional point clouds generated by a rotated 2D LRF. A similar work [28]

presents SLAM from visual landmarks and 3D planes, modeling the environment

as a set of planar surfaces and lines. These planar surfaces and lines are extracted

by fusing data from a camera and a 3D LRF.

Also DP-SLAM [6] proposes a 3D grid map representation. This

representation brings two types of challenges, technical and dimensional. The

technical problems are mainly issues of sensing. In particular, odometry is unable

to detect any motion in the three new degrees of freedom. The dimensional

challenges arise from a new dimension added to the problem. The resources

needed to deal with SLAM grow exponentially, so that merely extending previous

methods is infeasible on any computer architecture.

However, this thesis is focused in indoor structured environments.

Assuming a flat terrain, the localization given by the 2D DP-SLAM, can be used

to project the corresponding 3D points. Thus a 3D map is constructed, composed

by a set of points (a point cloud). This proposed method has similarities with the

one presented in [26] where 3D maps are obtained by using the 2D pose

information via the geometric projections.

Chapter 5 will show some results by applying DP-SLAM in simulated data.

After creating a 2D map, the DP-SLAM algorithm gives the best estimated path.

Using this, the corresponding 3D points are projected. The implemented simulator

is discussed in detail in the next chapter.

86

4.
Detailed Implementation

4.1.
EKF SLAM

The Extended Kalman Filter (EKF) fuses all available information about the

system’s state to compute a state estimate. This is accomplished through a

recursive three-stage cycle consisting of prediction, observation and update steps.

1. Prediction

This step involves computing
t and t .

As seen in eq. (3.20),
t depends on ut and λt-1. Using a naïve example,

the control ut could be one of two types: the first specifies the

translational and rotational velocities, and the second specifies odometry

information (such as distance traveled, angle turned). That is:

 or
t

t

t

v
u

d
ut

 (4.1)

Thus, the uncertainty of the control ut is given by its covariance matrices:

0

or
0

v
U

0

0d
U

 (4.2)

Using a landmark map representation, λt-1 is a vector containing the robot

and landmark positions at one time step earlier. That is:

 Ttntntttttt yLxLyLxLRRyRx 1111111111 ...

 Robot position Landmark 1 position Landmark n position

 (4.3)

87

Figure 4.1 shows the robot position at the previous time step, t1, and the

predicted robot position made by the odometry information in a Cartesian

plane. The predicted state vector
t is given by

 1

11

11

1 sin

cos

),(

t

tt

tt

tt

R

RdRy

RdRx

R

yR

xR

uf

 (4.4)

Figure 4.1: Robot position (red fill circle) at time t1 , and predicted robot position

(white filled circle).

Notice however, that it is not necessary to predict landmark positions.

Thus, the predicted state vector
t is now

 Tnnt yLxLyLxLyLxLRyRxR ...2211

where

 Ttntntttt

T

nn yLxLyLxLyLxLyLxLyLxLyLxL 11121211112211

In order to compute the predicted covariance t , as in eq. (3.21), Ft is

given by:

88

 100

cos10

sin01

),(
1

1

1

1

t

t

tt
t Rd

Rd

uf
F

t

 (4.5)

Notice that Ft is a matrix of size m x m, where m is the dimension of the

state vector (3+2n), being n the number of landmarks. However since the

environment is stationary, again, movement of landmarks does not need

to be predicted, thus the remaining elements in Ft are zero.

Pt is given by eq. (4.6) where U was described in eq. (4.2) and
tuJf is

given by:

10

cossin

sincos

),(
11

11

1

tt

tt

tt RdR

RdR

uf
Jf

tu
tu

 (4.6)

 T

t tutu JfUJfP

 (4.7)

In the same way,
tuJf is of size m x 2; however the elements related to

landmarks are zero. Thus the mean
t is the predicted state vector of size

(3+2n) x 1 and
t the predicted covariance matrix of size (3+2n) x

(3+2n).

2. Observation

The observation step computes the innovation vector and the innovation

covariance, that is)(tt hz and QHH T

ttt

in the eq. (3.23)

and eq. (3.22), respectively.

The perception function,)(th , that represents the predicted landmark

position seen from the predicted robot position is shown in Figure 4.2.

89

Figure 4.2: Predicted landmark position seen from the predicted robot position

In the same Cartesian plane, the predicted distance and angle (l and)

from the predicted robot position to the landmark L1, is given by eq.

(4.8):

RxRxLyRyL

yRyLxRxL
h

)/arctan(

)()(
)(

11

2

1

2

1
l

 (4.8)

Note that)(th shown in eq. (4.8) is written for the Landmark 1, in the

same way it must be computed for the n landmarks. Thus, the size of the

vectors)(th and the zt is 2n.

To compute the matrix Ht, the Jacobian of h at t
is given by

yLxLRyRxR

yLxLRyRxRh
H t

11

11)(
lllll

 (4.9)

90

22222222

22222222

1
yx

x

yx

y

yx

x

yx

y

yx

y

yx

x

yx

y

yx

x

t

dd

d

dd

d

dd

d

dd

d

dd

d

dd

d

dd

d

dd

d

H

0

where

1 1andxd L x Rx dy L y Ry

Notice however, that eq. (4.9) shows Ht using only the Landmark 1, thus

the true size of Ht is 2 x (3+2n).

n

n
t

LLR

LLRh
H

...

...
)(

1

1

lll

 (4.10)

and Qt represents the covariance matrix for the sensor noise:

0

0l

Q

 (4.11)

3. Update

Finally, this last step computes the desired λt and Σt, using eq. (3.22),

eq. (3.23) and eq. (3.24).

It is important to point out that in the beginning, where the robot starts the

mapping process, it may not see all landmarks, or not even one. Therefore, as the

robot moves through the environment, the state vector λt grows. Thus, when a new

landmark is acquired, the state vector is augmented. Figure 4.3 shows how the

robot sees a new landmark (p) at distance l and at angle α; eq. (4.12) and eq.

(4.13) show how this is modeled.

91

Figure 4.3: New landmark Lp, is added to the state vector.

)sin(

)cos(

RRy

RRx

yL

xL

z

p

p

p

l

l

(4.12)

p

t

t
L

 :

 (4.13)

As it was seen in Section 3.2.2, the covariance matrix Σt, represents the

relationships landmarks-robot and landmarks-landmarks (because the robot’s pose

uncertainty correlates landmark positions), these relationships are shown in eq.

(4.14).

 (4.14)

92

In the same way the covariance matrix Σt grows in dimension to include the

new landmark. To do this, the covariance matrices, CLpLp (Lp to Lp), CRLp (robot to

Lp) and CL1Lp … CLnLp (all old landmarks L1… Ln to Lp) are computed by eq.

(4.15), eq. (4.16) and eq. (4.17), respectively.

 ,,,,,, l

T

pt
l

p
RRyRx

T

pRR
RRyRx

pLpLp JzQJzJzCJzC

(4.15)

RR

RRyRx
RLp CJzC p

,,

(4.16)

nRLRL
RRyRx

pLnLpLpL CCJzCC ...
11

,,

(4.17)

where Jzp are the Jacobians:

)sin(10

)cos(01

,,

R

R

yL
R

yL
Ry

yL
Rx

xL
R

xL
Ry

xL
Rx

Jz

ppp

ppp

RRyRx

p

l

l-

(4.18)

)cos()sin(

)sin()cos(

,

RR

RR

yLyL

xLxL

Jz

pp

pp

l

p

l

l

l

l

 (4.19)

Finally, the augmented covariance matrix looks like eq. (4.20), representing

now: n:=n+1 landmarks.

93

(4.20)

4.2.
FastSLAM

The Fast Slam algorithm receives as input the previous distribution p(xt-1),

as a particle set }...1/{: 11 Nisi

tt , the odometry (or control) information

ut, and the landmark measurements zt. From the idea exposed in Section 2.2.4, the

FastSLAM algorithm uses the following steps.

1. Each particle i representing the robot position at time t1, i

tR 1 , from the

set Φt-1, is moved following the control vector ut and the motion model.

t

t

t

v
u

or

t

t

t

d
u

(4.21)

Table 4.1 shows an algorithm [1] for sampling from the motion model

p(R t | u t ,R t -1) to generate a random pose i

tR . Lines 1 and 2 perturb the

commanded control parameters with noise, drawn from the error

parameters α1 to α6 (a detailed explanation of these error parameters can

be found in [1]). The noise values are then used to generate the sample’s

new pose in lines 4 through 7.

94

Table 4.1: Sample Motion Model Algorithm [1]

 Sample Motion Model_algorithm (Rt-1, ut)

 1:)||||(ˆ
11 ttt vsamplevv

 2:)||||(ˆ
43 ttt vsample

 3:)||||(ˆ
65 ttvsample

 4:)ˆsin()sin(1ˆ
ˆ

1ˆ
ˆ

1 tRRRxRx t
v

t
v

tt

 5)ˆcos()cos(1ˆ
ˆ

1ˆ
ˆ

1 tRRRyRy t
v

t
v

tt

 6: ttRR tt ˆˆ
1

 7: return Rt=(Rxt, Ryt,Rθt)

Figure 4.4 illustrates the outcome of this sampling routine. A temporal

particle set },...,{ˆ 21 p

ttt RRR containing all the samples is created,

where p is the number of samples (particles).

Figure 4.4: Sampling. Each black dot represents a possible robot position.

2. Update the estimation of landmarks, using the EKF, the set ̂ of robot

poses samples created in step 1, and the landmark measurements zt.

Because the j
th

 landmark positions (1t

i

j xL , 1t

i

j yL) is known at time t1

as well as the poses (t

i xR , t

i yR) and rotations (t

iR) of each particle

95

(obtained in step 1), it is possible to compute the distance and angle

between them, as shown in Figure 4.5, where
i

jr̂
 and

i

ĵ are the distance

and angle between particle i and landmark j.

Figure 4.5: Distance and rotation between particle i and landmark j.

Thus, function h used by the EKF is given by:

t

i

t

i

t

i

jt

i

t

i

j

t

i

t

i

jt

i

t

i

j

i

j

i

j
i

j

RxRxLyRyL

yRyLxRxLr

h

))/()arctan((

)()(

ˆ

ˆ

11

2

1

2

1

 (4.22)

and the Jacobian of
i

jh , named
i

jH , is

2222

2222

ˆˆ

ˆˆ

11

11

1,

ba

a

ba

b
ba

b

ba

arr
h

H
i

j

yL

i

j

xL

i

j

yL

i

j

xL

L

i

ji

j

tjtj

tjtj

tj

(4.23)

where

 t

i

t

i

jt

i

t

i

j yRyLbxRxLa 11

96

In addition, the covariance of the landmark positions i

tj 1, is known.

Thus, the landmark updates are computed as follows:

 QHHS Ti

j

i

tj

i

j

i

j 1, (4.24)

1

1,

 i

j

Ti

j

i

tj

i

j SHW

 (4.25)

i

jtj hzZ ,

 (4.26)

 ZW ii

tj

i

tj 21,,

 (4.27)

Ti

j

i

j

i

j

i

tj

i

tj WSW 1,,

 (4.28)

where tjz , is the j
th

 landmark sensor observation in zt and Q represents

the covariance matrix for the sensor noise, that is:

0

0d

Q

(4.29)

The following figure shows the updated landmark j for the particle i,

namely
i

tjL , , represented by the blue arrow.

Figure 4.6: Updated landmark j for the particle i.

97

Note that this update is made for landmark j and particle i, thus it must

be repeated n x p times, being n the number of observed landmarks at

time t (the unobserved landmarks are not updated) and p the number of

particles.

This set of median and covariance are added to the temporal particles

set, as follows:

},,...,,,

,,,...,,,

,,,...,,,{ˆ

,,,1,1

2

,

2

,

2

,1

2

,1

2

1

,

1

,

1

,1

1

,1

1

p

tn

p

tn

p

t

p

t

p

t

tntnttt

tntnttt

R

R

R

 (4.30)

3. Assign the weight for each particle. Using the measurement vector zt,

each particle of the temporal particle set ̂ is evaluated.

Because the j
th

 updated landmark positions (
t

i

j xL ,
t

i

j yL) and the poses

(t

i xR , t

i yR) and rotations (t

iR) of each particle is known (obtained in

the 1), it is possible, once more, to compute the distance and angle

between them, as shown in Figure 4.7, where
i

jr
 and

i

j are the distance

and angle between particle i and the updated landmark j.

Figure 4.7: Distance and rotation between particle i and updated landmark j.

98

Now, the function
i

jh

is

t

i

t

i

t

i

jt

i

t

i

j

t

i

t

i

jt

i

t

i

j

i

j

i

j
i

j

RxRxLyRyL

yRyLxRxLr

h

))/()arctan((

)()(22

 (4.31)

and the Jacobian of
i

jh , defined as
i

jH , becomes

2222

2222

,

ba

a

ba

b
ba

b

ba

a
h

H

tjL

i

ji

j (4.32)

where

 t

i

t

i

jt

i

t

i

j yRyLbxRxLa

The updated covariance of the landmark positions i

tj , is also known.

Thus, the importance factors (weights) can be computed, as follows:

Table 4.2: Compute weights algorithm;

 Compute weights_algorithm (̂ , zt)

 1: for i =1 to p do

 2: 1i

tw

 3: for j=1 to n do

 4

QHHU Ti

j

i

tj

i

j

i

j ,

 5:

)}()(exp{)2det(: ,

1

,2
12

1

i

jtj

i

j

Ti

jtj

i

j

i

t

i

t hzUhzUww

 6: end for

 7: end for

99

where, once again, tjz , is the j
th

 landmark sensor observation. This set of

importance factors is added to the temporal particles set:

},,...,,,,

,,,...,,,,

,,,...,,,,{ˆ

,,,1,1

2

,

2

,

2

,1

2

,1

22

1

,

1

,

1

,1

1

,1

11

p

tn

p

tn

p

t

p

t

p

t

p

t

tntntttt

tntntttt

Rw

Rw

Rw

(4.33)

4. Finally, resample. Each particle, in the temporal particle set, is drawn

(with replacement) with a probability proportional to its importance

factor.

Prior to resampling, the weights of particles should be normalized such

that they sum up to one. Then, compute the cumulative probability

density function (cdf) which defines intervals that reflect each particle

“share” of the total probability, as illustrated Figure 4.8. Draw p times

one particle by generating p independent uniformly distributed random

numbers r in the interval [0,1]; obviously the “heaviest” particles are

more likely to be drawn.

Figure 4.8: Cumulative probability distribution and a random number r.

The output of resampling step is a new set Φt that possesses many

duplicates, since particles are drawn with replacement. This new set is

distributed according to the desired posterior p(xt).

5. If the measurement vector zt, introduces a new landmark never seen

before, this needs to be included into the set of particles, as follows.

100

The new observed landmark in zt consist of its distance rq and its angle

ϕq referenced to the unknown true robot position, as shown in Figure

4.9 and eq. (4.34).

Figure 4.9: New observed landmark Lq.

q

q

q

r

L

(4.34)

The new landmark Lq must be included within each particle in the

particle set through its mean and covariance. Thus, for each particle,

function
i

qh and its Jacobian
i

qH are given by:

)sin(

)cos(

qt

i

qt

i

qt

i

qt

i

i

q

i

q
i

q

RryR

RrxR

y

x

h

(4.35)

)cos()sin(

)sin()cos(

qt

i

nqt

i

qt

i

nqt

i

L

i

qi

q

RrR

RrRh
H

q

(4.36)

The mean is

i

j

i

tq h, and the covariance, i

tq, , is computed using the

covariance matrix for the sensor noise Q:

101

Ti

q

i

q

i

tq HQH ,

(4.37)

Now the particle set Φt has a new landmark incorporated, making the

number of total landmarks become n:=n+1.

4.3.
Simulator

To test the grid mapping algorithm, it is necessary to acquire data from a

LRF mounted on a robot that moves along a structured environment. It is also

possible to evaluate the algorithm from simulations of both the environment and

the LRF readings, as long as noise is introduced in the process.

The simulation of the robot perception based on LRF provides several

advantages. First of all, it is cheaper than experimenting with a real device. The

simulator gives the opportunity to concentrate more on the intelligence algorithms

such as localization and mapping (SLAM). Developing the simulator is easier

than building a new robot or perception system [29], due to the testability of many

configurations.

The simulator used in this work is implemented on Matlab®, explaining as

follows.

4.3.1.
3D Environment Simulation

The element used in the simulator to represent the structured environment is

the plane. All structured environment elements are approximated using planes;

straight walls, curved walls, doors, windows, floors, ceilings, etc, can be modeled

using a group of rectangles. Figure 4.10 shows an environment constructed in

such a way.

102

Each rectangle in this simulator is defined by four points, from which their

equation obtained. Thus taking, three points (a,b,c) of the four given points, the

equation of the plane that contains this rectangle is given by:

 0)()()(zzyyxx aznaynaxn (4.38)

where

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

a

a

a

c

c

c

a

a

a

b

b

b

n

n

n

)()(acab (4.39)

Figure 4.10: Simulated structured environment using rectangles.

4.3.2.
LRF Simulation

The working principle of the LRF, also known as a LIDAR, is shown in

Figure 4.11. In the presented simulation, laser ray data are assumed 1° apart, from

103

-90° to 90°. Note that these values are adjustable parameters in the simulator,

which can vary depending on the simulated LRF model.

Figure 4.11: Laser ray from a simulated LRF.

Other adjustable parameters from the simulator are shown in Table 4.3.

Table 4.3: Adjustable parameters on simulated LRF.

Parameter Units

Field of view ± rad

Operating range m

Angular resolution rad

Statistical Error ± mm, ±%, stdv (mm)

To acquire 3D data, the simulated LRF can be routed along its axis X, from

0° to 90° as shown in Figure 4.12, emulating a rotational support for the 2D LRF.

104

Figure 4.12: Simulated LRF rotation to acquire 3D data

Each measured laser ray is modeled as a vector in the polar system (r, α, β),

with the origin as the point where the rays come from, where r represents the

measured range, the rotation in the Z axis is given by α, and the rotation in X is

given by β.

Simulated measurements are obtained by merging the simulated LRF

routines with the models of the simulated environment. The point that defines the

position of the LRF in the environment is the same point where the rays come

from. Thus, the position and rotation of the LRF (in the environment and therefore

in a global coordinate system) is given by four variables: x, y, z and θ, where θ is

the rotation on an axis parallel to the Z axis of the global coordinate system.

With the LRF’s rays and its position and rotation in the global coordinate

system, the equation for each ray vector is constructed. Using the two points (a

and b) that define a ray vector, the line equation in 3D is given by

z

z

y

y

x

x

c

az

c

ay

c

ax)()()(

 (4.40)

where

z

y

x

z

y

x

z

y

x

a

a

a

b

b

b

c

c

c

)(ab (4.41)

105

Finally, virtual data is acquired equating the line equation (of each ray

vector) and the plane equation (of each plane), solving it to find the intersection

points, and then computing the distances r, between these points and the LRF.

Figure 4.13 and Figure 4.14 show a scan where the position of the virtual

LRF sensor is x = 2.0, y = 12.3, z = 0.4 and θ = 30° while the angle α ranges from -

90° to 90° (181 rays), with a constant angle β = 10°.

Figure 4.13: Virtual LRF readings in a simulated environment (top view).

106

Figure 4.14: Virtual LRF readings in a simulated environment, from two different

points of view.

4.3.3.
Error introduction in virtual data

The LRF suffers from two types of errors: systematic and statistical.

Systematic error can be reduced to acceptable limits by a good calibration or

replacing the faulty sensor. However statistical errors are always present in the

measurements. Thus for LRFs, each manufacturer gives in general the following

three ways to represent the statistical error:

107

 By standard deviation. The standard deviations (stdv) of the

measurements are given. For example the LRF SICK, model LMS200,

has a stdv of 5mm, and the model LMS291 has a stdv of 10mm.

 By a percentage of the measurement or by a fixed number. For

instance, the LRF SICK, model LMS291-S05 has an error of +/- 10mm.

 By a fixed number until a certain range, and beyond that by a

percentage. For instance, the LRF HOKUYO, model URG-04LX, has an

error of +/- 10mm in the range from 0 to 1m and, beyond that, 1% of the

measurement. The model URG-04LX-UG01 has an error of +/- 30mm in

the range from 0 to 1m and beyond that, 3% of the measurement.

These ways of expressing the error can be simulated and introduced in the

distances r, virtually measured from the presented simulator.

The above presented simulator description just focused in its basic

functionalities, however there are innumerable improvements that can be made,

especially regarding the performance in time response. Solving equations for

many planes/rectangles and lines is computationally expensive. Reference [30] a

simulated 3D laser measurement system is presented, based on LMS SICK 200

mounted on a rotational platform. This simulator uses multi core processing

power to generate 3D data. In [31] a simulator for airborne altimetric LIDAR is

presented. This simulator is conceived having three components: terrain

component, sensor component and platform component.

4.4.
Scan Matching

One of the objectives of this work is to map an environment without using

odometry information. Thus, the unique available information is taken from the

scans made by the Laser Range Finder (LRF). To estimate the robot movement,

the alignment of two consecutive scans needs to be performed.

It is important to notice that the scan matching searches for the displacement

between two consecutive scans, but this displacement is not necessarily the robot

108

displacement, since LRF may be mounted away from the robot center. To

calculate the robot movement it is necessary to know where the LRF is situated on

the robot, specifically where the LRF is located with respect to the coordinate

system of the robot.

As described in Section 2.3.3, the scan matching method used in this work

is the Normal Distribution Transform (NDT). This method was selected basically

because it has a featureless representation of the environment, consequently it

doesn’t need search for correspondences in the scans.

NDT uses Newton´s algorithm to minimize the function f = score. In most

systems, the initial estimate of the solution is given by odometry information. But

large error in the initial position estimate can contribute to the non-convergence of

the algorithm.

Therefore, to generate a robust algorithm, in this work a Genetic Algorithm

(GA) is used for optimization, from the Differential Evolution routines described

in Section 2.4.5.

4.4.1.
Differential Evolution Optimization for NDT

First, let’s rewrite eq. (2.15)

i

iiii qxqx
score

2

)(Σ)(
exp)(

1

i

T

p (4.42)

The outline of this optimization, given two scans (the first and the second

one), is as follows:

1. Build the NDT of the first scan, as described in Section 2.3.3.

2. Use the first scan to evaluate the distribution of its points using eq.

(4.42). This means that the vector of parameters must be p =[0 0 0]
T
 and

the score(p) will give a value that is the maximum possible. This is,

109

because the same scan is used to build the NDT and to evaluate the

score. Let’s call this maximum value A.

3. Filter the second scan, in order to eliminate regions with high density

readings (this will be explained in Section 4.4.3).

4. Initialize the ED algorithm, giving it the filtered second scan and the

function Ascore(p) as the fitness function. That is, ED should minimize

this function, estimating the vector p and evaluating the filtered second

scan into the NDT of the first scan.

The use of ED is robust and useful to estimate the vector p, which in this 2D

case is composed by the translation (Δx, Δy) and rotation (Δθ) between scans. This

tree displacement values are the variables to be codified; thus, one chromosome is

composed as:

Figure 4.15: Chromosome composition

and are represented by real numbers. The fitness function, as exposed above, is

given by:

i

i

T

Fitness
2

)()(
exp

1

iiii qxqx
A (4.43)

 The Stopping Criterion

The stopping criterion used in this optimization is given by two values.

The first is the Fitness value; thus, the optimizations stops if the fitness values

is less than 1.0 (this value was acquired empirically). The second stopping

criterion is the number of generations, established in 50 generations; although

this criterion value is varied for analysis purposes in Section 5.1.1.

110

 The Search Space

Looking up in real data, references [32] and [33], most robot

displacements are in its face direction; lateral movements are minimal because

they are due to sliding. Another behavior in robots movements is that backward

displacements are few and short. Thus, the search space for the three variables

in the estimated vector p is:

Table 4.4: Search space for vector p

Variable Min value Max value

Δx -0.25 m 0.25 m

Δy -0.50 m 1.00 m

Δθ -20.00 ° 20.00 °

In this way, the translation and rotation between two scans is limited by

this search space. These values were empirically defined such that they

guarantee enough similar information in two consecutive scans in order to

mach them.

This search space and the LRF’s scanning frequency (which will be

discussed later) therefore might limit the maximum lineal and angular velocity

of the robot. However, the LRF’s scans are sufficiently fast for most achievable

robot speeds for non-airborne systems. Therefore, the search space plays a

minor role in limiting the robot speed.

 DE Parameters

The following parameters used in DE for scan matching optimization

were empirically acquired.

111

Table 4.5: DE Optimization Parameters.

Parameter Value

Population size (NP) 100

Number of generations 50

Scaling Factor (F) 1.00

Crossover constant (CR) 0.95

Some consideration should be taken into account before using this ED

optimization, as explained next.

4.4.2.
Parameters and Considerations

a. Environment considerations

The environment to be mapped needs variety. E.g. long corridors

without doors or any wall-shape variations will lead to poor scan

matching performance, the ED will result in an estimated

vector [0 0 0]p . How long these corridors can be without

compromising scan matching depends on the LRF’s maximum range,

e.g., if the LRF’s range is 8m, then the length of such corridor should

be less than this value. But note that there are LRFs such as SICKs that

have more than 50 meters in range.

In the same way, the width of these corridors should be less than LRF’s

range, to ensure that the robot will pickup data from both sides (left and

right) of the sensor position.

b. LRF Considerations

Perhaps the most known LRF in Robotic is the SICK. SICK has a set of

LRFs for many applications, and the most popular being the family of

112

LMS-200. Thus, for example, the SICK LMS-200-3016 model has the

following main features [35]:

Table 4.6: SICK LMS-200-3016 features.

Field of view 180 °

Scanning Frequency 75 Hz

Operating range 0 m … 80 m

Angular resolution 0.25° , 0.5°, 1.0°

Systematic Error +/- 15mm

Statistical Error +/- 5mm

The scanning frequency of the above SICK is 75Hz, meaning 13.33 ms

per scan. Thus with such data, it is possible to calculate the maximum

linear and angular velocity of the LRF in order to guarantee that the

movement of the robot does not affect the LRF’s readings.

The following simplified equations could help to estimate these

maximum speed as a function of the LRF’s scanning frequency.

 st fv *max (4.44)

 sr f*max (4.45)

where fs is the scanning frequency of the LRF, and the parameters εt and

εr are the maximum error introduced by the robot’s movement into the

scan readings. For example, if the desired error must be at most 5mm in

translation, and the scanning frequency of the LRF is 75 Hz, then the

maximum speed of the LRF is vmax = 0.375 m/s, while for a desired

error of up to 0.25° in rotation, then wmax = 0.327 rad/s.

Note that this maximum values in translation are referred to LRF

speeds, which are not necessarily the same as the robot speed,

113

depending on where the LRF is mounted on the robot and if the robot is

making a turn.

4.4.3.
Scan Filtering

The value of eq. (4.42) is influenced by the density of the readings. Regions

with higher reading density are produced when the robot is close to a wall, thus

eq. (4.42) results in higher values in this regions, see Figure 4.16. This situation is

not desirable, as seen in [35]. The ED optimization could give us mismatched

scans, as Figure 4.17, since such oversampling in one small region could

negatively affect the matching of regions further away.

Figure 4.16: Density regions produced by a robot situated close to the right wall.

Region with
higher density
of readings

114

Figure 4.17: Mismatched scans, showing the NDT of a first scan (grayscale) and a
second scan (red dots). The right-bottom wall produces a high number of readings,
bringing down the second scan and compromising the match.

To overcome this situation this work uses the approach used by [36],

replacing small clouds of close points by their center of gravity. This has the

effect of smoothing the distribution of points over the scan. It also greatly reduces

the number of scan points, without loosing too much information.

The idea behind this filter is to move a circular window with fixed radius

over the scan and to replace the readings inside the window with their center of

gravity. The radius of the window defines the minimum distance between the

points in the filtered scan. This radius has to be defined experimentally. Low

values for this parameter do not solve the influence of the readings density, while

high values may render the resulting scan too sparse. In this work, this parameter

is set to 10 cm.

Figure 4.18 shows the same scan points of Figure 4.16, before filtering (left)

and after filtering (right). Reducing the number of scan points also improves the

speed of the ED optimization.

Region with
higher density
of readings

115

Figure 4.18: Scan filtering. Original scan with 181 points (left) and filtered scan with

59 points (right).

4.5.
DP-SLAM

The DP-SLAM algorithm is presented in this work in the form of

flowcharts. The detailed implementation of DP-SLAM is too extensive to be

presented here. However the code used in this work is free, available to download

from [33]. This code was modified in this work to include scan matching as a

motion model, as explained later.

As explained in Section 3.2.3, DP-SLAM uses a hierarchical algorithm. The

relationships between the low and high levels are shown in Figure 4.19. Here, the

input data is composed by the odometry and the range scans. Thus, each position,

estimated by the odometry reading, has attached its range scan. A piece of data is

used as input to low level SLAM. The output is the best estimated trajectory

attached with its corresponding range scans.

116

Start

Odometry &

Range Scans

end of data?

read a piece

of data

Low SLAM

no

end

yes

first set?

All High particles at:

x=0, y=0, θ=0

Print High Map, at:

x=0, y=0, θ=0

Resampling

High particles

Predict, using:

High motion model +

 high particles t-1

Weigh out, using:

perception model +

High Map t-1

t=t+1

Print High Map, using:

best High particle and its ancestors

Return High Map +

 all B, C, D

High SLAM

Figure 4.19: DP-SLAM flow chart

Figure 4.20 shows the low SLAM flowchart. Notice that, in the beginning,

all los particles are located in an initial position, and using the firs data scan a low-

map is printed. This initial position and low-map is used by the subsequent t+1

iteration.

117

Start

end of data?

read (x,y,θ,scan)

Predict, using:

motion model +

 particles t-1

Print Low Map, using:

best particle and its ancestors

end

yes

first read?

no

no

Weigh out, using:

perception model +

Low Map t-1

yes

Resampling

particles

Print Low Map, at:

x=0, y=0, θ=0

All particles at:

x=0, y=0, θ=0

t=t+1

Return a set of:

B, C, D +

scans

Set of Odometry &

Range Scans

Figure 4.20: Low (level) DP-SLAM flow chart

As show in Section 3.2.3, DP-SALAM uses a particle filter to track the

robot position. Thus the motion model is used to predict (i.e. generate samples)

and the perception model is used for particles weighing. A low-map is printed

each iteration, using the best particle and its ancestors. Note that the best particle

at iteration t, may not be a child of the best particle at iteration t1.

The output of the Low SLAM (LSLAM) is used by the High SLAM

(HSLAM), as shown in the Figure 4.19. Note that HSLAM is slightly similar to

LSLAM, but instead of sampling robot positions, HSLAM samples robot

118

trajectories. Also both low an high, use the same perception model, but their laser

variances are different. The LSLAM is the basic SLAM algorithm, working

unperturbed while the HSLAM is working with slightly different data and as such,

requires a different laser noise model. With a “rigid” trajectory passed up from the

LSLAM, there is less room for minor perturbations, and certain amount of

assumed drift. All of this is included in the high level laser variance, which needs

to be correspondingly larger [6]. Empirical results show that using a standard

deviation of 7cm at the higher level works well [6].

Finally the High SLAM output is the best High Map and robot path.

4.5.1.
Motion Model

The motion model proposed by Eliazar [6], is shown in eq. (4.46).

BR

BRCBRDyR

BRCBRDxR

R

yR

xR

t

i

t

i

t

i

t

i

t

i

t

i

t

i

t

i

t

i

t

i

1

111

111

)2/)(sin()2/sin(

)2/)(cos()2/cos(

 (4.46)

The new position Rt=[Rxt , Ryt , Rθt] depends on the last robot position Rt-1

and the parameters B, C and D. The value (Rθt-1 + B/2) is called the major axis

movement, and both B and D are expected to be distributed normally distributed

with respect to the reported odometry values b and d (amount of rotational and

translational movement, respectively). But the mean of each B and D will scale

linearly with both b and d, while the variance will scale with b
2
 and d

2
. C is an

extra lateral translation term, which is present to model shift in the orthogonal

direction of the major axis. This axis, called minor axis, is at angle (Rθt-1 +

(B+π)/2). In this view, B, C and D are all conditionally Gaussian given b and d:

),(~

),(~

),(~

2222

2222

2222

DbDdDbDd

CbCdCbCd

BbBdBbBd

bdbdD

bdbdC

bdbdB

Ν

Ν

Ν

119

where μAx is the coefficient for the contribution of the odometry term x to the

mean of the distribution over A. DP-SLAM uses an automatic parameter estimator

to obtain these μAx.

Note that the above implementations assume that odometry readings are

available. This work, on the other hand, does not make use of odometry

information. This is obtained instead from scan matching. In this way, the “scan

odometry” consist of tree displacements: Δx, Δy, Δθ, displacements that are

referenced to the current robot position. Because scan matching is used, no extra

lateral displacement needs to be considered. In the implemented approach, two

consecutive scans are taken from two different points in the environment, as

shown in Figure 4.21.

Figure 4.22 (left) shows the environment from the first, or current, robot

position point of view, and (right) shows it from the second robot position.

120

Figure 4.21: Two consecutive robot positions in an environment.

Figure 4.22: Environment seen from the current robot position (left) and second

robot position (right).

Thus, the scan matching process searches for an alignment of both scans, by

rotating and translating the second scan onto the first scan coordinate system, to

obtain the actual robot displacements Δx, Δy, Δθ. The aligned scans are shown in

Figure 4.23.

121

Figure 4.23: Aligned scans in a global coordinate system, displacements ΔyR, ΔxR

and ΔθR are related to the first scan coordinate system.

Assuming a perfect scan matching, eq. (4.47) gives the new robot position

by

1

1

1

)sin(

)cos(

t

i

t

i

t

i

t

i

t

i

t

i

R

dyR

dxR

R

yR

xR

 (4.47)

where:

 22)()(yxd

and
 21 atan2(,)i

tR y x

However, because the scan matching process isn’t perfect, it will give us an

approximation of Δx, Δy, and Δθ. It is expected that these approximations are

distributed according to a distribution shape. The shape of this distribution must

be acquired empirically by comparing the approximated displacement, after

convergence of the scan matching, with actual position (estimated or simulated),

as explained in Chapter 5. Table 4.7 shows an algorithm to sample from this scan

matching motion model, (R t | u t ,R t -1), to generate a random poses i

tR . Lines 1

through 3 perturb the “scan odometry” parameters with noise, drawn from the

error parameters vx, vy and vθ (they will be explained in Chapter 5). The noise

values are then used to generate the new sample pose in lines 4 through 8. of the

algorithm.

122

Table 4.7: Sample scan matching motion model algorithm, where atan2(Δy, Δx) is

defined as the generalization of the arc-tangent function of Δy/Δx over [0, 2π].

 Sample SM Motion Model algorithm (Rt-1, ut)

 1:)(ˆ
xvsamplexx

 2:)(ˆ
yvsampleyy

 3:)(ˆ
 vsample

 4: 22)ˆ()ˆ(yxd

 5:)ˆ,ˆ(atan221 xyR t

 6:)cos(1 dRxRx tt

 7:)sin(1 dRyRy tt

 8: ˆ
1 tt RR

 9: return Rt=(Rxt, Ryt,Rθt)

Finally, the LSLAM output in Figure 4.20, using the proposed motion

model, is a set of changes between positions zyx ˆ,ˆ,ˆ and its corresponding

range scans.

4.5.2.
High Motion Model

As seen in Section 3.2.3.4, DP-SLAM states that the effects of drift on low

level maps can be accurately approximated by perturbations to the endpoints of

the robot trajectory used to construct a low level map.

By sampling drift only at endpoints, it will fail to sample some of the

internal structure that is possible in drifts, e.g., it will fail to distinguish between a

linear drift and a spiral drift pattern with the same endpoints. However, the

existence of significant, complicated drift patterns within a map segment would

violate the assumption of moderate accuracy and local consistency within the low

level mapper [6].

The “motion” model in high SLAM is assumed to be Gaussian, and evenly

distributed about the lateral axes. The specific values for these variances are

highly mutable, affected by the specific SLAM algorithm used at the low level,

123

and the amount of resources used, as well as elements from the robot or the

environment [6].

Figure 4.24 shows how the high motion model works. As shown in Figure

4.19 the first set of data received from the low SLAM is simply printed in the high

map at zero position. This is shown in the Figure 4.24, the first set of data is a set

of variables ,ˆ,ˆ,ˆ zyx (represented by a red line) along with its scans

(represented by the green region of the figure).

Figure 4.24: High Motion Model

The second set of data received from the low SLAM (black line) is not

connected with the endpoint of the first set (red dot). Instead, it is linked with

many samples (black dots), generated by applying the high motion model at the

first endpoint (red dot). Notice, however, that Figure 4.24 shows the second set of

scans (piece of map in blue color) only for one sample (the best sample); thus it is

understood that high SLAM keeps a different map for each sample. Note that the

motion model generates samples not only disturbing the endpoint position, but

also the endpoint rotation.

In the next chapter the presented algorithms are evaluated, both using

simulated data and real experimental data taken from the literature.

124

125

5.
Tests and results

This chapter presents results obtained using the proposed method on

simulated and real data. First, it is analyzed the scan matching optimization; after

that, the Scan Matching Motion Model is detailed presented, then some 2D results

are shown using DP-SLAM; and finally a simulated and a real 3D map example

are presented.

5.1. Scan Matching

5.1.1. Optimization Parameters Influence

Because this analysis uses simulated data, the truth robot displacement

values, Δx, Δy, Δθ; are known exactly; this will help us to test the optimization

parameters influence on the scan matching process.

As shown in Section 4.4.2, the optimization using genetic algorithm

depends on the size of the population and the number of generations. The Figure

5.1 and Figure 5.2 present the error displacement obtained by scan matching,

showing the population size influence in DE optimization (the number of

generation is kept fixed, in this case generations = 50), this experiment has 366

simulated robot poses and were acquired by simulating an standard deviation error

of 15 mm.

Notice that in Figure 5.1, small population leads to non-convergence and

consequently the estimated displacement surfers from hug errors, as shown in this

case for population size of 20 and 40.

In the other hand Figure 5.2, shows the same experiment using a larger

population; here the peaks have been significantly reduced in size and number

(see the scale).

126

Figure 5.1: Error in displacement, Δx, Δy, Δθ, influenced by population size (20 and

40) in DE optimization.

Figure 5.2: Error in displacement, Δx, Δy, Δθ, influenced by population size (60 and

100) in DE optimization.

Figure 5.3 and Figure 5.4 show the error displacement, when the population

size is fixed to 100 and the generation number is varied. The effect of generation

increase is to improve the precision in displacement estimation. As seen in Figure

5.3 (for 15 and 30 generations), although convergence has been guaranteed, there

are not enough generations to significantly improve the estimation.

On the other hand, Figure 5.4, shows a refined estimation by increasing the

generation number (50 and 75 generations).

127

Figure 5.3: Error in displacement, Δx, Δy, Δθ, influenced by number of generations

(15 and 30) in DE optimization.

Figure 5.4: Error in displacement, Δx, Δy, Δθ, influenced by number of generations

(50 and 75) in DE optimization.

5.1.2. LRF Error Influence

Another important scan matching parameter is the LRF error. Using the

same simulated environment and simulated robot poses, error in laser range is

introduced by adding a random value picked from a Gaussian distribution with

zero mean and a variable standard deviation (stdv). In this case, the standard

deviations are between 15mm and 80mm.

128

Figure 5.5 and Figure 5.6 show the LRF error influence in DE optimization.

This simulation uses a fixed population size, 100, and a fixed number of

generations, 50, showing that the greater the laser range error the worse the

estimated displacement. Note however that DE optimization is robust, even if the

error displacements increase.

Figure 5.5: Displacement error, Δx, Δy, Δθ, influenced by LRF error (stdv= 15mm

and stdv=25mm) in DE optimization.

Figure 5.6: Displacement error, Δx, Δy, Δθ, influenced by LRF error (stdv= 40mm

and stdv=80mm) in DE optimization.

129

As explained in the introduction of this work, although technology offers

increasingly accurate position sensors, even small measurement errors can

accumulate and compromise the localization accuracy. This becomes evident

when programming a robot to return to its original position after traveling a long

distance, based only on its sensor readings. In this case, our position “sensor” is

the scan matching process.

Figure 5.7 shows the accumulated error in robot position, where (robot

poses are marked in capital letters according to Figure 5.8). This error represents

the Euclidean distance between the estimated and true robot simulated robot

position. Note that the error inevitably grows as the robot pose number increases.

Figure 5.7: Accumulated error in robot position due to imperfect scan matching.

Figure 5.8 shows the simulated environment used for all theses scan

matching experiments. It also shows the true (red line) and estimated (blue line)

robot path acquired by scan matching. Figure 5.9 shows the map for the estimated

robot path, showing the growing misalignments due to accumulated small errors

in scan matching process.

130

Figure 5.8: Robot trajectories, showing the true path (red line) and estimated path

(blue line). a) Robot starts from zero position (red dot), goes through positions A, B,

C and A. b) Robot traveling A, D, B. c) Robot completes the course through B, A,

C, B and D.

a

d

s

a)

b)

c)

131

Figure 5.9: Map acquired using scan matching process in the simulated

environment.

5.1.3.
Scan Matching in Real Data

To analyze the proposed method using real experimental data, it is necessary

to have the true robot position in the environment. But this would require

expensive motion detector sensors and an external measurement, which are

usually not available. Thus, in this work, the analysis made with real data

collected from the literature focuses on the study of the convergence on DE

optimization. As was seen in Section 4.4.1, the fitness function to minimize has

been defined as A-score(p), which should be close to zero for a good match.

The performance of the proposed method is evaluated with real data from

four experiments from the literature.

The first experiment comes from the second floor of the Duke University

Computer Science Department (the second floor of the D-Wing of the LSRC

building) [32]. This contains 551 robot poses and uses a LRF with 8m maximum

range. This data includes odometry information, which is removed to show the

efficiency of the presented approach using a single LRF. Figure 5.10 shows the

fitness function value for each of the 550 robot displacements, acquired using the

132

proposed method. The fitness value will rarely be close to zero, because two

consecutive will never be the same, unless the robot does not make any movement

and the sensors didn’t have uncertainties. The fitness values for “D-Wing”

experiments show some peaks. Empirically, it is possible to state that values

below 30 have a greater probability of convergence in DE optimization.

Figure 5.10: Fitness values for “D-Wing” experiment.

Since all fitness values are below 30, this experiment has a greater

probability of not having non-convergence problems. This can be confirmed on

the resulting map, shown in Figure 5.11. This figure shows the “D-Wing”

experiment, which is a closed loop indoor structured environment. It can be

observed also the resulting misalignment due to cumulative error in scan

matching.

133

Figure 5.11: “D-Wing” experiment acquired using the proposed scan matching

process, without the use of odometry data.

The second experiment also comes from the Duke University Computer

Science Department, a long stretch of the second floor of the C-Wing of LSRC –

pharmacology [32]. This contains 1,106 robot poses and uses a LRF with 8m

maximum range. Once again the odometry data is removed for tow show that it is

not needed in the SLAM process using the presented methods. Figure 5.12 shows

the fitness function value for each of the 1105 robot displacements, acquired using

the proposed method.

134

Figure 5.12: Fitness values for “C-Wing” experiment

This figure shows a few peaks (12 in total) larger than the empirically

estimated threshold 30. They have a higher probability of resulting in non-

convergence in DE optimization. To determine their convergence, they have to be

inspected by simple observation.

Figure 5.13 shows the “C-Wing” experiment, which is also a loop closed

indoor structured environment. Note also it the misalignment due to cumulative

error in scan matching.

135

Figure 5.13: “C-Wing” experiment acquired using the proposed scan matching

process, without the use of odometry data.

The third experiment comes from the Department of DIIGA at the

Engineering University in Ancona [33]. This set contains 9,382 robot poses and

uses a LRF of 80m of maximum range. Once again the odometry data is removed.

To decrease the computational effort, only 1 robot pose out of every 5 was used in

this evaluation, resulting in a number of robot poses of only 1,875. In Figure 5.14

the fitness function value is shown for each of the 1,874 robot displacements,

calculated using the proposed method.

136

Figure 5.14: Fitness values for “Diiga” experiment.

This figure shows some peaks (50 in total) greater than 30. They have a

probability of being a non-convergence in DE optimization.

The Figure 5.15 shows the “Diiga” experiment.

137

Figure 5.15: “Diiga” experiment acquired using the proposed scan matching

process, without the use of odometry data.

The fourth experiment comes from the Kvarntorp mine, near to Örebro,

Sweden [37]. It contains 95 robot poses with 3D scans; again the odometry data

was removed.

Figure 5.16 shows the fitness function value for each of the 94 robot

displacements, acquired using the proposed method. In this experiment, there are

36 fitness values greater than 30. This means that 37% of the matches are poor

matches, consequently this produces a poor map as shown in Figure 5.17.

138

Figure 5.16: Fitness values for “Mine” experiment

Figure 5.17: Poor map of “Mina” experiment.

This poor map is because scans were taken out of the search space

parameters described in Section 4.4.2, Error! Reference source not found.. The

139

simple solution that comes out is to increase these parameter ranges. But this is a

risky solution, because this could lead to false positives and the map would end up

worse.

 In this case de adopted solution was to increase the NTD cell size to

4000mm (originally it was defined to 1000mm, as described in Section 2.3.3).

This adopted solution has the effect of blurring the NDT representation and

consequently facilitates the optimization convergence. However, this scaling

increase only helps the translation optimization; rotations, on the other hand, can’t

be scaled. Thus to solve this problem, misaligned matches are ran individually on

DE optimization, increasing or decreasing the rotation search space depending on

the case.

Obviously, this is computationally intensive, but it is necessary to allow the

proposed method to be successful even in the situations where the matching

process is not guarantee.

The resulting map, after increasing the NTD cell size, but before running

individually misaligned matches, was already shown in Figure 5.17. The map

after running individually misaligned matches and varying the rotation search

space is shown in Figure 5.18.

140

Figure 5.18: “Mina” experiment acquired using scan matching process

5.2.
Motion Model

The analysis made using the fitness value on DE optimization helps to

determine the quality of the obtained map. But there are some fitness values (in

special in the “Diiga” experiment) greater than 30. In these cases, it is advised to

manually examine these critical parts from the map. This, of course, suggests the

need of a non automatic mapping, for such large fitness values. These results can

be viewed as a first mapping step. The scan matching errors are managed in a

second mapping step: the motion model in DP-SLAM.

In fact, computing the displacement error histogram (using the simulated

experiment), they are distributed as Gaussians, as shown in Figure 5.19.

141

The distribution error in Δy (movement along robot’s facing direction) as

shown in Figure 5.19(c), can be approximated by a Gaussian with zero mean and

standard deviation of 0.02m plus another Gaussian with mean on 0.20m and

standard deviation of 0.10m. However, because always the robot movement is

along its facing direction (unless it has significant slippage), the distribution error

in Δx is different, and can be approximated by a simple Gaussian, as shown in

Figure 5.19(a). In the same way, the distribution error in Δθ can be approximated

by a Gaussian, as shown in Figure 5.19(b).

a)

b)

 c)

Figure 5.19: Error distribution in displacement: a) Δx, b) Δθ and c) Δy

These displacement errors in Δy are evident when looking in detail the maps

acquired.

142

Figure 5.20 shows an example of this displacement error, taken from the

experiment on a simulated environment from Section 5.1.

Figure 5.20: Misalignment in Δy (respect to the current robot position).

The averages and standard deviations of these three movements are the

parameters used in the proposed motion model. It is expected that scan matching

in real data follows the same distribution shapes, but it doesn’t mean that the

parameter values are the same.

The most complicated error parameter is related to the robot’s face

displacement, Δy. One important thing observed in real data, using the proposed

scan matching, is that error displacements in this movement direction could

depend on robot velocity. Figure 5.21 shows this idea: after a robot displacement

in the time step Δt, the actual position is Rt = [Rxt Ryt Rθt], but the scan matching

gives a displacement p= [Δx Δy Δθ] where Δy is near to cero or, in the best case,

a value much lower than the actual displacement ΔyR. Thus the mean of the small

misalignment

in Δy

Robot
movement
direction

143

Gaussian in Figure 5.19(c), would be in λ, where λ = |Δt·VR| and VR is the robot

velocity.

a)

b)

Figure 5.21: a) The true robot displacement. b) The displacement given by scan

matching, showing that the most common error is in Δy.

Since one of the objectives in this work is no to use odometers, such robots

with a single LRF cannot directly measure their velocity. However, it is possible

to use the instants when the scans were taken and, in this way, compute the robot

144

velocity(estimated using the displacement between scans on t-2 and t1 and the

time interval between them). Note, however, that this value need not be exact and

could be approximated; this is an advantageous consequence of using a

probabilistic approach.

Misalignments in Δy were also found in real data, as shown in Figure 5.22.

Another important thing observed in real data is the fact that large displacement in

Δy corresponds to small rotations Δθ; this behavior is shown in Figure 5.23. This

fact gives a restriction to the proposed motion model. Thus only when scan

matching reports a small rotation, the motion model will be able to sample from

the small Gaussian in Figure 5.19(c). The standard deviation assumed for this

small Gaussian is σ = (λ/2). On the other hand, the higher Gaussian in the same

figure is assumed with zero mean and standard deviation: σ = 0.02m + abs(Δy/10).

Figure 5.22: Misalignment in Δy (D-Wing experiment)

Robot
movement
direction

misalignment

in Δy

145

Figure 5.23: Larger displacement in Δy correspond to small rotations Δθ (D-Wing

experiment).

The displacement error in Δx follows the distribution shape from Figure

5.19(a), which is simpler than the Δy error distribution, since it could simply be

approximated by a zero mean Gaussian with standard deviation σ = 0.02m +

abs(Δx/10). In the same way the error in Δθ is approximated by a zero mean

Gaussian with σ = 0.5°+abs(Δθ /10).

The final motion model is shown in Table 5.1, Table 5.2 and Table 5.3.

Note that this algorithm is a more detailed version than the one from Table 4.7.

Table 5.1: Proposed Scan Matching Motion Model.

 Sample SM Motion Model algorithm (Rt-1, ut)

 1: x/10)(+ 0.02mˆ abssampleAxx

 2: ,,y/10)(+ 0.02mˆ abssampleByy

 3:)10/(5.0ˆ abssampleA

 4: 22)ˆ()ˆ(yxd

 5:)ˆ,ˆ(atan221 xyR t

 6:)cos(1 dRxRx tt

 7:)sin(1 dRyRy tt

 8: ˆ
1 tt RR

 9: return Rt=(Rxt, Ryt,Rθt)

146

Table 5.2: Approximate algorithm to sampling from normal distribution [1]

 sampleA: sample_normal_distritubtion (v)

 1:

12

1

)1,1(
6 i

rand
v

return

Table 5.3: Approximated Algorithm to sample from the Δy distribution error.

 sampleB (v, λ , Δθ)

 1:)1,0(randx

 2: if (x > 0.95) && (Δθ < 3°)

 3: return sampleA(λ/2) + λ

 4: else

 5: return sampleA(v)

5.3.
DP-SLAM

From the incorporation of the motion model in the DP-SLAM algorithms,

improved 2D maps are now obtained from the simulated environment and the

experimental ones taken from the literature.

Figure 5.24 shows the simulated environment as 2D grid map. This map

was acquired using 1000 particles in the LSLAM and 1500 particles in the

HSLAM, with a resolution of 50mm.

147

Figure 5.24: 2D grid map from the simulated environment experiment, obtained

with DP-SLAM using the proposed motion model.

Figure 5.25: Accumulated error position obtained with DP-SLAM using the

proposed motion model, on simulated experiment.

Figure 5.25 shows the accumulated error in robot position. Comparing this

figure with Figure 5.7, it is clear that the error does not increase with time, being

kept mostly under 300mm. Figure 5.26, Figure 5.27 and Figure 5.28 show the

histograms of the errors in Δx, Δy, Δθ.

148

Figure 5.26: Error distribution in Δx obtained with DP-SLAM using the proposed

motion model.

Figure 5.27: Error distribution in Δy obtained with DP-SLAM using the proposed

motion model.

149

Figure 5.28: Error distribution in Δθ obtained with DP-SLAM using the proposed

motion model.

Figure 5.29 shows another simulated environment that was also shown in

Figure 3.11. The difference between them is that now the map is better

because was built using hierarchical DP-SLAM. Thus, 1000 particles were used in

the LSLAM and 1000 particles in the HSLAM, with a resolution of 50mm.

Figure 5.29: 2D grid map from simulated environment presented in

150

Figure 3.11.

Let’s now apply the proposed method to the experimental data from the

literature. The first real experiment (D-Wing) in the form of 2D grid map is shown

in Figure 5.30. This map was acquired using 500 particles in the LSLAM and 600

particles in the HSLAM, and it has a resolution of 50mm.

Figure 5.30: 2D grid map of “D-wing” experiment, acquired with DP-SLAM using

the proposed motion model.

The second real experiment (C-Wing) in the form of 2D grid map is shown

in Figure 5.31. This map was acquired using 600 particles in the LSLAM and

1,300 particles in the HSLAM, and a resolution of 40mm.

151

Figure 5.31: 2D grid map of “C-wing” experiment, acquired with DP-SLAM using

the proposed motion model.

The third real experiment (“Diiga”) in the form of 2D grid map is shown in

Figure 5.32. This map was acquired using 600 particles in the LSLAM and 1800

particles in the HSLAM, and it has a resolution of 40mm.

152

Figure 5.32: 2D grid map of “Diiga” experiment, acquired with DP-SLAM using the

proposed motion model.

Finally, the fourth real experiment (“Mine”) in the form of 2D grid map is

shown in Figure 5.33. This map was acquired using only the LSLAM with 1,200

particles, with a 50 mm of resolution.

153

Figure 5.33: 2D grid map of “Mine” experiment, acquired with DP-SLAM using the

proposed motion model.

5.4.
3D Mapping

The proposed mapping method using a single RLF uses Scan Matching and

DP-SLAM to acquire 2D robot localization. Thus, as long as the parameter ranges

shown in Error! Reference source not found. are satisfied, it will be possible to

create as well 3D maps. However, almost all 3D data from available from

154

literature, in special in [33] and [38], are out of these parameter ranges. Most of

them are from unstructured environments, and those that are from indoor

structured environments only picked up 3D data from sparse robot positions, not

frequent enough to satisfactorily apply DP-SLAM without the use of odometer

readings.

The previously simulated map is now used to evaluate the application of the

proposed methods to 3D. The environment and LRF simulator presented in

Section 4.3 is now applied to a 3D map.

As discussed in Section 3.3, trajectory given by the 2D DP-SLAM can be

used to project the remaining three-dimensional data. Figure 5.34 shows a 3D map

of the simulated environment exposed in previous section. It is represented in the

form of a 3D point cloud map.

Figure 5.34: 3D point cloud map of the simulated environment.

155

Figure 5.35: 3D point cloud of the simulated environment (only three 3D scans are

shown)

Figure 5.36: 3D point cloud of the simulated environment (only four 3D scans are

shown).

156

The “Mine” experiment, shown in the previous section, is the only 3D real

environment used in this work. However, it is an example of 3D data acquired

from sparse robot positions; for this reason, its original dimensions were reduced

by a factor of four and, after processing, returned to its original values.

Figure 5.37, Figure 5.38, Figure 5.39 and Figure 5.40 show the “Mine”

experiment, but now in three dimensions, in the form of 3D point cloud map. This

figures show only some 3D scans (not all) for visualization purposes.

Figure 5.37: 3D point cloud of the “Mine” experiment.

157

Figure 5.38: 3D point cloud of the “Mine” experiment.

Figure 5.39: 3D point cloud of the “Mine” experiment (top view).

158

Figure 5.40: 3D point cloud of the “Mine” experiment.

159

6.
Conclusions

This work explored the main SLAM solutions, given a detailed example for

implementing the EKF-SLAM and FastSLAM; although the adopted solution, for

the proposed application, was the DP-SLAM.

Thus, to perform SLAM without odometry information, the following

algorithms were implemented:

 A simulator to acquire 3D data from structured environments; implemented

on MatLab® platform.

 A scan matching algorithm, to get robot displacement without odometry

information, based in genetic algorithm optimization for the Normal

Distribution Transform; also implemented on MatLab® platform, using the

Differential Evolution library acquired from reference [21].

 A modified DP-SLAM, which included a new motion model: the scan

matching motion model; implemented on Visual C++ platform.

This method can deal as well with 3D environments, as long as the LRF is

mounted on a rotating platform on the mobile robot, to allow both horizontal and

vertical scans. As the robot moves, the LRF acquires 2D scans. Where and when

3D data is required, the robot stops and the platform rotates synchronized with the

LRF to perform further 2D scans on different plane orientations. After traveling

through a desired path, the acquired data is processed to obtain 2D or 3D maps.

In this way, the main contribution of this thesis is the application of DP-

SLAM without the need for odometry information, just by using a single LRF.

Furthermore, this comes with some considerations and advices, along with

specific conclusions, detailed next.

160

6.1.
DP-SLAM Conclusions

DP-SLAM is a powerful tool in 2D mapping so that, it doesn’t need a

separated loop detection algorithm.

Such a high performance comes with a high computational cost. Thus, DP-

SLAM is an off-line mapping algorithm, due to the huge data it manages. The

smallest experiment (“Mine”) took about 1 hour to be evaluated and the longest

(“Diiga”) took about 5 hours, using a processor AMD Turion 64 with 2.1GHz.

The time complexity of DP-SLAM is analyzed in detail in [6].

The Motion Model in DP-SLAM has a considerable influence in the

mapping performance. Poor models will need a huge number of particles to obtain

moderate results. Thus, the Scan Matching Motion Model proposed in this work

could be improved to include holonomic robots, so that they can manage both Δx

displacement errors as well as in Δy errors.

The “low map” size in LSLAM (“piece of data” in Figure 4.19) as proposed

by [6] is a function of the number of iterations. Thus, [6] proposes between 75 to

150 iterations. But in the analysis in this thesis, these values didn’t give good

results. Basically, 150 iterations don’t guarantee that the robot travels enough

distance to be considered a low map. The robot could get hundreds of scans

without leaving the same room. In all experiments made by DP-SLAM in this

work, a low map is only created when robot travels about 3m in an approximately

straight path. It was observed that, when a low map is created (the LSLAM

algorithm finishes) within a fast robot rotation, the next low map (that uses a

portion of the previous map) suffers major ambiguities and tends to produces poor

particles.

In LSLAM, DP-SLAM uses the current map for particle weighing. The best

particle is used to grow the map, adding the new observation. If the robot

displacement is higher than the LRF’s maximum range, then DP-SLAM does not

have enough pieces of the map for particle weighing. Thus, it is recommended to

have a LRF with maximum range large enough to avoid this undesired situation.

161

As a way of demonstrating the proposed method performance, the simulated

map (Figure 5.8) is compared with the acquired map using DP-SLAM (Figure

5.24). Thus, in order to compare them, the contours (walls) of both maps are

selected and then converted to bitmaps. In this case the pixel to pixel comparison

gives 93.34% of similarity, this mean 6.66% of wrong pixels.

6.2.
Scan Matching Conclusions

The time of convergence in DE optimization depends on population size and

generation number. Population size of 100 with 50 generations takes

approximately 18s using a processor AMD Turion 64 with 2.1GHz. This

relatively long time, coupled with time consumed by DP-SLAM algorithm, make

the proposed method an offline but robust solution.

Errors in Scan Matching, the first or any other, are outweighed by the

motion model proposed in Section 5.2. Note also that the first scan or any other

have the same level of reliability; thus, if the first scan, and consequently the first

grid map, is not good, it can be improved by the subsequent iterations (subsequent

scans), in the sense of a probabilistic fusion.

Misalignments found in scan matching (for Δy displacement) are due to the

cell size defined in Section 2.3.3. I.e. small details in the environment are blurred

in NDT representation, which leads to unclear limits in alignment. One solution

would be to reduce the cell size, but this creates an NDT representation with sharp

shape; this case, DE optimization would need a quite larger population to achieve

convergence. However, with some considerations, the cell size could be

dynamically defined, depending on the measured LRF values. Thus, if LRF

returns small distances, for instance less than 3m, then the cell size would be

reduced to 500 mm. For higher distances, 1m of cell size would be a good choice.

This idea was not implemented in this thesis, but it suggests future works to

determine the distance threshold for each cell size choice.

162

The LRF’s maximum range, as in DP-SLAM, is a very important parameter

in scan matching. Larger maxima mean more data (about the environment) in one

scan, which helps to improve the alignment.

The scan matching proposed was implemented in Matlab®, while DP-

SLAM was implemented in C++ (using the code from [32]). It is possible, of

course, to use the same computer language for Scan Matching and DP-SLAM. To

increase the algorithm speed, it is recommended to implement the scan matching

in C++ as well. A powerful library for evolutionary computing, GCOM [38], can

help in such task. This is a suggestion for future works.

There are solutions for 3D scan matching in non-planar terrain [39], [40]

and [41]. Thus, they could be used as a basis to extend the proposed method to a

3D mapping in uneven terrain, using as well a single LRF without odometry

information.

6.3.
3D Mapping Conclusions

The 3D maps presented in Section 5.4 use point cloud representation. Thus,

the quality of these maps depends on LRF error, because they are simply plotted

using the 2D trajectory given by DP-SLAM. However, DP-SLAM fuses

probabilistic observations made for each cell, so, as the cell is more often

observed as occupied, the darker it becomes. This idea could be applied in 3D

representations as well. Thus, 3D observation may also be fused, similarly to what

is done in 2D. Note that this does not mean using a 3D cell for localization or

perception model: this means only using the 3D cells to print a 3D map output by

fusing the available observations made at each 3D cell. This idea, however, was

not implemented in this thesis but it is another suggestion for future works.

Another representation for 3D maps could be in the form of geometric

planes. The Delaunay triangulation is a popular algorithm to create a simplified

representation of the environment in the form of triangles acquired from a point

cloud. There are commercial and open source software [42] specialized in

processing this kind of data.

163

164

7.
References

[1] THRUN, SEBASTIAN et al. Probabilistic Robotics. Cambridge,

Massachusetts - London, England: The MIT Press, 2006.

[2] KLAFTER, RICHARD DAVID, THOMAS A. CHMIELEWSKI, and MICHAEL

NEGIN. Robotic Engineering: An Integrated Approach. Prentice, Hall, 1989.

[3] FERREIRA, EDSON DE PAULA. Robotica Básica. Rio de Janeiro, 1991.

[4] HIEBER-TREUER, BRADLEY. "An Introduction to Robot SLAM

(Simultaneous Localization And Mapping)." Edited by Bachelor of Arts in

Computer Science - Middlebury College. Middlebury, Vermount, USA, 2007.

[5] THRUN, SEBASTIAN. "Robotic Mapping: A Survey." Pittsburgh, PA 15213:

School of Computer Science - Carnegie Mellon University, February 2002.

[6] ELIAZAR, AUSTIN. "DP-SLAM." Department of Computer Science - Duke

University, 2005.

[7] MORAVEC, H. P., and A. ELFES. "High resolution maps from wide angle

sonar." St. Louis, Missouri: ICRA-85, 1985.

[8] BIBER, PETER. "The Normal Distributions Transform: A New Approach to

Laser Scan." Sand 14, 72070 Tüingen, Germany: University of Tübingen,

Germany, 2003.

[9] LU, FENG, and EVANGELOS MILIOS. "Robot Pose Estimation in Unknown

Environments by Matching 2D Range Scans." North York, Canada M3J 1P3:

Department of Computer Science, York University, 1994.

[10] ALSHAWA, M. "ICL: Iterative Closest Line a Novel Point Cloud Registration

Algorithm Based on Linear Features." STRASBOURG, France:

Photogrammetry and Geomatics Group MAP-PAGE UMR 694, 2007.

[11] AGHAMOHAMMADI, A. A., H. D. TAGHIRAD, A. H. TAMJIDI, and E.

MIHANKHAH. "Feature-Based Laser Scan Matching For Accurate and High

Speed Mobile Robot Localization." Advanced Robotics and Automated

Systems (ARAS). Department of Electrical Engineering, K. N. Toosi

University of Technology, 2007.

165

[12] LINGEMANN, KAI, HARTMUT SURMANN, ANDREAS NÜCHTER, and

JOACHIM HERTZBERG. "Indoor and Outdoor Localization for Fast Mobile

Robots." Sankt Augustin, Germany: Fraunhofer Institute for Autonomous

Intelligent Systems (AIS), 2005.

[13] OLSON, EDWIN B. "Real-Time Correlative Scan Matching." Ann Arbor, MI,

USA: Department of Electrical Engineering and Computer Science -

University of Michigan, 2009.

[14] HOLLAND, John H. Adaption in Natural and Artificial Systems. Cambridge,

Massachusetts: MIT Press, 1992.

[15] MAN, K. F., K. S. TANG, and S. KWONG. "Genetic Algorithms: Concepts

and Applications." IEEE Transactions on Industrial Electronics, October

1996.

[16] DAVIS, LAWRENCE. "Handbook of Genetic Algorithms." New York: Davis,

Lawrence, January 1991.

[17] FORREST, STEPHANIE. "Genetic Algorithms: Principles of Natural

Selection Applied to Computation." Science Vol. 261, August 1993.

[18] NELSON, ANDREW L., GREGORY J BARLOW, and LEFTERIS

DOITSIDIS. "Fitness functions in evolutionary robotics: A survey and

analysis." ELSEVIER - Robotics and Autonomous Systems, September

2008.

[19] BABUA, B.V., and S.A. MUNAWARB. "Differential evolution strategies for

optimal design of shell-and-tube heat exchangers." ELSEVIER - Chemical

Engineering Science, April 2007.

[20] STORN, RAINER, and KENNETH PRICE. "Differential Evolution - A simple

and efficient adaptive scheme for global optimization over continuous

spaces." Berkeley, CA, USA: International Computer Science Institute,

March 1995.

[21] STORN, RAINER, and KENNETH PRICE. Differential Evolution (DE).

Availabel on: <http://www.ICSI.Berkeley.edu/~storn/code.html>. Accessed

in: June 2010.

[22] WELCH, GREG, and GARY BISHOP. "An Introduction to the Kalman Filter."

Chapel Hill, NC, USA: University of North Carolina at Chapel Hill, July 2006.

[23] MONTEMERLO, MICHAEL, SEBASTIAN THRUN, DAPHNE KOLLER, and

BEN WEGBREIT. "FastSLAM: A Factored Solution to the Simultaneous

Localization and Mapping Problem." Pittsburgh, Stanford, USA: Carnegie

Mellon University - Stanford University, 2002.

166

[24] TAKEZAWA, S., D. C. HERATH, and G. DISSANAYAKE. "SLAM in Indoor

Environments with Stereo Vision." Sendai, Japan: IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2004.

[25] DAVISON, ANDREW J., YOLANDA GONZÁLEZ CID, and NOBUYUKI

KITA. "Real-Time 3D SLAM with Wide-Angle Vision." Lisboa, Portugal: 5th

IFAC/EURON Symposium on Intelligent Autonomous Vehicles, 2004.

[26] THRUN, SEBASTIAN; THAYER, SCOTT; WHITTAKER, WILLIAM; BAKER,

CHRISTOPHER; BURGARD, WOLFRAM; FERGUSON, DAVID; HÄHNEL,

DIRK; MONTEMERLO, MICHAEL; MORRIS, AARON; WHITTAKER,

WARREN;. "Autonomous Exploration and Mapping of Abandoned Mines."

IEEE Robotics & Automation Magazine, 2004.

[27] WEINGARTEND, JAN, and ROLAND SIEGWART. "EKF-based 3D SLAM

for Structured Environment Reconstruction." Edmonton Alberta, Canada:

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), August 2005.

[28] ZUREIKI, AYMAN, and MICHEL DEVY. "SLAM and Data Fusion from Visual

Landmarks and 3D Planes." Seul, Korea: 17th Congress The International

Federation of Automatic Control, July 2008.

[29] COLON, ERIC, HICHEM SAHLI, and YVAN BAUDOIN. "MoRoS3D, a multi

mobile robot 3D simulator." Brussels, Belgium: Proceedings of the 9th

International Conference on Climbing and Walking Robots, September 2006.

[30] BEDKOWSKI, J., M. KRETKIEWICZ, and A. MASLOWSKI. "3D laser range

finder simulation based on rotated LMS SICK 200." Warsaw, Poland:

Research Institute of Automation and control Intelligent Mobile System

Division, 2008.

[31] LOHANI, BHARAT, and R. K. MISHRA. "Generating LIDAR Data in

Laboratory: LIDAR Simulator." Espoo, Finland: ISPRS Workshop on Laser

Scanning 2007 and SilvilLaser 2007, September 2007.

[32] ELIAZAR, AUSTIN, and RONALD PARR. DP-SLAM. Available on:

<http://www.cs.duke.edu/~parr/dpslam/>. Accessed in: June 2010.

[33] Creative Commons. Radish: The Robotics Data Set Repository - Standard

Data Sets for the Robotics Community. Available on:

<http://radish.sourceforge.net>. Accessed in: May 2010.

[34] SICK-Sensor Intelligence. Laser Measurement Systems. Availabe on:

<https://www.mysick.com/saqqara/pdf.aspx?id=im0012759>. Accessed in:

July 2010.

167

[35] BURGUERA, ANTONI; GONZÁLEZ, YOLANDA; GABRIEL, OLIVER. "On

the Use of Likelihood Fields to Perform Sonar Scan Matching Localization."

Springer Science - Business Media, January 2009.

[36] GUTMANN, JENS-STEFFEN; SCHLEGEL, CHRISTIAN. "AMOS:

Comparison of Scan Matching Approaches for Self-Localization in Indoor

Environments." Ulm, Germany: Research Institute for Applied Knowledge

Processing (FAW), August 2002.

[37] NÜCHTER, ANDREAS, and KAI LINGEMANN. Robotic 3D Scan

Repository. Available on:< http://kos.informatik.uni-

osnabrueck.de/3Dscans/>. Jacobs University Bremen - University of

Osnabrück. Accessed in: November 2010.

[38] PUC-Rio. Inteligencia Computacional Aplicada. Available on:

<http://www.ica.ele.puc-rio.br>. Rio de Janeiro, Accessed in: June 2010.

[39] MAGNUSSON, MARTIN, HENRIK ANDREASSON, ANDREAS NÜCHTER,

and ACHIM J. LILIENTHAL. "Automatic Appaerance-Based Loop Detection

from Three-Dimensional Laser Data Using the Normal Distribution

Transform." Journal of Field Robotics - JFR, vol 26, August 2009.

[40] BORRMANN, DORIT, JAN ELSEBERG, KAI LINGEMANN, ANDREAS

NÜCHTER, and JOACHIM HERTZBERG. "Globally Consistent 3D Mapping

with Scan Matching." Osnabrück, Germany: ELSEVIER - Robotics and

Autonomous Systems, July 2007.

[41] HÄHNEL, DIRK, and WOLFRAM BURGARD. "Probabilistic Matching for 3D

Scan Registration." Freiburg, Germany: Department of Computer Science,

University of Freiburg, 2002.

[42] SOURCE FORGE. Mesh Lab. Available on:

<http://meshlab.sourceforge.net/>. Accessed in: January 2011.

[43] MURPHY, KEVIN P. "Bayesian Map Learning in Dynamic Environments."

Berkely, CA, USA: Computer Science Division - University of California,

2000.

