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Resumo 

Bittencourt, Pedro. Comportamento Coletivo em Sistemas Robóticos 

Multi-Agentes usando Sensores Virtuais. Rio de Janeiro, 2012. 

Dissertação de Mestrado - Departamento de Engenharia Mecânica, 

Pontifícia Universidade Católica do Rio de Janeiro. 

Robótica coletiva de enxame é uma abordagem para o controle de sistemas 

robóticos multi-agentes baseada em insetos sociais e outros sistemas naturais que 

apresentam características de auto-organização e emergência, com aplicações 

disruptivas em robótica e inúmeras possibilidades de expansão em outras áreas. 

Porém, sendo um campo relativamente novo existem poucas plataformas 

experimentais para seu estudo, e as existentes são, em sua maioria, especialmente 

desenvolvidas para tarefas e algoritmos específicos. Uma plataforma de estudos 

genérica para o estudo de sistemas robóticos coletivos é, por si só, uma tarefa 

tecnológica não trivial além de ser um recurso valioso para um centro de 

pesquisas interessado em realizar experimentos no assunto. 

Neste trabalho dois importantes algoritmos de controle colaborativo multi-

robôs foram estudados: busca do melhor caminho e transporte coletivo. Uma 

análise completa dos mecanismos biológicos, dos modelos lógicos e do 

desenvolvimento dos algoritmos é apresentada. 

Para realizar os experimentos uma plataforma genérica foi desenvolvida 

baseada nos robôs móveis “iRobot Create”. Sensores virtuais são implementados 

em através de um sistema de visão computacional combinado com um simulador 

em tempo real. O sistema de sensores virtuais permite a incorporação de sensores 

ideais no sistema experimental, incluindo modelos mais complexos de sensores 

reais, incluindo a possibilidade da adição de ruído simulador nas leituras. Esta 

abordagem permite também a utilização de sensores para detecção de objetos 

virtuais, criados pelo simulador, como paredes virtuais e feromônios virtuais. 

Cada robô possui um sistema eletrônico embarcado especialmente 

desenvolvido baseado em micro controlador ARM. A eletrônica adicionada é 

responsável por receber as leituras dos sensores virtuais através de um link de 

radio em um protocolo customizado e calcular, localmente, o comportamento do 

robô. Os algoritmos são implementados na linguagem de alto nível Lua. Mesmo 

com as leituras dos sensores virtuais sendo transmitidas de um sistema 
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centralizado é importante ressaltar que todo o algoritmo de inteligencia é 

executado localmente por cada agente. 

As versões modificadas e adaptadas dos algoritmos estudados na 

plataforma com sensores virtuais foram analisadas, juntamente com suas 

limitações, e se mostraram compatíveis com os resultados esperados e acessíveis 

na literatura que utiliza sistemas experimentais mais específicos e mais 

dispendiosos. Portanto a plataforma desenvolvida se mostra capaz como 

ferramenta para experimentos em controle de sistemas robóticos multi-agentes 

com baixo custo de implementação, além da inclusão, através do mecanismo de 

sensores virtuais, de sensores ainda em desenvolvimento ou comercialmente 

indisponíveis. 

Palavras Chave 

        Swarm Robotics; Inteligência Artificial; Robôs Móveis; Visão 

Computacional; Sistemas Embarcados. 
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Abstract 

Bittencourt, Pedro. Collective Behavior on Multi-Agent Robotic Systems 

using Virtual Sensors. Rio de Janeiro, 2012. Dissertação de Mestrado - 

Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do 

Rio de Janeiro. 

Swarm robotics is an approach to multi-robot control based on social insects 

and other natural systems, which shows self-organization and emergent 

characteristics, with disruptive applications on robotics and possibilities in a 

variety of areas. But, being a relatively new field of research, there are few 

experimental platforms to its study, and most of them are crafted for very specific 

tasks and algorithms. A general study platform of swarm robotics, by itself, is a 

non-trivial technological deed and also a very valuable asset to a research center 

willing to run experiments on the topic. 

In this work, two important algorithms in multi-robot collaborative control 

strategies are studied: path finding and collective transport. A complete analysis 

of the biological mechanisms, models and computer abstractions that resulted in 

the development of those algorithms is shown. 

To perform the multi-robot experiments, several “iRobot Create” mobile 

robots are employed. Virtual sensors and virtual walls are implemented in real 

time in the experimental system through cameras and especially developed 

computer vision software. Virtual sensors allow the incorporation of ideal sensors 

in the experimental system, including complete models of real sensors, with the 

possibility of adding virtual noise to the measurements. This approach also allows 

the use of sensors to detect virtually created objects, such as virtual walls or 

virtual pheromones. 

Each physical robot has a customized embedded system, based on the ARM 

microprocessor, which receives the virtual sensors readings through a radio link in 

an also customized protocol. The behavior of each autonomous agent is locally 

calculated using the high-level programming language Lua. Even though the 

virtual sensor readings are transmitted from an external centralized computer 

system, all behaviors are locally and independently calculated by each agent. 

The adaptations of the studied algorithms to the platform with virtual 

sensors are analyzed, along with its limitations. It is shown that the experimental 
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results using virtual sensors are coherent with results from the literature using 

very specialized and expensive robot/sensor setups. Therefore, the developed 

platform is able to experimentally study new control strategies and swarm 

algorithms with a low setup cost, including the possibility of virtually 

incorporating sensors that are still under development or not yet commercially 

available. 

Keywords 

Swarm Robotics; Artificial Intelligence; Mobile Robots; Computer Vision; 

Embedded Systems 
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1 Introduction 

 Robots are defined as autonomous agents capable of interacting with the 

physical world. For instance a mechanical manipulator on a production line or an 

extraplanetarian exploratory rover can be considered Robots, if they have certain 

level of autonomy. Robots have been heavily used in industry for decades, 

particularly in the automobile manufacturing plants [1] where robotic 

manipulators are used for repetitive tasks such as welding and painting. This 

brings benefits like costs reduction, lead time reductions, quality improvements 

and many others. 

 A great trend in modern robotics are the mobile robots, autonomous agents 

with movement. Their popularity rose mostly because of the cost reduction in the 

robot hardware production and advances in microprocessors technology, allowing 

more powerful computer systems to be embedded. Novel applications of mobile 

robots are appearing in every sector of the economy, from primary industry ones, 

like the CAT Minestar [2] system of mine automation (including autonomous 

heavy-duty trucks), commercial and distribution applications like the kiva 

warehouse [3] system that relies on a group of robots that handle and organize 

shelves, highly improving operation speed on distribution hubs. And finally and 

most dramatic change in robot market: the rise of personal robotics, robots that are 

able to do basic household tasks such as the iRobot Roomba autonomous vacuum 

cleaner. 

An evidence of this growth has been stated by the IFR (International 

Federation of Robotics) on the annual report of robot market [4]: 

 

“In 2010, about 2.2 million service robots for personal and domestic use were  

sold, 35% more than in 2009. The value of sales increased by 39% to US$538 

Million.”.  

 

This rapid growth on mobile robots market created a demand for more 

developments on the area, mainly in the artificial intelligence and control theory 
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fields, the ones responsible for the development of the core component of these 

robots, their autonomy. 

In this work the problem of multi-robot systems will be studied. Multi-robot 

coordination and control is proved to be an affordable path to increase 

performance of robotic systems, in special the multi-robot collaborative behavior. 

In this context swarm robotics appeared as a biologically inspired solution. As 

stated by Garnier, Gautrais et Theraulaz in 2007 [5] 

 

“The roots of swarm intelligence are deeply embedded in the biological 

study of self-organized behaviors in social insects. From the routing of traffic in 

telecommunication networks to the design of control algorithms for groups of 

autonomous robots, the collective behaviors of these animals have inspired many 

of the fundamental works in this emerging research field”. 

 

Şahin [6] proposed the motivations of swarm robotics 

 

“[...] there exists no centralized coordination mechanisms behind the 

synchronized operation of social insects, yet their system-level functioning is 

robust, flexible and scalable. Such properties are acknowledged to be desirable for 

also multi-robot systems, and can be stated as motivations for the swarm robotics 

approach.” 

 

The author described the three properties as:  

 

 Robustness 

Robustness is the capacity of the system to resist endogenous 

failures and exogenous disturbances and yet accomplishes its 

objectives, with loss of performance or not. Endogenous failures can 

be seen, in a multi-robot system, as the complete or partial failure of 

some agents and exogenous disturbances are the unexpected changes 

in the environment. An example of robustness in natural system are 

the domestic ant raids that are very hard to eliminate and resilient. 
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 Flexibility 

Flexibility is described as the capability to solve different tasks in 

modularized ways. The author exemplify this ability with the task 

allocations in an ant colony, where ants perform a variety of tasks 

and can be reallocated dynamically from one task to another , 

without central control, as the demands of the colony. In robots that 

can be seen as the ability to perform different tasks just by 

reorganizing their behaviors.   

 

 Scalability 

Scalability is the capacity of work with different group sizes and to 

be able to improve performance with addition of more agents, or 

naturally adapts to keep the task when the number of agents 

diminishes. 

 

Social insects, as referred above, are insects that have colonies self-

organized in highly collaborative structure, also known as eusocial societies or 

super organisms. A common example and source of inspiration are ant colonies, 

entities that perform a myriad of tasks impossible to single ants to achieve, like 

carrying heavy weights or transpose gaps wider than their own bodies, cited by 

the author above and illustrated in Figure 1. 
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Figure 1: Eciton burchelli ants form living bridges with their bodies. 

(With the permission of the author) © Alexander Wild. 

 

Swarm robotics, a term created by Gerardo Beni and Jing Wang in 1989 to 

cellular robotic systems (robotics over cellular automatons), is based on three 

hypotheses:  

 

 Local knowledge 

 

 Each agent has a limited perception of its environment through local 

sensors. This hypothesis come from the biological notion that senses have a 

limited range and capabilities, for example the antennae of ants that can detect 

chemicals at very short lengths. 

 

 Simplicity of agents 

 

 Agents are simple in relation to the desired task to be executed, this means 

that a single robot of the swarm is not capable of execute the task, or can realize it 

very poorly relative to the desired performance. 
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 No centralized control 

 

 There is no central control for the system, but is possible to use a central 

observation system that would not inflict the local knowledge hypothesis. 

  

Swarm intelligence is a promising field in robotics, especially if combined 

with other trends like Nano robotics, self-assembled robots and others. Other 

evidence of the importance of the field is the amount of investments that national 

agencies and other research foundations are lending to swarm related projects. A 

great example of this is the couple of sequential projects funded by the Future and 

Emerging Technologies program of the European Commission:  

 

 Swarm-bots project (from 2001 to 2005) 

 

A 42 month, 2.17 million euro project coordinated by Professor Marco 

Dorigo and describe its goals as stated: 

 

“The objective of the SWARM-BOTS project is to study a novel approach 

to the design, hardware implementation, test and use of self-assembling, self-

organizing, metamorphic robotic systems called swarm-bots. This novel approach 

finds its theoretical roots in recent studies in swarm intelligence, that is, in studies 

of the self-organizing and self-assembling capabilities shown by social insects and 

other animal societies.” 

 

 Swarmanoid (from 2006 to 2011) 

 

Also a 42 month, 2.17 million euro project. Considered a second part of the 

swarm-bot project, but with more advanced goals: 

 

“The Swarmanoid project proposes a highly innovative way to build robots 

that can successfully and adaptively live in human-made environments. The main 

scientific objective of the proposed research is the design, implementation and 

control of a novel distributed robotic system comprising heterogeneous, 

dynamically connected small autonomous robots so as to form what we call a 
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Swarmanoid. The Swarmanoid that we intend to build will be comprised of 

numerous (60) autonomous robots of three types: eye-bots, hand-bots and foot-

bots.” 

 

1.1.1.General Applications for Swarm Robotics 

Swarm robotics are applicable in a myriad of fields, researchers consider the 

solution more valuable for: 

 

 Inspection 

Swarm robotics can greatly improve inspections, in special for large or 

complex sites. Since the scan can be parallelized attributing different regions for 

subgroups of agents achieving scalability. Other advantage is the robustness, since 

the malfunction of one agent does not compromise the whole mission. 

 

 Rescue and searching missions 

By its distributed nature swarm robotics can achieve faster results in 

locating elements in a map and retrieving it, robustly. The two algorithms 

implemented in this work can be used concomitantly to create a team of robots 

that can locate and rescue victims in danger zones. 

 

 Site construction 

Some studies analyze bees, wasps and termites nest construction behaviors 

to deploy teams of robots capable of constructing structures autonomously. This 

ability has been considered a viable way to construct extraplanetarian bases on 

distant moons and planets without human intervention, or even remote areas of the 

planet. 

 

 Asset protection 

By imitating some ant’s behavior, robots can detect areas and valuable 

assets and, through a coordinated strategy, surround the area or asset to protection 

or inhibition. This kind of behavior can be used to create swarms of oil-spill 

cleaner robots that are capable of detecting the boundaries of the spill, surround it 

and eventually absorb it.    
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 Flight and ground traffic coordination  

Another important application can be the coordination of ground and air 

traffic for groups of autonomous vehicles. Nissan´s realized experiments in the 

area with the it´s robot platform Eporo [7], in this experiments the imitation of 

fish in a school is used to create collision avoidance in common traffic situations.   

The same principle can be applied for the coordination of UAVs 

(Unmanned Aerial Vehicles), as an experiment from EPFL, in Switzerland 

showed. [8]. 

 

Beside the cited possible applications, swarm robotics can be a low cost, 

robust, and scalable solution to many other common industrial, scientific and even 

medical problems. 

 

 

1.2.Objectives  

In this work is presented the project and development of a complete 

platform for multi-agent robotic systems study. The platform is based on the 

iRobot’s corporation Create robot, as seen in Figure 2. 

 

Figure 2: iRobot Create hardware with the iRobot Control Module. 
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Create robots are very limited in terms of sensing and communication, so a 

computer vision system was used to detect robot’s position and orientation. With 

this information a simulator software computes each robot simulated sensor 

reading; those readings are sent to each agent by a radio frequency link and finally 

each agent take the decision of what action to take based on the algorithm running 

on their core processor. In this case an external electronics was necessary to run 

the language that permitted the dynamical reprogramming of the agent, eLua [9]. 

Virtual sensors, as will be further called theses sensors created at the 

simulator, act exactly as a real sensor mounted on each robot, extending to the 

possibility of creating sensors to virtual artifacts, such as virtual pheromones and 

obstacles. This strategy also allows the platform user to test a variety of different 

sensors just programming the sensor response, or even test models of real sensor 

(models containing noise, miscalibration etc). 

In a higher level, the system described above is a closed loop as illustrated 

on the Figure 3 

 

Figure 3: Diagram with system overview. 

 Within this context two algorithms were implemented: the path finding 

algorithm based on the pheromone trail biological model and loosely in the graph 

searching algorithm described in chapter 2, and the collective transport behavioral 

algorithm described by roboticists with inspiration from cooperative prey retrieval 

habits from ants, also described in chapter 2.  
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 The two main goals of this work are: first develop a complete, physical, 

study platform for swarm robotics experiments, a second, to implement basic 

algorithms within the platform. 

 

1.3.Dissertation Structure 

This report is organized in six chapters, as described below: 

Chapter one introduces the motivations of the collective robotics and swarm 

intelligence, and present the objectives and basic practical aspects of developed 

work. 

Chapter Two gives and overview of the theoretical foundations of swarm 

intelligence, the biological models and the analogies made from nature to 

computer algorithms and control strategies for collective robotics. 

Chapter three describes the technical aspects of the developed platform, 

project definitions, part descriptions and implementation details. 

Chapter four discuss two algorithms of swarm control applied to the 

developed platform: the collective transport with suppressive hierarchical 

behavior based control and the self-organized path forming. 

Chapter five presents the results of experiments on the platform, a 

quantitative and qualitative analysis of the results. 

Chapter six concludes the work critically reviewing the results and 

objectives and possible future developments. 
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2 Theoretical Framework 

As stated in the first chapter, the term “Swarm Intelligence” was coined in 

the end of the 80’s in the context of cellular robotics, but the theory behind it first 

appeared, in an organized and scientific way, in the early 60’s with the study of 

honeybees and termites by biologists. A major contribution at this time was the 

discovery of Stigmergy by Pierre-Paul Grassé, a termite specialist, in 1959 [10]. 

Stigmergy is the indirect form that social insects communicate, it’s a 

communication based on the changes on the environment caused by agents that 

stimulates other agents. It is one of the most important concepts of Swarm 

Intelligence. A sample of applied Stigmergy in algorithms is described later in this 

section on the Ant System routing algorithm description where the pheromone 

trails is the only form of communication. 

The systematic analysis of collaborative biological behaviors started to gain 

strength in the end of 70’s and beginning of the 80’s because of technological 

advances, such as portable video cameras and computers. The focus at the time 

was given in the study of fish and krill schools formation and behavior. 

Soon this studies start to interest computer scientists and mathematicians 

who developed theoretical abstractions and models, what allowed computer 

simulations of those behaviors to be created. The first documented simulator was 

called Boids, developed by computer scientist Craig Reynolds in 1987 [11] and it 

was a bird flock simulator based on three simple rules: 

 

 

Figure 4: Boids original steering rules: separation, alignment and 

cohesion. 
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 Separation 

 Steer to avoid crowding local flock mates; 

 

 Alignment 

 Steer towards the average heading of local flock mates; 

 

 Cohesion 

 Steer to move toward the average position (center of mass) of local flock 

mates. 

 

Those rules were activated based only on the local neighborhood, in a 

tridimensional space, of a given agent. The result is an emergent phenomenon of 

synchronized global group movements, called flocking. A very common 

phenomenon observed in bird flocks and large fish schools.  

 

2.1.Routing and Graph Traversing 

With time, deeper analysis of social behaviors led to more complete models 

that could be applied on useful algorithms, a major contributor to the fundamental 

advances in the area is the biologist Jean-Louis Deneubourg. One of the most 

useful models applied to the creation of algorithms was described by Deneubourg 

in 1989 [12], it was based on the Argentine ant food foraging behavior.  

Using a simple experimental setup, the researcher shown that path selection 

to a food source in the Argentine ant Linepithema humile is based on self-

organization. In this experiment, a food source is separated from the nest by a 

bridge with two equally long branches A and B (Figure 5). Initially there is no 

pheromone on the two branches. One ant has the probability    of choosing path 

A and probability    (    ) of choosing path B, when there are no 

pheromones on the paths random fluctuations will cause a few more ants to select 

one branch, for instance A over B. Because ants deposit pheromones while 

walking, the greater number of ants on branch A determines a greater amount of 

pheromones on A, which in turn stimulates more ants to choose A, creating a 

positive feedback loop. 
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Figure 5: Deneubourg experiments with equally long branches from the 

nest to food source. 

 

 

The model developed by Deneubourg et al. [12] explained the phenomenon 

mathematically. In the model, the probability of choosing a branch at a certain 

time depends on the total number of ants that used the branch until that time. Let 

   and    be the numbers of ants that have used the branches A and B after   ants 

have used the bridge. The probability    that the (   )   ant choses branch A is 

 

 

    
(    )

 

(    )  (    ) 
 (2.1)  
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Where: 

 

    Is the probability of the (   )   ant to choose branch A;  

    Is the degree of attraction of an unmarked branch; 

    Is the parameter to determine the degree of nonlinearity of the choice 

function. 

 

 The values found to be the best fit to the real experiment where     and  

    . A second experiment showed how the pheromone trail mechanism was 

used on choosing the shortest path [13], in this second experiment branches with 

different lengths were used, as shown in Figure 6. 

 

Figure 6: The second experiment. Branch B is longer than branch A. 

 

 Adding the pheromone evaporation to the model, the researchers showed 

the ant food foraging behavior have an emergent property of choosing the shortest 

path between two points. Because of the decaying amount caused by the 

evaporation, the longer trail naturally have less pheromone, due longer travel 

time, causing the shortest path to become more prone to be selected. 
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 Dorigo et al. [14] developed a computational abstraction of this model and 

applied to the problem of graph path-finding, most notably benchmarked on the 

travelling salesman problem (TSP). In the TSP the goal is to find a closed tour of 

minimal length connecting   given nodes. Each node must be visited once and 

only once. Let     be the distance, or weight, between nodes   and   in a graph 

given by(   ). The Ant System (AS), how it was originally called, build 

solutions for the TSP by moving on the graph one node to another until a group of 

virtual ants complete a tour. On an AS iteration each ant           executes 

  | | steps with a probabilistic transition rule. Iterations are indexed by 

           where      is a parameter that limits the number of iterations. 

For each ant, the transition rule from node   to node   at iteration   depends on 

three items: 

 

 Node list 

For each ant a memory is maintained. Each tour keeps a list, which is 

cleared at the end of a tour. The memory defines, for each ant  , the set     of the 

nodes that the ant has to visit when it is in node  . This mechanism is used to 

avoid the ant   of visiting a node more than once. 

 

 Nearness 

The inverse of the weight     
 
   
⁄ , which is a strictly local attribute 

that represents the heuristic desirability of choosing node   when in node  . This is 

the heuristics of a “greedy algorithm”, which alone gives very low quality 

solutions. 

 

 Pheromones 

The amount of virtual pheromone trail    ( ) on the edge that connects the 

node   to node  . Pheromone trails are updated online and is intended to represent 

the learned desirability of an edge. Opposed to the distance, the pheromone trail 

gives global information about the problem. 

 

The probability for an ant   to go from node   to node   in the      tour is called 

Random Proportional Transition Rule: 
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 ( )   {
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Where: 

   ( ) is the intensity of the pheromone trail at edge     at iteration  ; 

         is the inverse of the weight of the edge    ; 

  and   are adjustable parameters that control the relative weight of trail intensity.  

 

At the end of each tour, each ant   lays a quantity of pheromone     
 ( ) 

on each edge     that it has passed by. The value of     
 ( ) depends on how well 

the ant has performed. The value is given by 
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Where: 

 

  ( ) is the tour done by the ant   at iteration  ; 

        is its length; 

      is a parameter to correct the order of magnitude based on the optimal tour 

length. 

 

Based on the original phenomenon that presented pheromone evaporation, 

the algorithm implements as a decay rule for the value of    ( ) the following 

expression 

 

    ( )  (   )   ( )      ( ) (2.4)  
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Where: 

 

           is the coefficient of decay 

    ( ) is the sum of all pheromone contributions for the edge     by all ants. 

 

The initial pheromone amount    at each edge is assumed to be constant at 

   and homogeneous, that means all edges have the same amount of pheromone at 

the beginning. With this algorithm, Dorigo et al [15] showed that pheromone 

based multi-agent algorithm like the one described above can solve the TSP, and 

with some changes [16] can be extrapolated to solve any graph traversing 

problem. The AntSystem algorithm show a practical example of how Stigmergy 

can be applied on algorithm design, and further on, real engineering problems. 

This solution has been used on dynamical network routing with best performance 

than other classical solutions, as stated by Schoonderwoerd et al. [17]. Other 

applications with success were on vehicle routing problem, Bullnheimer et al. [18] 

and some similar technique was previously applied to the job scheduling problem 

by Graham et al. [19]. 

 This family of algorithms can be modified to be implemented on robotic 

agents performing a search in a graph-mapped environment without much 

theoretical extrapolation, but several practical adaptations is needed as shown in 

chapter four. 

 

2.2.Collective Transport 

 

Some species of ants can carry heavy preys, much heavier than the capacity 

of a single ant, by aggregating around the burden and collectively pushing and 

pulling until the group can retrieve the object to the nest. This is one of the more 

emblematic images of social insect’s efficiency and is often used to illustrate 

teamwork. 

This is a behavior observed on several species of ants [20]. Collective 

transport is considered a remarkable deed of insects, but no formal description of 

the biological phenomenon has been developed. Surprisingly, roboticists achieved 

better results to model the phenomenon than biologists. The most complete model 
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has been described by Kube and Zhang on a series of works about collective 

transport on robots based on ants [21] [22] [23]. Not intending to make it 

biologically plausible, but using the inspiration given by the ants aiming at 

autonomous robots applications. 

Even without the development of accurate biological models, some 

biologists made extensive researches about the topic. One of the most insightful 

analyses was made by Moffett [24] when studying collective transport on the 

Asian ants Pheidologeton diversus. Results of this study show the efficiency of 

collective transport in terms of speed and energy. 

 The Kube and Zhang approach for robots is based on the reactive paradigm 

introduced by Valentino Braitenberg in his classical work Vehicles [25] and in the 

subsumption architecture introduce by Brooks [26]. 

 It is a three sensor – five behaviors based implementation, as seen in 

Figure 7 bellow. 

 

 

Figure 7: Kube and Zhang architecture to box-pushing behavior, with 

legend to explain the subsumption operator 
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Each sensor creates a stimulus that activates one or more behaviors, 

behaviors are predefined routines that can encapsulate arbitrary levels of 

complexity, and creates signals to the actuators. Each behavior has a priority, 

which means, one behavior can subsume a less important one.  This behavioral 

modularity gives the robot software a remarkable flexibility, allowing changes on 

one behavior without any interference on another and limitless, theoretical, 

expansion of robot´s capabilities. 

With this implementation, the researchers built five collaborative box-

pushing robots and gave several insights to the biological behavior of coordinated 

prey retrieval on insects. The robots performed the first phase of the collaborative 

box-pushing, the aggregation phase, with success as stated by Kube and Bonabeau 

at [23].  This first step, where ants need to find the prey and aggregate to start the 

transport, shows the collaboration through local behavior only but a global 

resulting effect.  

Their experiment relied on a group of five robots, and its physical 

implementation is quite similar to the presented in the following sections of this 

work. On Figure 8 a sequence of photos shows the experiment in progress. 

 

 

Figure 8: The Kube and Zhang´s experiments on collective transport, 

aggregation and pushing. 
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3 Experimental Platform 

To execute experiments in swarm robotics a robotic system was necessary. 

Initial prototype was developed to work with the Merlin Miabot robot, but further 

research led to the more reliable and cost effective iRobot Create. Create is a 

robot based on a popular robotic vacuum cleaner (Figure 2), the Roomba. 

Although Create robots have just basic sensory capacities, no integrated 

communication hardware and lack the processing power and programmability 

necessary to algorithm development. Their capability of expansion compensate 

those limitations, those drawbacks shaped the requirements for the full platform to 

be functional. 

The final conceptual and practical result is a complete experimental system, 

fully customizable to new applications and experiments in collective robotics 

(even to single mobile robot studies). Each main part is illustrated in Figure 9, and 

detailed in the following sections. Finally there is a section addressing the 

integration of parts, protocols and interfaces. 

 

Figure 9: Diagram of the platform components, links and interfaces 
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3.1.Arena 

The arena is the area within the sight of the camera, or, more precisely, the 

area that is used by the computer vision system to compute agents’ position and 

orientation.  

For clarity some elements on the arena have special definitions, listed 

below: 

 

 Arena 

The area covered by the camera vision and processed by the computer 

vision system, except in case of lack of information experiments. 

 Object 

Any artifact identified by the computer vision system, in general have a 

proper ID and a unique marker. 

 Agent 

Agents are special objects that are capable of movement and have sensors to 

be stimulated by the arena environment. 

 Virtual 

Any artifact without physical representation that stimulates agents, most 

used for virtual sensors and virtual pheromones. 

 

The physical setup of the Arena is schematized in Figure 10 and the 

physical setup on Figure 11. 
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Figure 10: Schematics of the experimental setup arena. 

 

Figure 11: Real experimental setup with main components highlighted 
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3.2.Simulator 

The simulator is a software written in the Lua programming language, it’s 

the module responsible for storing the arena state and calculating the virtual 

sensors readings for all registered agents. It receives data from the computer 

vision system by the UDP socket in the TUIO protocol, a special protocol for 

tangible interfaces similar to the MIDI protocol, where each data packet contains 

the agent ID, absolute position and absolute orientation. 

The simulator converts the coordinates to the arena coordinate system and 

calculates the sensors reading according to the sensor script file, a mechanism of 

sensors customization that describes each sensor of each agent. Finally it sends to 

the RF communication hardware each agent sensor packets and what’s going to be 

rendered by the graphical interface. 

 It´s architecture is a finite state machine with four main states: 

 

Read UDP Socket 

 At this state, the simulator reads the datagram broadcasted from the 

computer vision system that returns the IDs of the agents and objects (each marker 

has a unique ID), their position and orientation. This is a blocking operation and 

the simulator passes to the next state as soon as all expected data packets are read 

or if a timeout occurs. In case of timeout the program follow with the last valid 

packet and send a warning message to the user. 

 

Calculate virtual sensors readings 

 Once all positions and orientations are converted to the arena coordinate 

system, the simulator calculates the virtual sensor readings according to the 

sensors script, which possesses the calculation method of each sensor, including 

detection range. 

  This calculus can vary according to the type of sensor, for example a 

pheromone sensor reads a virtual amount of pheromone that exists only at the 

simulator’s arena stored internal state. This kind of sensor doesn’t need any 

external information, but an object sensor for instance needs to know the position 

and orientation of an object marked and detected by the computer vision system. 
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Refresh the Graphical interface 

 At this point that all positions, orientations and sensor readings are known, 

the simulator software refreshes the graphical interface with all available data. In 

this work the user have no interaction with the simulator, but this can be extended 

in the future. 

 

Send Virtual Sensor data to RF hardware 

The final state sends data to the RF hardware via a serial COM port, the 

protocol is the same as the RF link: four bytes payload with the first byte as the 

agent ID, the second is the sensor ID and the last two are the sensor readings. 

 There is a last phase that occurs at the RF hardware board that verifies the 

validity of received serial packets before sending it through the 2.4GHz link.   

 

3.2.1.Virtual Sensors 

Introduced as a sub product of the developed platform, virtual sensors are a 

mechanism to simulate any kind of sensor that the experimental agent may have. 

This resource is extremely useful for three main applications: to test new 

theoretical models of real sensors, to use ideal sensor that isolates any possible 

issue associated with physical ones, and to create sensors infeasible in the physical 

sense, an example used in this work is a sensor to a virtual pheromone – a 

simulated chemical trail that the agent lays over the arena floor.  

 

 Test models of real sensors 

More complicated experiments demand a complete knowledge about 

sensors capabilities and possible flaws, with the virtual sensor mechanism is 

possible do study theoretical models of real sensors prior to their real utilization 

and investigate any idiosyncrasy, all that already on the real robotic hardware. An 

example is to model different levels signal-to-noise ratios to define more robust 

specifications to the final sensor hardware. 
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 Ideal Sensors 

Other advantage of this mechanism is to decouple the experiment from the 

sensor hardware, because is possible to program an ideal virtual sensor that will 

be limited only by the computer vision capabilities and the simulator software 

(both can be customized according to the needs). The other advantage of the 

utilization of ideal sensors over real ones is the cost, since even basic sensor 

hardware can be expensive depending of the application. 

 

 Sensors to virtual stimuli 

Finally, the main reason why this mechanism has been implemented is to 

measure unpractical or even physically unfeasible evidences. The main example is 

the pheromone trail, originally a chemical product that insects lay on their paths to 

communicate, what in a robotic implementation suffers from a series of practical 

issues such as inaccuracy of sensors, the need to keep a reservoir of a chemical 

solution and many others. Virtual stimuli can be anything the user can implement 

as an arena state, any variable visible to the simulator software or even a result 

from a composition from various sources of data. 

 

3.2.2.Interface with the RF Communication Module 

 For the simulator to send a packet by the RF link to the agents an 

electronic board converts serial output from the computer to the nRF24L01 

communication format. The hardware is an Atmel AVR microcontroller board 

(Figure 12) and it creates a serial communication port for the computer and 

converts received data to the SPI interface framing correctly to the radio protocol.  

The radio module expects to receive four bytes packets that it transmits 

after as validity checking, as described in the simulator main description. 
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Figure 12: RF communication hardware on the computer side, the 

converter board is connected to the USB on one side and to the nRF24L01 on 

the other 

 

 

3.3.Processing power and programmability 

The native controller of the iRobot Create is quite simple and inflexible, 

related to the goals of this work, so a more powerful and programmable hardware 

was necessary to manage the several tasks that must be autonomously performed 

by the agent. A second requirement was the interoperability between code and 

hardware to guarantee that the same firmware developed to a controller will 

continue to run on a newer processor in the future, allowing the continuous 

independent (software from hardware and vice-versa) evolution of the platform. 

To fulfill those two requirements the chosen hardware is the STM32 

controller, in special, the low-cost development board of the processor designed 

by the Futurlec Company, Figure 13. 
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 To the firmware the most adequate solution found was the dynamic 

language eLua [9], an embedded version of the Lua programming language [27] 

mainly by its dynamical programming capability (reprogram agents on runtime, 

without software recompilation) and an advanced hardware abstraction layer, 

allowing the same code to be executed on different processors and architectures. 

 

Figure 13: STM32 development board by Futurlec, the core processor 

electronic board of agents. 

 

3.3.1.Agents electronic setup 

 An electronic setup was necessary to integrate the STM32 processor board 

and a Nordic nRF24L01 radio link to the Create´s docking bay, as shown in 

Figure 14 

 

 

Figure 14: Create before the electronic setup (left) and after (right) with 

a) Voltage regulator and level converter board b) Custom DB-25 connector 

to docking bay c) STM32 Board d) nRF24L01 module 
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Each agent is equipped with a processor board (item c in Figure 14) and a 

communication module (item d). To connect to the Creates proprietary Open 

Interface connector a custom connector (item b) was built from a DB-25 

connector. Finally, due the incompatibility between the robot 5 Volts output 

source and the 3.3 Volts STM32 processor, a voltage regulator and a level 

converter scheme was developed and assembled in a prototype board (item a). 

 

3.3.2.Firmware 

Each agent computer system runs a customized Lua code that has three main 

responsibilities: 

 

Run the algorithm 

Executing the code of the algorithm implementation, this code is 

dynamically loaded by the firmware and executed. So it is independent of the 

main firmware architecture, easing the use and fast prototyping for new 

experiments. 

 

Interface with RF communication 

Virtual sensor readings are transmitted to the agents by the RF link, 

consequently the main program must execute routines to interface with the SPI of 

the RF module and decode the transmissions into the virtual readings that will be 

available to the algorithm code.  

 

Interface with the agent 

iRobot Create has an special command language called Open Interface that 

is physically accessed by an UART port on the docking bay connector. To 

facilitate the algorithm programming, special functions that encapsulate most of 

the Open Interface commands have been implemented, giving to the algorithm 

programmer an abstraction layer to control the agent. 

 

The basic architecture of the firmware is also a state machine with three 

main states, corresponding to the phases described above. First, the algorithm 
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reads the sensor data queued by the RF communication interface phase and then 

generates events that will be sent to the agent at the Open interface phase.   

 

3.4.Communication 

The communication between the simulator and the agents is a radio 

frequency link of 2.4GHz with the nRF24L01 transceiver module, as shown in 

Figure 15. 

 

Figure 15: Nordic nRF24L01 transceiver, the RF link hardware 

component between agents and the simulator. 

It operates on 3.3 Volts and has a standard SPI serial interface. In this 

implementation the transceiver only operates in one mode (transmitter for the 

simulator side and receiver for agent’s side), even if it can perform both roles by 

switching its configuration.  

 

3.4.1.Protocol 

Radio link communications use a customized protocol based on a four byte 

packet. Because of the nature of the data flow – from the simulator to all agents, 

from one to many – there is no need of anti-collision schemes or complex 

acknowledgment mechanisms. There is a simple package checksum for data 

integrity check and lost package automatic resend mechanism. 

The packets are arranged in the following order, where each cell is a byte: 

 

Agent Address Sensor ID Reading 1 Reading 2 

 

Where readings can be used as single value, where reading 1 is the higher 

byte and reading 2 is the lower or as two separated values depending on the 

sensor. 
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Since the agents implementation can´t rely on hardware interruptions for 

detecting incoming sensor readings two special packs are sent to each agent: The 

beginning of sensor array readings (BSR) and end of sensor array readings (ESR). 

Those packets have an special sensor ID of 255 (or 0xFF in hexadecimal basis) 

 For example an agent with ID equals to 1 with three sensors with IDs 1, 2 

and 3 will receive a chain of packets of the form: 

 

1 255 (special code) 0 0 (BSR) 

 

1 1 Reading 1 Reading 2 

 

1 2 Reading 1 Reading 2 

 

1 3 Reading 1 Reading 2 

 

1 255 (special code) 0 255 (ESR) 

 

Other special case is about more complex sensors that need more than two bytes 

to represent its readings. In this case packets can be chained repeating the sensor 

ID and turning one of the readings byte into an address byte for the order of the 

sensor reading. 

 

3.5.Computer Vision 

The computer vision system main goal is to detect the objects on the arena, 

returning to the simulator their unique ID, position and orientation. 

Its main software library is the reacTIVision framework, developed at the 

University Pompeu Fabra in Barcelona, Spain by Becina et al [28]. Originally 

developed for robust camera based multi-touch interfaces, the system can be 

adapted to track marker symbols over the arena. Attaching the markers over the 

robots, exemplified at Figure 16, the setup becomes equivalent of a multi touch 

surface (the original environment for the framework). 

http://www.upf.edu/
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Figure 16: Some samples of the identification and tracking optimized 

markers created by genetic algorithms 

The system is capable of identifying each marker by its assigned ID and 

detects its position and orientation. Markers were created using a genetic 

algorithm to optimize identification and tracking [29]. 

The reacTIVision framework implements a tile-based variation of Bernsen’s 

adaptive method [30] as a thresholding (or binarisation) phase, as illustrated on 

Figure 17 and the variations of the gradient filter parameter, that can be adjusted 

to better performance in different backgrounds and image qualities, is illustrated 

on Figure 18. 

 

 

 

 

Figure 17: Raw greyscale image and the binary image by the Bernsen’s 

binarisation method. 
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Figure 18: Comparison between four levels of gradient filter gate, 

clockwise from top left: a)   = 0; b)   = 15; c)    = 30 and d)   = 60. 

After the binarisation phase, the system creates a feature graph from the 

scene and find the mark patterns sub-trees as described by Becina et al. [28]. Once 

the markers are identified their geometric center is assumed to be the agent 

position and it´s angle in relation to the camera (based on the original marker 

orientation) is assumed to be the agent´s orientation. That information is sent 

through the network broadcasted over a UDP socket. 

Camera calibration and luminance equalization are automatically done by 

the reacTIVision system and the device driver of the camera. 

 

3.6.Graphical Interface 

A system interface was created for visualization and debugging reasons. It 

utilizes the IUP and the CD libraries to control windows and the canvas, both 

developed at TecGraf laboratory, in Rio de Janeiro [31] [32]. The window shows 
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the whole arena, agents and virtual objects and it´s updated by the simulator main 

program right after positions and orientations are received via the UDP socket. 

In Figure 19 is shown a screenshot of the graphical interface with four 

agents and one immobile object on screen. 

 

Figure 19: Screenshot of the graphical interface of the simulator with 

four agents and one object visible. 

 

 

3.7.System Integration 

All systems work integrated to form the full control cycle described at the 

beginning of the session, since the communication between the components relies 

on different protocols (illustrated at Figure 9) issues about synchronicity and 

timing must be addressed. 
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 By the other side there are certain advantages in the selected 

communications channels, on of then is ease for parallelization of the system 

giving scalability to the platform. This scheme is described in next subsections.   

 

3.7.1.UDP 

The vision system communicates to the simulator via a UDP Socket, what 

may introduce latency and eventually lags due packet losses, but this solution also 

permits the parallelization of the simulator process. Parallelization can be 

achieved by broadcasting the vision system packets and running distributed 

simulators (each simulator instance calculates a set of agents’ sensor readings and 

transmits just to this set of agents in a multicast scheme).   

 

3.7.2.RF Link 

Following the distributed mechanism described above the RF 

communication will be naturally distributed, if each simulator instance has its own 

RF Hardware. The topology of the distributed scheme is on Figure 20. This setup 

turns the whole system highly parallelizable. 

 

 

Figure 20: Topology of the distributed simulator scheme, relying in the 

UDP broadcast capability. 



45 
 

4 Algorithms Implementation  

Two algorithms were implemented on the platform, the path finding 

algorithm based on artificial pheromones and the collective transport aggregation 

phase, where agents position themselves for the active transportation. 

Both algorithms share a common virtual sensor that is an ideal 

magnetometer that is capable of giving the global orientation of the robot, this 

sensor is used as a feedback sensor to the turning movement, together with 

physical encoder on robot´s wheels, in a simple control loop. 

 

4.1.Path Finding 

Inspired on the computer algorithm created by Dorigo et al. and the model 

of path finding by ants pheromones presented before, an adaptation for the robots 

was conceived and implemented on the platform. 

The original algorithm is crafted for graphs, a discrete space. To 

accommodate that requirement the robotic version tessellates the arena space in 

quadrants of equal sizes and creates a neighborhood graph of quadrants, as 

illustrated at Figure 21. 

 

Figure 21: example of arena tessellation and graph representation of 

quadrant neighborhood. 
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The problem is to find a certain node, that represents the food source, and 

find the shortest path from the nest to it. 

Each node is initialized with a constant amount of pheromone   , the 

original metaphor consider the pheromone on the edges of the graph, but for the 

practical implementation the nodes (or quadrants) that contain the amount of 

pheromone. The algorithm also relies on a probabilistic transition rule similar to 

the one presented on chapter two, but considering that all surrounding nodes have 

the same weight (the distance is the same to all four neighbors); hence the factor   

on equation (2.2) is constant for all cases.  And differently from the original 

algorithm, the pheromone evaporation occurs in real time, since there are no tours 

to count as iterations. Agents moves by the arena according to the probability 

transition rule, once the agent reaches the target it comes back to the nest by the 

same way releasing a dose of pheromone on each node that is incorporated to the 

original amount of the node. The way back is reconstructed by storing the past 

nodes in a list, further on called memory. 

 With those alterations the robotic version developed resembles more the 

biological model than its graph traversing version. With the presented 

simplifications the general transition rule is written by the equation: 

 

    
(  )

 

∑ (  )    
 (4.1)  

 

Where: 

      is the probability of choosing the direction  ; 

      is the set of all possible directions; 

       is the amount of pheromone in the node at direction  ; 

       is an adjustable nonlinearity factor. 

 

An example of a typical situation that an agent may face is illustrated bellow 

on Figure 22. 
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Figure 22: A situation where the agent must select one path based on 

the pheromone readings. 

In this particular case the probability of the agent move to north direction is 

given by (with    , linear case): 

 

    
  

        
 (4.2)  

 

 

Pheromones have a decaying factor of   that follows the pheromone 

evaporation equation: 

 

  (   )( )  (   ) (   )(   )     (   )( ) (4.3)  

 

Where: 

 (   )( )    is the amount of pheromone at node (   ) at step  . 

                is the evaporation rate. 

  (   )( )  is the amount of pheromone left by an agent at node (   ) at 

step  . 
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If the  (   )( ) becomes less than 10 it artificially is set to 10, because 

nodes cannot have no amount of pheromone. This restriction is due equation (4.2) 

that have the sum of the pheromone amounts as denominator. 

 With those rules, there is an emergent convergence to the shortest path to 

be the one with the strongest pheromone trail that creates a positive feedback loop 

attracting more agents to it. This emergent effect happens because the longer paths 

require a bigger travel time to the agent causing it´s natural evaporation rates to 

decrease the probability of this path to be chosen by the next agent. 

 Because of the discrete implementation the robots have only a reduced set 

of movement instructions, they are: Step forward, turn 90 degrees clockwise and 

turn 90 degrees counter clockwise. All necessary movements can be achieved 

with combinations of those three (the turn clockwise was unnecessary, but it 

accelerates the turning to higher angles). 

 

4.1.1.Pheromone virtual sensors 

For this algorithm virtual sensors capable of detecting the amount of 

pheromones in the four neighboring nodes (one in each cardinal direction) were 

implemented. Those are ideal sensors of a virtual artifact, the pheromone trails, 

and are limited to read only the amount of pheromones in the immediately 

connected nodes.  

It´s considered that the sensor is capable of instantly reading all four (or less 

in some cases) neighboring nodes, or quadrants. 

The sensor implementation is based on a four data packets, as described in 

chapter 3, protocol, where each packet contains the agent ID, the sensor ID, one 

byte indicating the direction and the last byte indicating the amount of pheromone 

(with special case of 255 to a not available node, in case of walls).   

 

4.2.Collective Transport 

The collective transport algorithm is a direct implementation of the reactive 

and behavioral approach presented by Kube and Zhang, but with modified internal 

implementations of each modular behavior. Some practical aspects were also 

treated with special attention to performance and energy consumption. 
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This algorithm relies mainly on the reactive paradigm, what means that 

agents are simply reacting to environment changes. In this case the environment is 

perceived by the virtual sensors. To this algorithm three kinds of sensors were 

implemented: 

 

Goal Sensor 

The goal sensor is able to feel the direction of the goal if it is within a 

certain threshold. It’s a radial sensor that returns the angle and the strength of the 

signal. 

Robot Sensor 

This sensor is capable of detecting another robot moving nearby, again is a 

radial sensor that can tell the distance and the angle of close robots. 

Obstacle Sensor 

Is a model of an ideal radial LIDAR scanner sensor, which means it can 

detect any obstacle inside it active surrounding area. 

 

And five behaviors, that are combined by subsumption operator as described 

in chapter 2 at Figure 7. They are: 

 

Find behavior 

This state is active only in idle state when no stimuli are received. The agent 

moves randomly, making fixed size step forward then turning to a random 

direction to make the next step forward. Creating a random movement pattern, 

that is repeated until any of the sensors receive a stimulus. 

 

Follow Behavior 

This state is active when the robot sensor detects another agent within a safe 

distance, as explained in Figure 23. The agent aligns itself with the detected agent 

and moves in the same direction keeping the distance. 

 

Slow Behavior 

The activation of this state is conditioned to the distance to the detected 

agent by the robot sensor, it´s only triggered when the distance is below the safe 

radius. In this state the agent stops moving forward, and waits until the slow 
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behavior is deactivated (automatically triggering the follow behavior if no other 

sensor is stimulated). 

 

 

Figure 23: Areas of different behavior triggering for the robot sensor, 

R1 and R2 can be adjusted according to arena size and number of robots 

 

Goal Behavior 

Activated only by the “sight” of the goal, this behavior makes the agent 

aligns itself towards the detected direction of the goal  (given by the goal sensor) 

and move forwards until the objective is reached or the obstacle sensor triggers 

the next, and most proprietary, behavior. 

 

Avoid Behavior 

        A reaction to the obstacle stimulus, this behavior makes the agent contour the 

obstacle by a rotation in its own axis until a clear direction when the agent moves 

forward. Repeating this action makes the robot avoids complex obstacles and 

walls, as illustrated in the example case of Figure 24. 

 

Figure 24: Agent’s path avoiding a wall using the obstacle sensor 
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Those local sensors and behaviors combined generate an emerging global 

behavior of the system that causes and aggregation of agents surrounding the goal, 

or prey in a metaphor of the biological model. This phase is crucial to the 

development of further collective transport implementations. 
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5 Results 

In this session details about the algorithms implementation and tests are 

explained and results are discussed. First some general features of the platform are 

tested and evaluated, following by the results of experiments on both algorithms. 

 

5.1.Platform testing 

To ensure that the functions of the whole system are correct a simple test 

with two robots was constructed. In this test a predator-prey behavior is used to 

evaluate the computer vision system, virtual sensors simulation, RF 

communications between the simulator and the agents, agent’s programmability 

and locomotion. With this integration test the basic platform functionality can be 

assured in terms of basic software and hardware. 

In this test one agent becomes a predator, that is, it wanders around until it 

detects a prey then follows it with the goal of reaching it. The other agent acts as a 

prey, it wanders slowly by the arena and when a predator is detected it flees in the 

opposite direction. Both agents’ behavioral diagrams are shown at Figure 25. 

In the sequence of images on Figure 26 the evolution of the predator-prey 

system with images from the simulator and captures from the camera can be seen. 

 

 

Figure 25: Behavioral diagrams of the predator agent (right) and the 

prey agent (left). 
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Figure 26: Time lapse of the predator-prey experiment with views from 

the graphical interface of the simulator and the capture of the camera 

 

With this simple example, all systems could be tested. In slow speeds the 

performance was as expected, but for higher agents velocities the frame rate of the 

camera drops from 30 FPS (Frames per Second) to lower than 15 FPS causing 
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lags on the simulator. Lags interfere with the system as a delay in the reading of 

the sensors.  

 

5.2.Path finding results 

The first test is to make a single robot detect and follow a predefined 

pheromone trail. Then analyze it´s behavior and adjust the parameters of 

evaporation and maximum pheromone amount of each node (node saturation). 

The simulated arena initial condition is shown at Figure 27. 

 

Figure 27: Screen shot of the simulator with artificial pheromone trail 

(darker regions have a higher amount of pheromones). 
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With this simple experiment with the pheromone evaporation rate        

what, solving the recurrence equation (4.3) gives: 

 

  (   )( )   (      )
(   ) (5.1)  

 

Where   is the initial amount of pheromone at node (   ), and the saturation 

value (the maximum amount of pheromone per node) is 255. By this equation a 

saturated node becomes with the minimal amount of pheromone (10) in 35 

simulation steps. 

 

The next phase was the evaluation of the robots with a more complex arena, 

with a gap in the middle shown on Figure 28. 

 

 

Figure 28: arena with virtual walls in the middle (black areas), agents 

are forced around it to reach the target (marked with a darker inner square). 
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Running the algorithm in this scenario with four agents, the following 

results were found: 

 

a) To find the first path (starting from bottom-left corner in an unbiased 

arena) 

 

 

Figure 29: Number of steps to find any route.         e         

 

b) Steps to converge from the first found path to optimal or quasi-optimal 

path. 

 

Figure 30: Convergence to optimal path. 
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Quasi-optimal concept was used because the optimal path is infeasible 

because of the possibility of collision between agents, so small detours of the 

optimal path are considered valid solutions. 

Those results are preliminary and the number of samples is insufficient to 

make any robust inference from them, but as a qualitative indicator those results 

show the functionality of the platform and algorithm. 

 

5.3.Collective Transport results 

For the collective transport, a group of four robots was deployed at random 

starting positions to aggregate around an also random positioned heavy prey. On 

those tests the prey was a heavy carton box. An example run is shown on Figure 

31. 

 

Figure 31: four frames of an example run of the aggregation algorithm. 

The implemented algorithm is considered naïve, for its not treating cases 

where the agents get stuck, or in a behavioral deadlock (an example is when two 

agents get very close to each other causing both to stop and no other stimulus 

causes a change of behavioral state, an example case is in frame 1 of Figure 31 
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where the two agents in the left halted). Therefore some tests were executed to 

measure the average time of convergence of the agents to the prey. 

In 20 complete runs (runs with any kind of deadlock were discarded) the 

average time to reach convergence was       (seconds). 

 

5.3.1.Centrally Coordinated Collaborative Transport 

To demonstrate the capability of the platform to perform coordinated control 

a central coordinator to the collaborative transport was implemented. In this 

example three agents move a carton box to three directions. The configuration of 

agents’ position, orientation and movement was pre-configured in a central 

coordinator implemented at the simulator. Results of this test are shown at Figure 

32. 

In those configurations each agent receives a command indicating the 

direction of the movement and it reacts accordingly: 

 

Left  

The agent bellow the object turns left and moves one step forward, the agent 

at the left side of the object moves one step backwards and the agent at the right 

moves on step forward pushing the box. 

 

Right  

The agent bellow the object turns right and moves one step forwards, the 

agent at the right side of the object moves one step backwards and the agent at the 

left moves one step forward pushing the box. 

 

Up 

The agent bellow the object moves one step forward pushing the box, the 

agents at both sides turn upwards (left side agent turns 90 degrees in 

counterclockwise direction and the right side agent turns 90 degrees in clockwise 

direction) and moves on step forward. 
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Figure 32: Collective transport of a box by three agents, in the sequence 

of movements: Right, Upwards and left. Initial position is shown in first 

frame. 
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5.4.General observations 

  Both tests cannot be considered complete for two main factors.  

The first one is the reduced arena size, caused by the small distance 

between the floor and the camera (hanged on the ceiling of the test room). This 

reduced arena size, compared to the size of one agent, makes the algorithms not 

very representative to solve the proposed problem thus causing an imprecise test 

scenario. 

The second main issue on the realized tests was the lack of samples to 

realize a statistical relevant amount of experiment, caused mainly by technical 

difficulties related to hardware and space issues. 

But, even with the related issues, results were able to proof the 

functionality of the platform and the concept of the algorithms. 
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6 Conclusions 

This work presented a complete platform for experimental analysis of a 

group of robots that is generic and extensible to accommodate different kinds of 

multi-robots (and even single robot) experiments. Based on commercially 

available materials and components it can be built with low budget and is a 

valuable tool for research. Within the developed platform two algorithms have 

been successful implemented, one is a biological model based path finding and the 

other a reactive implementation of the aggregation phase collaborative transport. 

Results are still inconclusive due short number of experiments made, limited 

space and resources. By the other side the capacity of expansion of the platform is 

a factor that can ease future developments, turning the developed work into a 

starting point for more deep researches. 

Other conclusion is the robustness of swarm robotics and the confirmation 

that some theoretical models can be physically implemented without 

meaningful alterations on a generic hardware, validating both, the platform and 

the algorithms implementation.  

 

6.1.Virtual Sensors approach  

The virtual sensors approach was introduced as an experimental mechanism 

and showed to be a very useful scheme for multi-robots experiments, mainly for: 

 

 Cost Effective 

With virtual sensors the sensor price is irrelevant since the user just 

need it´s theoretical model implemented in the platform. The only 

hardware needed is the nRF24L01 radio link that is largely available on 

electronics stores for affordable prices even for students. Future version 

may rely on different communication devices, including very low cost IR 

transmitters. 
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 Fast response speeds 

Even the response speed hasn’t been tested directly the sensor 

speeds was not a bottleneck on the realized tests. So for a small amount 

of simple sensors the mechanism has a reasonable perceived 

performance. 

  

 Freedom to the user 

Users can change their entire sensorial setup just reconfiguring the 

platform, in this sense users are free to implement any set of sensors that can 

be computationally described. That segregation of the conceptual sensor 

from the hardware itself gives the final user the power to create arbitrary 

complex sensor schemes. 

  

 Lower hardware complexity 

Sensors usually are complex equipment to assemble, correctly 

install, calibrate and interface. With virtual sensors these hardware 

difficulties are mitigated, allowing the user to conduct experiments without 

struggling with miscalibration, bad installation or hardware and software 

interfacing. 

  

Virtual sensors can be considered the main contribution of this work 

for its qualities referred above. Together with the computer vision system 

and the simulator virtual sensor form an ideal mechanism for low cost, easy 

to implement and fast experiments. 

 

6.2.Platform Applications 

Different kinds of experiments can be performed with the developed 

platform; even it was designed for multi-robot experiments single robot 

experiments can be realized seamlessly, besides the experimental applications in a 

wide range of areas, such as: SLAM (Self Location and Mapping), Collaborative 

Behaviors, Coordinated traffic and many others. 
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 The same hardware and software can be used for autonomous robotics 

competitions, like robot football cups and others common robotic team games 

competitions.  
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8 Appendix A – Geometric calculation of angle 
measurements 

The angle result from the Robot sensor is the angle, from the coordinate 

system, to the other robot. 

Consider two agents   and    with arena coordinates (        ) and 

(        ) respectively. (Figure 33) 

The final angle   is calculated based on the robot orientation    and the 

direction between the agent itself and the detected agent .  

 

        (           ) (8.1)  

 

The angle   is calculated as  

 

   [(   )    ]        (8.2)  

 

The result is summed with    to guarantee a positive final angle, and the 

modulo operation guarantees the final result in interval [    ]  
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Figure 33: Sample case where   is the orientation of the robot and   is 

the result of atan2 function. The final result is  . 
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9 Appendix B – Components Datasheets 

This section contains the DataSheets of the main electronic components of 

the platform: 

 

 Voltage Regulator LD33V by ST Microelectronics  

 STM32 Microprocessor by ST Microelectronics 

 FTDI USB to serial converter by Future Technology Devices 

International 

 nRF24L01 radio transceivers by Nordic Semiconductors 
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