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Abstract 

Cunha, Thiago; Castro, Jaime; Meggiolaro, Marco. Characterization of The 

Mechanical Behavior Under Multiaxial Low Cycle Fatigue of SAE 1020 

Steel and 6351-T6 Aluminum Alloys. Rio de Janeiro, 2019. 85p. 

Dissertação de mestrado – Departamento de Engenharia Mecânica, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 

The mechanical failure known as fatigue is characterized by the formation 

and/or propagation of cracks caused by variable forces. Its traditional 

methodologies normally calculate an equivalent uniaxial tensile stress acting on the 

component, in order to compare it with the known experimental mechanical 

behavior data of the component’s material measured under uniaxial loads. This 

assumption can lead to non-conservative results because it considers the material to 

be equally sensitive to shear and tensile stresses, which is not true in a wide range 

of practical applications. Therefore, torsional and multiaxial experimental data is 

necessary to better predict the fatigue life of components. To execute those 

experiments, the present work proposes a variety of component designs and 

assembly methodologies to use on an Instron 8874 axial-torsional testing machine 

a hydraulic grip originally designed for an Instron 8501 uniaxial testing machine. 

Furthermore, a simplified method to estimate shear (γN) low-cycle fatigue 

properties via displacement-controlled experiments is proposed to avoid the need 

of using expensive equipment and different specimen designs, and used for 

characterization of SAE 1020 Steel and 6351-T6 Aluminum alloys. This data is 

compared with the measured tensile (εN) low-cycle fatigue properties to identify if 

these materials are tensile or shear sensitive under multiaxial loading conditions. A 

numerical computing code is used to fit εN and γN curves to the experimental data, 

and its implementation procedures are discussed. Finally, the most suitable critical-

plane multiaxial fatigue models are proposed and calibrated for each material 

tested, based on the measured data. 

 

Keywords  

Low-cycle fatigue, multiaxial fatigue, shear-tensile sensibility, critical 

plane damage model, alignment accuracy, mechanical design, mechanical testing. 



Resumo 

Cunha, Thiago; Castro, Jaime; Meggiolaro, Marco. Caracterização do 

Comportamento Mecânico Sob Fadiga Multiaxial de Baixo Ciclo das 

Ligas de Aço SAE 1020 e Alumínio 6351-T6. Rio de Janeiro, 2019. 85p. 

Dissertação de mestrado – Departamento de Engenharia Mecânica, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 

A falha mecânica conhecida como fadiga é caracterizada pela iniciação e/ou 

propagação de trincas, causada por forças variáveis. Suas metodologias tradicionais 

calculam uma tensão elástica uniaxial equivalente que atua no componente, a fim 

de compará-la com os dados experimentais de comportamento mecânico do 

material do componente sob cargas uniaxiais. Esta hipótese pode levar a resultados 

não conservativos, por considerar que o material é igualmente sensível a tensões 

normais e cisalhantes, o que é falso em várias aplicações práticas. Portanto, dados 

torcionais e multiaxiais são necessários para melhor prever a vida em fadiga dos 

componentes. Para executar estes experimentos, o presente trabalho propõe uma 

variedade de projetos de componentes e metodologias de montagem para que se 

possa usar em uma máquina de tração-torção Instron 8874 uma garra hidráulica 

originalmente projetada para uma máquina tração pura Instron 8501. É proposto um 

método simplificado para estimar, por controle de deslocamento, as propriedades 

de fadiga de baixo ciclo em cisalhamento (γN), evitando assim a necessidade de 

usar equipamentos caros e diferentes tipos de corpos de prova. Este método é usado 

para caracterização das ligas Aço SAE 1020 e Alumínio 6351-T6 e os dados 

levantados são comparados com as propriedades medidas de fadiga de baixo ciclo 

em tração (εN), identificando assim se o material é mais sensível a tensões normais 

ou cisalhantes. Um programa numérico é usado para ajustar as curvas εN e γN nos 

dados experimentais, e seus procedimentos de implementação são discutidos. Por 

fim, são propostos e calibrados modelos de fadiga multiaxial de plano crítico mais 

adequados para cada material testado, com base nos dados medidos. 

 

Palavras-chave:  

Fadiga de baixo ciclo, fadiga multiaxial, sensibilidade a tipos de tensões, 

modelos de dano por plano crítico, alinhamento, design mecânico, ensaio mecânico.
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Empty your mind. Be formless, shapeless, like 

water. Now you pour water in a cup, it becomes the 

cup. You pour water in a bottle, it becomes the 

bottle. You pour water in a teapot, it becomes the 

teapot. Water can flow or it can crash. Be water my 

friend. 

 

Bruce Lee 



 

 

1  
Introduction 

 

1.1  
Motivation 

Most practical problems in structural engineering are due to a mechanical 

failure mechanism known as fatigue, which is primarily caused by cyclic loads that 

originates and propagates cracks [1]. Many advances in mechanical design were 

motivated by the constant onset of fatigue problem, and at a high cost.  

Take for example the famous British Overseas Airways Corporation (BOAC) 

Flight 781 accident. It was a de Havilland Comet passenger jet that crashed on 10 

January 1954 after suffering an explosive decompression at altitude, causing the 

death of all 35 passengers [2].  

To contribute for the investigations of this unexpected decompression, an entire 

Comet I G-ALYR was grounded by BOAC and donated for mechanical testing. For 

one of the experiments, an airplane size reservoir was built to fill with and submerge 

all the fuselage in water (Fig. 1.1a), with all the internal pressurize cycles being 

applied by pumping in and out more water, emulating in that way the air 

compression-decompression cycles during flight [3]. Inspections revealed that all 

fatigue cracks appeared at the countersunk rivet holes closer to the window and 

escape hatches corners (Fig. 1.1b). The stated cause of the accident was failure by 

fatigue caused by the pressurization cycles on the aircraft cabin during flight. 

 

Figure 1.1: a) The donated fuselage submerged into water [4]. b) Picture of a window corner of 

the fuselage after 6042 cycles. Note the crack starting at the countersunk rivet hole [3]. 
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This example highlights the importance of a proper fatigue analysis, showing 

that consequences might lead to very high financial losses and even loss of human 

lives in the vicinity of accidents. 

 

1.2  
Multiaxial Fatigue 

Most engineering components are subjected to multiaxial forces. For example, 

Fig. 1.2 illustrates a pipeline configuration used to drain water from a hole and 

transport it horizontally. Some turbulence on the pumping system is causing two 

transverse constraints on the lower end of the pipeline, one parallel and other 

perpendicular to the upper pipe. This force configuration would subject the 

connector present on the upper pipe to tension, bending and torsion, causing both 

normal and shear stresses at the same time. Given those forces a cyclic pattern, we 

have multiaxial fatigue. 

 

Figure 1.2: Pipeline configuration. 

 

The mechanical behavior of components subjected to multiaxial forces often 

tends to be unique and quite different from those under a simple uniaxial loading 

condition [5]. The traditional fatigue modelling methodologies are designed to 

predict the damage accumulation assuming only a uniaxial stress, and 
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tridimensional stress configurations are normally dealt by previously calculating its 

equivalent uniaxial stress assuming some failure criteria. This technique is proven 

to be non-conservative when the constraints follow distinct frequency patterns. 

Since most engineering components are subjected to multiaxial constraints, a better 

methodology to predict fatigue life under such circumstances is necessary.  

This present work performs the fatigue characterization of two metals, the SAE 

1020 Steel and 6351-T6 Aluminum alloys, along with the correlation between their 

tensile and shear fatigue properties and the identification of their appropriate 

multiaxial fatigue damage model. Each material chosen for the tests has several 

applications in various engineering designs. As stated on the ASM Metals 

Handbook [6], 6xxx series aluminum alloys are commonly used in bicycle frames, 

transportation equipment, as well as architectural applications because of its good 

formability, machinability and corrosion resistance. Plain low carbon steels in the 

10xx group are used in a variety of applications, because of their relatively 

inexpensive manufacturing process. 

 

1.3  
Machine Design for Fatigue Testing 

For a better understanding of the mechanical behavior of materials, distinct 

experimental methodologies were developed and many companies design and 

manufacture a variety of machinery to execute then. For example, the Instron 8874 

Biaxial Servohydraulic Fatigue Testing System (Fig. 1.3) is commonly used in 

medical prosthetics design and research due to its range of compatibility, allowing 

a variety of grip designs and flexible testing protocols [7]. 

Although normally used on medical devices and prosthetics testing, its 

assembly flexibility allows the Instron 8874 biaxial testing machine for a variety of 

other applications, one of those being the fatigue testing on structural materials. 

This work describes the design and implementation of an adapter designed to 

allow on the biaxial system the mounting of a pair of hydraulic grips originally 

designed for an Instron 8501 uniaxial servohydraulic testing machine and, 

therefore, enabling the proper torsional experiments for the chosen materials to be 

tested. 
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Figure 1.3: INSTRON 8874 Biaxial servohydraulic Fatigue Testing System (photo and 

schematic [7]). 

 

1.4  
Dissertation Outline 

This thesis is divided into 6 chapters that are structured as follows: 

Chapter 2 presents the fundamental concepts and theoretical background used 

in the stress/strain analysis and fatigue life predictions, including basic high-cycle 

and low-cycle fatigue methodologies, multiaxial fatigue concepts, multiaxial 

fatigue damage models and the mathematics used on the adaptation of two stress 

failure criteria into strain versions.  

Chapter 3 presents all designed components used on the adaptation of the 

Instron 8874 system, as well as its manufacturing processes, assembly protocol and 

tips for a proper alignment of a mechanical testing. 

Chapter 4 details the followed experimental protocol. Also, a new methodology 

for low-cycle pure torsion fatigue experiments is proposed. 
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Chapter 5 shows the tensile-test mechanical properties of both materials as well 

as results obtained from the low-cycle pure tension and pure torsion fatigue 

experiments. A shear-tensile correlation model is used to characterize each 

material. This model is compared with the analysis made using damage maps. 

Chapter 6 presents the conclusions and suggestions for future works. 

Finally, Appendix A shows Matlab codes used in the data analyses in this 

thesis. 

 



 

 

2  
Theoretical Background  

The mechanical failure mechanism known as fatigue is primarily caused by 

variable loads, which induces cyclic movements of dislocations in the 

microstructure of the component. In the macroscopic scope, the accumulation of 

these dislocations initiates and/or propagates a crack [1]. To model this 

phenomenon and predict the number of cycles necessary for a component to fail, a 

variety of distinct methodologies are available. 

 

2.1  
High-cycle Fatigue 

Fatigue failure predictions were first developed by Wöhler in his pioneer work 

in the mid-nineteenth century [8]. In his SN Method, the ranges and maximum 

values of cyclic stresses are correlated with the number of cycles necessary to 

initiate a crack, as seen in Eq. (2-1). This methodology is recommended for high-

cycle fatigue cases, when strains generated by the component constraints are elastic.  

 

𝑁𝑆𝐹
𝐵 = 𝐶 (2-1) 

 

where B and C are constants of each material (also known as Wöhler exponent and 

coefficient, respectively) and SF is the fatigue strength of the material corresponding 

to the given number of cycles N [1]. 

However, in low-cycle fatigue problems, where plastic deformations are 

dominant, this method tends to be non-conservative and should not be used. Instead, 

a correlation between the range and maximum cyclic deformations imposed on the 

component are better correlated with its life prediction [1]. Therefore, stress-strain 

correlations are useful for low-cycle fatigue problems. 
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2.2  
Low-cycle Fatigue 

2.2.1 
Ramberg-Osgood 

The Ramberg-Osgood equation is one reasonable option to associate the 

stress and strain on the plastic regime of many structural alloys [1]. It models the 

uniaxial strain-hardening behavior by assuming that any given strain ε can be 

decomposed into an elastic (εel) and plastic (εpl) parts. εel grows linearly with the 

stress, while εpl grows following a power function with respect to the imposed 

stress, as seen in Eq. (2-2). 

 

𝜀 = 𝜀𝑒𝑙 +  𝜀𝑝𝑙 =  (
𝜎

𝐸
) + (

𝜎

𝐻
)

1
ℎ
 (2-2) 

 

where H is the hardening coefficient and h is the hardening exponent. Note that this 

equation models monotonic curves and an adapted version is necessary for 

problems involving cyclic plastic deformations, using the cyclic coefficients Hc and 

hc instead. This is due to the fact that metallic alloys can soften, harden, or event 

have a mixed elastoplastic behavior. 

 During the strain-controlled experiments for the εN curve one can record 

the stress and strain data to plot hysteresis loops for each one of the strain 

amplitudes tested. If the material cyclic softens, a contraction of the hysteresis loops 

will be noticed, due to the fact that for each cycle the same strain amplitude requires 

a lower stress value. On the other hand, cyclic hardening cases show a stretch of its 

hysteresis loops in the stress-axis direction because, after each cycle, a bigger stress 

value is necessary to maintain the same strain amplitude (Fig. 2.1).  

This behavior can also be observed on the stress-time curve, in which the 

amplitude of the stress increases or decreases, depending on the material’s 

elastoplastic behavior (Fig. 2.2). Note that normally materials tend to stabilize after 

a few cycles. 
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Figure 2.1: Example of cyclic hardening and softening in pure Cu with two different initial 

states. (modified from [1]). 

 

 

Figure 2.2: Schematic of cyclic softening (a) and cyclic hardening (b) behaviors observed on the 

stress-time graphic of strain-controlled experiments (modified from [1]). 

 

To plot the cyclic Ramberg-Osgood curve, the biggest stress value (after 

stabilization of the curve) of each strain amplitude tested is collected, and the hc and 

Hc values are calculated in order to fit the Ramberg-Osgood equation onto those 

stress-strain points (Fig. 2.3). 
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Figure 2.3: Schematic of the cyclic stress-strain curve obtained by joining the tips of various 

concentric hysteresis concentric loops [1]. 

 

2.2.2 
Coffin-Manson 

The standard methodology for modeling low-cycle fatigue cases is the εN 

method, which correlates the strain amplitude εa and the number of cycles N using 

the Coffin-Manson rule [1], as seen in Eq. (2-3). 

𝜀𝑎 = (
𝜎𝑐

𝐸
) (2𝑁)𝑏 + 𝜀𝑐(2𝑁)𝑐 (2-3) 

 

where E is Young’s modulus, σc and εc are the elastic and plastic coefficients (also 

known as fatigue strength and fatigue ductility coefficients) and b and c are their 

respective exponents. Those constants are calculated based on experimental data, 

which are commonly obtained following the procedures recommended in the 

ASTM E606 Standard Test Method for Strain-Controlled Fatigue Testing [9]. 

Fitting the experimental data generates the εN curve, which assists on the fatigue 

life prediction of different materials under distinct plastic strain amplitudes. 
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2.3  
Multiaxial Fatigue Analysis 

The methodologies discussed above assume that failure under cyclic loadings 

can be predicted by calculating an equivalent uniaxial stress from all the 

tridimensional stress configuration. This is reasonable when the tensile and shear 

stresses are in-phase and proportional, but when one or both of the cited 

requirements are not met, this assumption turns to be non-conservative [1,5]. Since 

most engineering components are subjected to multiaxial constraints, a more 

detailed study on multiaxial fatigue is necessary. 

 

2.3.1 
Definitions 

Multiaxial fatigue stress/strain histories are proportional when their principal 

axes, and consequently their maximum-shear planes, are fixed during their entire 

duration. This can be concluded by observing if the ratio between tensile and shear 

stresses remains constant. On the other hand, a non-proportional stress/strain 

history induces principal directions which change in time. The non-proportionality 

can be quantified by a factor FNP which is the ratio between both diameters of an 

ellipse involving all the constraints history [1]. Fig. 2.4 shows three plane-stress 

examples to illustrate the proportional and non-proportional cases. 

 

 

Figure 2.4: Plane-stress proportional and non-proportional examples [1]. 

 

Stress and strain can also be classified as in-phase when they have the same 

periodic waveform and frequency. Otherwise, they are classified as out-of-phase. 

Fig. 2.5 shows two examples of strain waveforms. On the left, the shear and tensile 

waveforms follow the same sine waveform and have the same frequencies, which 
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configures an in-phase multiaxial state. On the right, the axial strain is 75º out-of-

phase with respect to the shear strain. 

 

Figure 2.5: Strain waveforms examples [5]. 

 

2.3.2 
Shear-Tensile sensitivity 

In multiaxial fatigue cases, the influence of the shear stress should be taken 

into account, given the fact that some materials present distinct mechanical 

behavior under shear, tensile or combined constraints.  

For pure torsional problems, the Coffin-Manson rule can be adapted into a 

shear version, known as γN curve, as seen in Eq. (2-4). 

𝛾𝑎 = (
𝜏𝑐

𝐺
) (2𝑁)𝑏𝛾 + 𝛾𝑐(2𝑁)𝑐𝛾 (2-4) 

where G is the shear modulus of elasticity, τc and γc are the shear elastic and shear 

plastic coefficients, and bγ and cγ are their respective exponents. Although the γN 

curve is a direct adaptation of the εN equation, there is no universally accepted 

model to correlate their coefficients. Different correlations are proposed in the 

literature. Lagoda et al., for instance, provides a summary of the most common ones 

in his work [10]. Thus, experimental data is necessary to evaluate which one is most 

suitable for describing the tensile and shear sensitivity of a given material. 

Together, the εN and γN experimental curves can be used to correlate the 

effects of each type of stress on fatigues life and identify for which load 

configuration the material is more sensitive. Shear-tensile correlation models 

enhance the understanding of the material behavior under shear, tensile and 

combined stresses, and are of great use in the life prediction of real components 

under multiaxial constraints, as well as material selection and design in new 

mechanical applications. 
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For the curves comparison it is necessary to calculate an equivalent εN curve 

using data from the γN equation. In this work, it was done adapting two different 

failure criteria. This process is discussed in Section 2.3.3. 

 

2.3.3 
Failure Criteria 

The Maximum Distortional Energy and Maximum Shear-Stress criteria are 

two classical idealizations of failure by yielding, and can also be used to predict 

failure by rupture or fatigue. Both methods were adapted to receive strain input and 

are used to convert data obtained from the torsional fatigue experiments into an 

equivalent uniaxial strain. 

 

2.3.3.1 
Maximum Distortional Energy Criterion 

The Maximum Distortional Energy Criterion, also known as von Mises 

criteria, models the material’s yielding using energy concepts. For that, the total 

elastic energy of a material is separated in two parts: one causing volumetric 

changes on the material, and the other associated with its shear distortions [11]. 

Yielding is assumed to occur when the part related to shear distortion (Udistortion) is 

equal to the maximum elastic distortion energy in simple tension (Utension), as seen 

in Eqs. (2-5), (2-6), (2-7) in terms of the principal stresses. This value is named the 

yield critical stress (σyp) or von Mises stress (σMises). 

𝑈𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 =
1

12G
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2] (2-5) 

𝑈𝑡𝑒𝑛𝑠𝑖𝑜𝑛 =
2𝜎𝑦𝑝

2

12G
 (2-6) 

𝜎𝑦𝑐
2 =

1

2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2] (2-7) 

The equations and procedures used on the conversion of this criterion’s input 

from shear (τ) and tensile (σ) stresses respectively into shear (γ) and tensile (ε) 

strains are exposed next. For more details on these postulates and correlations, see 

references [12,13]. 

Written in terms of the tri-axial stresses, the Distortional Energy Criterion 

defines its critical stress value as stated in Eq. (2-8): 
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𝜎𝑀𝑖𝑠𝑒𝑠

= √
1

2
[(𝜎𝑥 − 𝜎𝑦)2 + (𝜎𝑥 − 𝜎𝑧)2 + (𝜎𝑦 − 𝜎𝑧)2 + 6(𝜏𝑥𝑦

2 + 𝜏𝑥𝑧
2 + 𝜏𝑦𝑧

2 )]  
(2-8) 

On a tridimensional state, the elastic stress-strain relations are stated as seen 

in Eqs. (2-9) to (2-14). 

𝜎𝑥 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀𝑥 + 𝜈(𝜀𝑦 + 𝜀𝑧)] (2-9) 

𝜎𝑦 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀𝑦 + 𝜈(𝜀𝑥 + 𝜀𝑧)] (2-10) 

𝜎𝑧 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀𝑧 + 𝜈(𝜀𝑥 + 𝜀𝑦)] (2-11) 

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦 =
𝐸

2(1 + 𝜈)
𝛾𝑥𝑦 (2-12) 

𝜏𝑥𝑧 = 𝐺𝛾𝑥𝑧 =
𝐸

2(1 + 𝜈)
𝛾𝑥𝑧 (2-13) 

𝜏𝑦𝑧 = 𝐺𝛾𝑦𝑧 =
𝐸

2(1 + 𝜈)
𝛾𝑦𝑧 (2-14) 

Substitution Eqs. (2-9) to (2-14) into Eq. (2-8), we have: 

𝜎𝑀𝑖𝑠𝑒𝑠 =
𝐸

√2(1 + 𝜈)
√[(𝜀𝑥 − 𝜀𝑦)2 + (𝜀𝑥 − 𝜀𝑧)2 + (𝜀𝑦 − 𝜀𝑧)2 +

3

2
(𝛾𝑥𝑦

2 + 𝛾𝑥𝑧
2 + 𝛾𝑦𝑧

2 )]  (2-15) 

 

Since σMises is a uniaxial stress, 1-D Hooke’s Law stated in Eq. (2-16) can be 

applied into Eq. (2-15).  The von Mises Criterion is then defined in terms of strain 

as stated in Eq. (2-17). 

𝜎𝑀𝑖𝑠𝑒𝑠 = 𝐸𝜀𝑀𝑖𝑠𝑒𝑠 (2-16) 

𝜀𝑀𝑖𝑠𝑒𝑠 =
1

√2(1 + 𝜈)
√[(𝜀𝑥 − 𝜀𝑦)2 + (𝜀𝑥 − 𝜀𝑧)2 + (𝜀𝑦 − 𝜀𝑧)2 +

3

2
(𝛾𝑥𝑦

2 + 𝛾𝑥𝑧
2 + 𝛾𝑦𝑧

2 )] (2-17) 

 

2.3.3.2 
Maximum Shear-Stress Criterion 

The Maximum Shear-Stress Criterion, also known as the Tresca Criterion, 

results from observations that, during yielding, the slip of ductile materials occurs 

along critically oriented planes, suggesting that the maximum shear stress is the 

driving force of the yielding [11]. Defining the principal stresses as σ1 < σ2 < σ3, 
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the critical stress is calculated as stated in Eq. (2-18). The maximum shear stress of 

a tridimensional loading configuration can be graphically represented as the 

diameter of the biggest Mohr Circle (Fig. 2.6). 

𝜎𝑇𝑟𝑒𝑠𝑐𝑎 = max
 

(|𝜎1 − 𝜎2|; |𝜎1 − 𝜎3|; |𝜎2 − 𝜎3|) = |𝜎1 − 𝜎3| (2-18) 

 

 

Figure 2.6: Mohr Circle of a tridimensional stress configuration. 

 

Eq (2-18) can be used to relate the principal stresses and strain. By definition, 

no shear stresses and strains are presented in this configuration and, therefore, the 

elastic stress-strain relations are: 

𝜎1 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀1 + 𝜈(𝜀2 + 𝜀3)] (2-19) 

𝜎2 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀2 + 𝜈(𝜀1 + 𝜀3)] (2-20) 

𝜎3 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[(1 − 𝜈)𝜀3 + 𝜈(𝜀1 + 𝜀2)] (2-21) 

Substituting Eqs. (2-19) to (2-21) on Eq. (2-18) we have: 

𝜎𝑇𝑟𝑒𝑠𝑐𝑎 = 𝐸𝜀𝑇𝑟𝑒𝑠𝑐𝑎 =  
𝐸

(1 + 𝜈)(1 − 2𝜈)
|(1 − 2𝜈)(𝜀1 − 𝜀3)|  

ε𝑇𝑟𝑒𝑠𝑐𝑎 =
1

(1 + 𝜈)
|𝜀1 − 𝜀3| (2-22) 
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2.3.4 
Critical Plane Approach 

Subsections 2.3.4 and 2.3.5 are intended for a brief explanation about the 

Critical Plane approach, its modeling and some of the most commons damage 

models. For more details about these topics, see references [1,13]. Also, in the 

present work the critical plane is always assumed on a free surface, which is true in 

all of the experiments conducted. 

Extensive experimental evidence shows that, in most metallic alloys and other 

directional-damage materials, fatigue cracks tend to initiate on specific planes at the 

critical point, where the damage induced by the loading history is maximized. For 

this reason, these planes are defined as critical.  

To properly represent this behavior, the discussed models assume that stresses 

on other planes would initiate different fatigue cracks that do not interact, because 

only the dominant one propagates on the critical plane. 

All planes at the critical point are described by their latitudinal (θ) and 

longitudinal (φ) angles from the surface, as shown in Fig. 2.7. The shear and normal 

stresses, which corroborate to the crack fatigue initiation, are τA, τB, and σ, and the 

critical plane only needs to be searched for in the angular ranges 0° < φ < 90° and 

0° < θ < 180°, due to plane symmetries. 

 

Figure 2.7: Coordinate transformations, where z is defined perpendicular to the free surface [1]. 
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Bannantine and Socie proposed a simplified procedure to search for the 

critical plane assuming that, for directional-damage materials, the most common 

micro cracks always appear at φ=90º (Case A) or at φ=45º (Case B), shown in Fig. 

2.8. They are formed in three different ways and are named:  

• A90(T) cracks at φ=90º, caused mainly by the tensile stress (σ) or strain 

(ε) perpendicular to the plane;  

• A90(S) cracks at φ=90º, caused mainly by the in-plane shear stress (τA) or 

strain (γA);  

• B45(S) cracks at φ=45º, caused mainly by the out-of-plane shear stress (τB) 

or strain (γB). 

 

Figure 2.8: Stress states for the initiation of A90 and B45 cracks (modified from [1]). 

 

This modeling highlights the importance of characterizing the tensile or shear 

sensitivity of materials to precisely predict their lives under cyclic multiaxial loads. 

For that reason, critical plane multiaxial fatigue damage models assume a different 

selection of those parameters to be the driven forces on the crack formation, being 

classified as shear or tensile models. 
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2.3.5 
Critical Plane Multiaxial Fatigue Damage Models 

This subsection approaches four critical plane multiaxial fatigue damage 

models  and debates about their applicability with respect to high or low-cycle 

fatigue cases for shear or tensile sensitive materials. The discussed models are 

Findley, Generalized Goodman, Fatemi-Socie and Smith-Watson-Topper. 

Findley and Generalized Goodman are examples of damage models 

recommended for high-cycle fatigue. Findley’s shear model, Eq. (2-23), assumes 

fatigue damage being mainly caused by the combination of the peak normal stress 

(σmax) perpendicular to the critical plane with the amplitude of the shear stress 

(Δτ/2). The significance of the peak normal stress, which is directly related to the 

material’s tensile sensitivity, can be calibrated by adjusting the parameter αF in the 

model. 

For tensile sensitive materials, Goodman’s alternate-mean equation 

commonly used in uniaxial fatigue can be adapted to a Generalized Goodman 

tensile model, Eq. (2-24), considering the alternate and mean of the plane’s 

perpendicular stress (σ). 

max
𝜃,𝜑

[
∆𝜏(𝜃, 𝜑)

2
+ 𝛼𝐹𝜎max(𝜃, 𝜑)] = 𝛽𝐹 (2-23) 

1
2 ∆𝜎(𝜃, 90°)

𝑆𝐹(𝑁)
+

𝜎max(𝜃, 90°) −
1
2 ∆𝜎(𝜃, 90°)

𝑆𝑈
= 1 (2-24) 

For low cycle fatigue, Fatemi-Socie and Smith-Watson-Topper models are 

recommended. Fatemi-Socie, Eq. (2-25), is a shear model which assumes that, 

instead of stress, the shear strain amplitude (Δγ/2) is the fatigue driving force along 

with the peak perpendicular stress. Also, a multiplicative parameter is used instead 

of the additive one to correct a wrong fatigue damage prediction that would happen 

under small non-damaging shear stresses and/or strain ranges. 

max
𝜃,𝜑

[
∆𝛾(𝜃, 𝜑)

2
(1 + 𝛼𝐹𝑆

𝜎max(𝜃, 𝜑)

𝑆𝑌𝑐
)] = (

𝜏𝑐

𝐺
) (2𝑁)𝑏𝛾 + 𝛾𝑐(2𝑁)𝑐𝛾  (2-25) 

Note that for pure torsional conditions, the maximum damage occurs when 

θ = 90º and  𝜎max(90º,𝜑) = 0. This reduced Eq. (2-25) to the γN equation, Eq. 

(2-4). To calibrate its parameter αFS, tension-compression experiments with mean 

stress (σm) equal to zero are recommended (this is discussed in section 4.8). 
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Smith-Watson-Topper’s (SWT) critical-plane tensile model, Eq. (2-26), is an 

adaptation from a uniaxial low-cycle fatigue model with the same name, 

considering in this version the peak normal stress and normal strain amplitude, both 

perpendicular to the critical plane, as the main cause of damage. 

max
𝜃,𝜑

[𝜎max(𝜃, 𝜑)
∆𝜀(𝜃, 𝜑)

2
] = (

𝜎𝑐
2

𝐸
) (2𝑁)2𝑏 + 𝜎𝑐𝜀𝑐(2𝑁)𝑏+𝑐 (2-26) 

This equation can be written for a given θ and 𝜑 as stated in Eq. (2-27). 

𝜎max(𝜃, 𝜑)
∆𝜀(𝜃, 𝜑)

2
= 𝜎𝑐(2𝑁)𝑏 [(

𝜎𝑐

𝐸
) (2𝑁)𝑏 + 𝜀𝑐(2𝑁)𝑐] (2-27) 

Note that under cyclic tension-compression with σm=0, the maximum damage 

occurs at θ = 0º. Since in this case 𝜎max = 𝜎 = 𝜎𝑐(2𝑁)𝑏, Eq. (2-27) is reduced to 

the Coffin-Manson equation, Eq. (2-3).  

 

 



 

 

3  
Components Design and Machine Adaptations 

This work proposes a design adaptation for a pair of hydraulic grips originally 

designed for an Instron 8501 Servohydraulic Fatigue Testing System (which is 

uniaxial) to be mounted on the 8874 Biaxial system. The adjustments were made 

by designing and manufacturing new pieces that could be assembled on the biaxial 

machine in order to emulate the mounting conditions from the 8501 system. 

The chosen pair of grips were designed for a 250kN capacity machine [14], 

but with these adaptations they were used on a 25kN one [7]. Such disparity 

exacerbates problems that might be caused by misalignment of the grips. Those 

issues, as well as recommended precautions, are discussed in this chapter. 

 

3.1  
Components Design and Manufacturing 

3.1.1 
Pair of adapters 

Instron has a recommended hydraulic wedge action grip for the 8874 Biaxial 

Testing machine. This equipment has an integrated base, which is fixed onto the 

machine using six concentrically positioned screws within the center (Fig. 3.1), 

preventing rotational slide that could happen during torsional tests. 

On the uniaxial machine, the hydraulic grip assembly is conducted using only 

one central double ended screw. Instead of an integrated base, the grip has one 

central threaded hole and the machine has a left-handed one, in which both ends of 

the piece are screwed in for the fixation of all equipment. 
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Figure 3.1: INSTRON 25kN/100Nm axial/torsional hydraulic grip. 

 

To enable the assembly of the grip in the new servo-hydraulic testing system, 

a pair of adapters were designed and manufactured to emulate the base and top of 

the machine in which the grips were originally utilized. Both adapters have a 

M30x2.0 left-handed threaded bore in its center, which mates with the double ended 

screw required for both grips assembly. Around this bore, 6 concentric holes are 

positioned for the screws to fix the lower adapter to the table and the upper one on 

the hydraulic actuator (Fig. 3.2). 

 

Figure 3.2: a) The assembly used. b) individual pieces used. c) schematics of the lower adapter. 
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Assuming the piece will be machined mostly on a manual lathe, a reliable way 

to guarantee proper alignment between the adapters is to machine both from the 

same work piece. After finishing the first piece, the central hole for the second piece 

can be made without changing the position of the work piece, guaranteeing that 

both adapters will be concentric.  Also, the initial mark of the 6 concentric holes 

should be done on the lathe before the piece is moved to a drilling machine. 

Such procedures assure that the corresponding threaded holes will be 

concentrically aligned within the tolerance applied during the machining, which 

normally is enough for later fine adjustments. 

 

3.1.2 
Double-screwed thread 

To correct the misalignment found during the experiments with the adapted 

system, an external alignment fixture model was used (the usage procedures are 

discussed in subsection 3.3.2.3). A new thread was designed to increase the space 

necessary for this equipment to fit onto the assembly. 

The work piece was taken from a left-over threaded rod from a batch of a 

rupture strength test order (Fig. 3.3). The test report indicated that this thread could 

withstand 650MPa without plastic deformation, which is significantly higher than 

the service loads required for our new thread. 

 

Figure 3.3: Picture of the left-over threaded rod together with the old threaded screw. Schematic 

of the new threaded screw. 

 

The only modification on the new design was its length, which was increased 

within the height of the aligner. Buckling was not taken into consideration on the 
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project because this piece will always be under tension, since pre-load washers are 

fixed onto the structure before experiments are conducted. This will be discussed 

on subsection 3.2. 

 

3.2  
Assembly Protocol 

Each experimental testing has its own methodology and assembly 

requirements. The most common experimental and industrial procedures are 

regulated by government and private agencies which elaborate standards with 

requirements to be followed. Even when a new experiment is executed, some of 

those procedures should still be followed and used as a basis for the new ones to be 

implemented. In this present work, all standards used were elaborated by the 

American Society for Testing and Materials (ASTM), and the new assembly and 

experimental procedures were developed using their recommendation as a basis. 

All testing executed in this present work have the same assembly standardized 

requirements, and follow the set-up illustrated in Fig. 3.4. 

 

Figure 3.4: Schematics of the experimental set-up used (modified from [15]). 

 

An important component in this assembly is a pair of pre-load washer which is 

fixed between the hydraulic grips and the structure of the machine. It consists of 

two washers which have their external faces parallel between each other, and its 
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internal faces slightly inclined or in a helical shape (Fig 3.5). When the pair is 

mounted with its internal faces in contact, it turns into one adjustable washer with 

a height that can vary by sliding the upper inclined washer or rotating the upper 

helical one. 

 

Figure 3.5: Two examples of pre-load washers. Helical pair on the left, inclined pair on the 

right. 

 

The assembly goes on the following steps. First the hydraulic grip is mounted 

into the table or cross-head top with the washers in between on the minimum height 

configuration. All clearance between the grip and the washers is removed. A load 

bigger than the maximum expected during the experiment to be conducted is 

applied and the washers are adjusted to remove all new clearance that appears. 

Finally, the machine is unloaded, putting the washers under compression. With this 

procedure, it is guaranteed that the washers will be at compression during all the 

experiment, avoiding the appearance of a gap on the mounted system which can 

cause vibration and fatigue problems. 
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During trial multiaxial experiments, it was observed that the hydraulic grip was 

slipping when the helical washers were the chosen ones. Since the grips are fixed 

using a double threaded screw, with one end being left-handed, both clockwise (cw) 

and counter clockwise (ccw) rotations were dislocating the grip up (Fig 3.8). In fact, 

those washers are recommended for tensile-compression experiments and most of 

the grips designed for torsion experiments are fixed via 6 concentric bolts instead 

of the one in the middle, (the same way used on the adapters designed in this present 

work). With that mounting configuration, this slipping caused by rotation no longer 

happens. 

 

Figure 3.6: Schematics of the problem. 

 

Nevertheless, the use of the inclined washers mitigated this problem, and 

experiments could be conducted under low torsional capacities of the machine. 

 

3.3  
Alignment  

One of the highest concerns on axial-torsional experimental testing is to 

maintain proper alignment between the upper and lower grips. As stated on ASTM 

E606 Standard, a change in axial concentricity of less than or equal to 0.05 mm, 

measured between the bottom and top specimen fixture under cyclic force, is a 

measure of success with respect to minimizing lateral deflection of the loading train. 

Also, for a proper strain-controlled testing, no maximum bending strains 

(corroborated be misalignments) shall exceed 5% of the minimum axial range 

imposed during any test [9]. 
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Neglecting proper maintenance to always keep the testing system in proper 

alignment constitutes a hazard to the system itself, besides the obvious 

consequences of incorrect readings for any experiment done on a system in such 

conditions.  

 

3.3.1 
Misalignment Consequences 

A possible permanent consequence is damage to the hydraulic grips, since the 

misalignment can submit them to transverse forces they were not design to 

withstand. This can deform or even fracture the backstop plates of the jaw faces, 

which leads to tearing of the screws and springs used in the assembly, and in turn 

can cause damage to the threaded hole where the screws are connected (Fig. 3.7). 

Proper maintenance of the grips is necessary to identify those problems before the 

replacement of the screws and plates flattening (with a manual or hydraulic press, 

for example) is no longer possible. 

 

Figure 3.7: Bending of the backstop plates and shearing of the screws, caused by usage of a 

misaligned system. 

 

On the occurrence of the specimen’s buckling, the misalignment increases the 

chance of a grip to laterally rotate, consequentially bending the hydraulic piston 
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column. If subjected to enough bending moment, the column deformation can be 

irreversible, causing machine malfunction (Fig 3.8). 

  

 

Figure 3.8: Misalignment caused be a bent hydraulic piston column. The specimen should be 

pointing towards the center of the undercut circle. 

 

It is strongly advisable to configure and activate the maximum and minimum 

limits of both force and position before activating the hydraulic piston. With a 

properly defined minimum position limit, the machine will stop before buckling is 

enough to damage the grips and/or the testing machine. 

 

3.3.2 
Alignment Methodology 

All hydraulic testing systems evaluated during this work were designed with 

its hydraulic actuators either under the base table or above the crosshead top. All 

methods presented next assume the grip to be perfectly aligned with respect to the 

actuator where it is fixed. Therefore, the alignment procedures discussed should be 

conducted on the other grip. Instron 8874 has two actuators above its crosshead top, 

and for that reason all protocol listed in this work was conducted on the grip 

assembled onto the base. 
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3.3.2.1 
Visual Identification of Misalignment 

First, it is necessary to qualitatively assess the misalignment. An easy method 

for this primary evaluation is to simply clip a new specimen (or any piece that is 

guaranteed to be straight) on the upper grip and observe its eccentricity within the 

lower grip. Any considerable misalignment will be identified without the use of 

measuring tools (Fig. 3.9). 

 

Figure 3.9: Example of a considerably misaligned assembly. The specimen should be within the 

same distance from each jaw face. 

 

To correct the misalignment, it is necessary to proceed in two steps, starting by 

loosening the screws that hold the assembly onto the base. Once the lower grip (or 

adapter, in this work’s case) is in place but not tight, one can fix the specimen onto 

both grips. The very transverse force of the jaw faces will push the structure towards 

a better alignment position, and the way the specimen deforms visually indicates 

the location of this position.  

Following the initial placement, the use of a rubber hammer is recommended 

to gently push the lower adapter in the directions necessary for alignment. This 

procedure generates an acceptable primary result, which should be followed by 
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quantitative procedure to assure that the alignment is within the required tolerance 

of the experiment. Some of those methodologies are discussed in subsections 

3.3.2.2 to 3.3.3.4. 

 

3.3.2.2 
Dial Indicator Method 

A standard method to quantify misalignments is using a dial indicator. For the 

setting of this procedure, one needs to attach the magnetic base of the dial onto the 

grip assembled on the actuator (top in our case) and the contact tip to the surface of 

the other grip (Fig. 3.10). It is important that the tip is substantially pressed against 

the surface, in such a way that no vibration is enough to cause the loss of contact 

between the tip and the surface.  

 

Figure 3.10: Example of an assembly for the Dial Indicator Method. 

 

To execute the measurement, the top grip is rotated around its central axle (the 

screwed thread in our case), and the points of maximum positive and negative 

deviations are marker to be later corrected by gently hammering the assembly 
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towards the negative and against the positive deviations. When the dial readings are 

within the tolerance needed, one can proceed to tighten both grips and the alignment 

is done. 

One important point to remember, in order to prevent an unfortunate loss of 

expensive delicate equipment, is to always remove the dial indicator before, not 

after, hammering the structure and then reinserting the dial afterwards for further 

readings. 

 

3.3.2.3 
Strain Reading Method 

If necessary, a more precisely misalignment quantification can be done using 

strain gauges. The specimen instrumentation is conducted fixing four strain gauges 

parallel to its neutral axis and spaced 90 degrees between each other (Fig. 3.11).  

 

Figure 3.11: Specimen instrumentation. 

 

The reference reading, where strains are considered zero, is when the specimen 

is clipped onto only one grip. 

Through the readings of the strain gauges after the second grip clips the 

specimen, it is possible to determine the strain variation of 4 points on the horizontal 
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cross-section of the specimen. Pure axial force yields the specimen equally, and any 

deviant reading on the strain gauges is an indication that the specimen is suffering 

intrusive stresses caused by misalignment. 

The advantage of this method is that a data acquisition system (Daq) gives real 

time readings of those strains while adjustments are conducted, which helps to 

better visualize the directions the assemble needs to be pushed to (Fig. 3.12). 

 

Figure 3.12: Experimental setup, as well as the Daq reading on the computer screen. 

 

3.3.2.4 
External Alignment Fixture Method 

All the previously discussed methods correct concentric misalignment, which 

normally is enough since it is expected that a testing machine from a trustworthy 

company will have its table and crosshead precisely parallel, and the hydraulic grips 

are assembled perpendicular to then. The inclusion of a pair of adapters on the 

assembly can be a source of angular misalignment, since their faces might not have 

been machined with the required parallelism. For those and similar cases, an 

advisable solution is the use of an external alignment tool. In this work the Instron 

Alignment Fixture Model 8000-073 is discussed and information used on this 

section are referenced to the manual of this equipment[15]. Similar systems can be 

used, or even built, to deal with this type of misalignment. 

This alignment fixture consists of a central housing with upper and lower rings 

inside, which slides on each other. The upper ring has a spherical surface that mates 

with the spherical upper surface of the central housing, and a variation on its 

position changes the angle of the Fixture’s top. On the other hand, the lower ring 
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has a flat surface, so a change on its position only varies the Fixture’s horizontal 

location (Fig. 3.13).  

 

Figure 3.13: Instron Alignment Fixture Model 8000-073 (photo and schematic [15]). 

 

The rings are dislocated by four pairs of screws arranged at 90 degree intervals 

around the circumference of the central housing, and guide bars on their tips are 

supported against the rings to hold then on the desired position.  

Deciding the position of both rings requires a better understanding of how both 

types of misalignments affects the specimen. Concentric and angular misalignments 

cause different patterns of deformation on the specimen. For example, assuming 

that both grips are parallel and concentric, when the upper grip is rotated through 

some angle, the resulting strain is positive all along the outer curvature of the 

specimen and negative on the inner curvature (Fig. 3.14 - left). On the other hand, 

when the upper grip is offset through some distance, the resulting strain is zero in 
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the center of a section, with symmetric values between the top and bottom strains, 

but with opposite sign (Fig. 3.14 - right).  

 

Figure 3.14: Types of strain displacement on the specimen [15]. 

 

All misalignment will be quantified by a combined displacement strain. 

Assuming only elastic deformations on the specimen (which is easily achieved 

using a ductile metal specimen only constrained by the clipping forces of the grips), 

the superposition principle is valid and the strain can be decomposed into a sum of 

an angular and a concentric one.  

To align the assembly with this fixation model, four reading are necessary, one 

coinciding with the position of each pair of screws from this equipement. The 

information of those readings shows how much each ring has to me moved. 

Instron Alignment Fixture manual [15] recommends the strain gauge method 

to quantify the misalignment, which is adapted in order to also detect angular 

misalignment. For that, it is necessary to use 8 strain gauges to read the strains on 

the top and bottom of the 4 positions (Fig 3.15). With this data, it is possible to 

decompose those displacements into the concentric and angular counterparts and 

adjust the screws accordingly, while observing the strain variation readings on the 

Daq.  
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Figure 3.15: Schematic of the strain gauge configuration for this reading [15]. 

 

A more time-consuming reading can be done using the dial indicator. With the 

magnetic base stuck on the upper grip, one puts the pointer on one of the four upper 

positions of the specimen (same position of the upper strain gauges on the strain 

gauge method) and move the actuator down until the pointer reaches the lower 

position (same position of the lower strain gauges). The dial variation of the four 

readings shows how the specimen deformed, and the screws can be adjusted 

accordingly.  

 

 



 

 

4  
Experimental Methodology 

4.1  
Specimen Design 

All specimens were designed following the procedures listed on the E606 

Standard [9]. A schematic of the specimen is shown in Fig. 4.1 and the 

measurements used for each material are shown in Table 4.1. 

 

Figure 4.1: Schematic of the specimen. 

 

Table 4.1: Specimen measurements (in mm) 

Dimensions SAE 1020 Steel 6351-T6 Aluminum 

D 11.8 11.8 

d 8.5 10 

l 24 18 

L 45.7 34.9 

w 120 120.8 
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4.2  
Mechanical Properties 

For the SAE 1020 steel alloy, all procedures were conducted following the 

recommendations in the ASTM E8 Standard Methods for Tension Testing of 

Metallic Materials [17] and in the ASTM E111 Standard Test Method for Young’s 

Modulus, Tangent Modulus, and Chord Modulus [18]. A total of 2 rupture tests 

were executes and their data was used to determine the yield strength (SY), ultimate 

strength (SU), reduction of the cross-section area of the specimen (AR) and Young’s 

Modulus (E). Each property was calculated as the arithmetic mean from each 

experiment results. 

Yield strength was graphically measured using the Offset Method, in which a 

line parallel to the elastic curve of the material in drawn within a specified offset, 

as shown in Fig. 4.2. The point of cross between the line and the stress-strain curve 

is defined as the Yield point, with its stress value equal to SY [17].  

 

Figure 4.2: Stress-strain diagram with the lines needed for the determining SY via Offset 

Method (Modified from [17]). 

 

The Young’s Modulus was also graphically measured calculating the slope of 

the stress-strain graphic at its elastic part. Both ends of the fractured specimens were 

fitted together and their diameter was measured for the area reduction calculation. 

The ultimate strength (SU) is calculated by dividing the maximum force (F) carried 
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by the specimen during the rupture test by its original cross-sectional area (A0), as 

stated in Eq. (4-1). 

SU =
1

𝐴0
max

 

(𝐹) (4-1) 

Incongruences were found between data from Lima et al. tension testing [16] 

and the observed 6351-T6 Aluminum elastoplastic behavior, leading to the 

conclusion that only the stated value for reduction of the cross-section area was 

suitable for use. 

Tension testing for aluminum were not conducted in this work, and for that 

reason SU was not calculated. On the other hand, SY and E were determined using 

the stress and strain data from 2 strain-controlled low-cycle fatigue experiments 

conducted by Lima et al. The first hysteresis loop on the stress-strain graphic starts 

as a monotonic curve, the same seen during a tension testing, and for that reason 

both the Offset Method and the slope calculation are applicable. 

Poisson’s ratio (ν) was estimated as ν = 0.29 for steel and ν = 0.32 for 

aluminum. The shear modulus, yield strain (εY) and ultimate strain (εU) were 

calculated using Eqs. (4-2) to (4-4). 

𝐺 =
𝐸

2(1 + ν)
 (4-2) 

𝜀𝑈  = 𝑙𝑛 (
1

1 − 𝐴𝑅
) (4-3) 

𝜀𝑌 =
𝑆𝑌

𝐸
 (4-4) 

 

4.3  
Measuring εN Properties 

All tension-compression experimental data was obtained in accordance to the 

E606 Standard [9], using the Instron 8501 Servo Hydraulic Fatigue Testing System, 

shown in Fig. 4.3a. The chosen criteria for determining failure was the Force Drop 

in 50%, which stated that when the tensile constraint reaches half of the maximum 

reached value a crack can be assumed to be present there, reducing the cross-section 

area of the specimen. An Instron 2630-100 Series Clip-on Extensometer, shown in 

Fig. 4.3b, was chosen to measure the strain amplitudes and to control the servo 

hydraulic machine during the tests.  
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Figure 4.3: a) Instron 8501 Servo Hydraulic Fatigue Testing System; b) Instron 2630-100 Series 

Clip-on Extensometer; c) Instron 8874 Biaxial Servo Hydraulic Fatigue Testing System. 

 

4.4  
Elastoplastic Behavior 

Data from the strain-controlled experiments was also used to identify the 

elastoplastic behavior of each material and to plot their cyclic Ramberg-Osgood 

curves. All curves were plotted using ten stress-strain points. 

Each stress value was determined using the stress-sample plot, which is 

analogous to the stress-time graphic since the used data acquisition has a constant 

frequency. In each graphic, the stress values stabilized around the mark of 100,000 

samples. Therefore, the maximum stress value it this region was the selected one. 

The experiments were conducted on a constant strain amplitude, so the 

strain value at the maximum stress is known to be equal to the strain amplitude. Fig. 

4.4 shows the stress-sample graphics for both steel and aluminum at the strain 

amplitude of 0.06. 
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Figure 4.4: Stress-sample graphic with the first 130,000 data acquired from two strain 

controlled cyclic tensile-compression tests. Note that the stress amplitude necessary to maintain 

the strain amplitude constant decreases on steel, while on aluminum it increases. 

 

4.5  
Measuring γN Properties 

All torsional experimental data was obtained using the Instron 8874 Biaxial 

Servo Hydraulic Fatigue Testing System, shown in Fig. 4.3c. As stated in the E2207 

Standard for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-Walled 

Tubular Specimens, the shear stress profile tends to be non-linear for a specimen 
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under elastoplastic deformations [5]. Tubular specimens are recommended because, 

depending on their wall thickness, the shear stress gradient can be ignored and the 

hypothesis of a uniformly distributed shear stress is valid. 

Also, strain control demands the use of torsional or biaxial extensometers, an 

expensive piece of equipment that was not available for the present work. To 

overcome this problem, a simplified semi-empirical method is proposed here to 

calculate the shear strain using the angular displacement readings provided by the 

LVDT of the testing machine.  

The proposed methodology is based on the hypothesis that, for uniform 

geometries (without the presence of notches), the strain profile is still linear even 

for plastic deformations. This hypothesis is reasonable as long as the cross sections 

can still be assumed to remain planar. Using the linear strain profile, it is possible 

to neglect in the analysis the complicated shear stress profile, as shown in Fig. 4.5. 

Then, using Eq. (4-5) [19], it is possible to relate the measured angular displacement 

with the shear strain in both elastic and plastic regimes. 

 

Figure 4.5: Elastoplastic shear stress and strain profiles on a specimen’s cross-section area 

under pure torsion. 

 

𝛾𝑎 =
𝑑

2𝐿
(φ𝑎

𝜋

180
) (4-5) 

Eq. (4-5) was adapted to receive as input the angle amplitude (φa) in degrees, 

which was the controlling parameter on each torsional experiment, and to calculate 

the amplitude of the deformation (γa) to be used in the γN equation. With the 

exclusion of the shear stress from the equations, a tubular specimen was not a 

requirement anymore, and the same specimen design used on the tensile-
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compression experiments could be used for the torsional experiments. Note 

however that the shear strain gradient from the solid (instead of hollow) shaft can 

have a significant effect on the fatigue life, even though it is not modeled in the 

present work. 

As recommended in the E606 standard, the specimen has two soft notches. This 

diameter variation was not considered in Eq. (4-5), simplifying the model geometry 

to a uniform solid shaft with the same diameter as the smaller one from the 

specimen. The criteria of failure and minimum number of experiments were the 

same used in the tensile-compression experiments, giving the desired γN curve. 

 

4.6  
Curve Fitting 

For both tensile-compression and torsional life prediction curves, the 

experimental data was fitted by Coffin-Manson’s εN curve and its shear version γN 

using a MATLAB programming code. Its computing environment offers the 

nonlinear least-squares solver lsqnonlin(), which was used to fit all experimental 

data. In the εN curve-fitting, the inputted data was the Young’s Modulus (E), vector 

of applied strain amplitudes (εa) and corresponding vector of resulting number of 

cycles to failure (N). The working variables were: σc, εc, b and c. Similarly, in the 

γN curve-fitting, the inputted data was the Shear Modulus, the vectors γa and N, 

with the working variables as τc, γc, bγ and cγ. 

To fit a curve that is physically admissible, a proper choice of boundary values 

for the working variables is necessary. In the present work, they were chosen to 

encompass the possible values from a variety of experimental data and estimative 

propositions listed on Castro et al [1]. The mentioned data indicates that most 

metallic structural alloys have their elastic and plastic exponents respectively in the 

range of -0.2 < b < -0.05 and -0.9 < c < -0.3. For that reason, the shown intervals 

were chosen as the exponent boundaries. Lagoda et al. [10] states that it is of 

common practice among authors to assume parallelism between εN and γN 

equations, considering b = bγ and c = cγ. 

Through the proposed estimates and experimental data presented in Castro et 

al, a reasonable boundary for the elastic and plastic coefficients is Su < σc < 2Su and 

εy < εc < εU, where Su is the ultimate strength and εy and εU are the deformation in 
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the yield and ultimate strengths, respectively. For the shear coefficients, the upper 

boundaries were repeated and the lower boundaries were divided by 2. 

The same procedure was used for the cyclic Ramberg-Osgood curve fitting, 

with Hc and hc as the working variables and E/1000 < Hc < E/100 and 0 < hc < 0.5 

as their ranges. And the solver was also used for the calibration of the Fatemi-Socie 

equation, using αFS as the only variable and restricting it to only positive values 

(more details on section 4.8). 

 

4.7  
Comparison Procedures 

As stated in subsection 2.3.3, von Mises and Tresca criteria were adapted in 

order to calculate the equivalent uniaxial strain from the torsional experiments. For 

a better visualization, Fig. 4.6 shows the stress and strain Mohr circles in pure 

torsion. 

 

 

Figure 4.6: Stress and strain Mohr circles for pure torsion.  

 

Since all experiments were conducted on the plastic regimen, it was necessary 

to use the effective Poisson ratio (𝜈̅) on the formulation, a value in-between the 

elastic and plastic Poisson ratios (𝜈 ≤  𝜈̅  ≤ 0.5). 

In pure torsion with γxy=γxz=0 and γyz = γ, Eqs. (2-17) and (2-22) are reduced 

to Eqs. (4-6) and (4-7), respectively.  

𝜀𝑀𝑖𝑠𝑒𝑠 =
√3

2(1 + 𝜈̅)
𝛾 (4-6) 
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𝜀𝑇𝑟𝑒𝑠𝑐𝑎 =
1

1 + 𝜈̅
𝛾 (4-7) 

These are the formulas applied for all point on the γN curve to generate the two 

equivalent εN curves. Since the experiments in the present work where conducted 

with high strain values, (𝜈̅) is assumed to be equal to the plastic Poisson ratio, 

reducing Eqs. (4-6) and (4-7) to Eqs. (4-8) and (4-9), respectively. 

(ε𝑁)𝑀𝑖𝑠𝑒𝑠 =
1

√3
(𝛾𝑁) (4-8) 

(ε𝑁)𝑇𝑟𝑒𝑠𝑐𝑎 =
2

3
(𝛾𝑁) (4-9) 

 

4.8  
Fatemi-Socie Damage Model Calibration 

The particular cases where Fatemi-Socie and SWT equations reduce to shear 

and tensile Coffin-Manson, respectively (this is discussed in subsection 2.3.5), are 

useful for the calibration of those models.  

Findley and Generalized Goodman calibrations require high-cycle fatigue 

experiments, which is beyond the scope of this present work. SWT equation’s 

calibration requires shear stress data from pure-torsion experiments, which was not 

acquired for the reasons discussed in section 4.5. Calibration of these damage 

models was, therefore, not conducted.  

Fatemi-Socie’s calibration, on the other hand, requires the stress data only 

from the tension-compression experiments. Since in pure torsion the equation is 

reduced to the shear Coffin-Manson curve, this data is used to calculate the γN 

constants and exponents. For tension-compression with σm=0, the maximum values 

of the strain amplitude (Δγ/2) and the peak normal stress perpendicular to the 

critical plane (σmax) are found on the plane with φ = 45º, and their values can be 

calculated using the Mohr Circle (Fig. 4.7). 
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Figure 4.7: Stress and strain Mohr Circles for a pure axial tension stress state. 

 

With the given values from the tension-compression stress-strain state, 

Fatemi-Socie equation is reduced to Eq. (4-10).  

∆𝜀

2
(1 + 𝜐̅) (1 + 𝛼𝐹𝑆

𝜎max

2𝑆𝑌𝑐
) = (

𝜏𝑐

𝐺
) (2𝑁)𝑏𝛾 + 𝛾𝑐(2𝑁)𝑐𝛾  (4-10) 

For each material, all ten stress-strain points used on the cyclic Ramberg-

Osgood curve fitting, along with the measured life of their respective experiments, 

was inputted for the 𝜎max, ∆𝜀 and N values. Along with the γN constants and 

exponents calculated for the shear Coffin-Manson curve, αFS was calculated using 

the nonlinear least-squares solver lsqnonlin(). 

 



 

 

5  
Results and Discussion  

5.1  
Components Performance 

During the alignment procedure, it was discovered that the upper part of the 

machine was misaligned in respect with the lower part beyond the maximum reach 

offered by the external aligner. Further investigation suggested that the central 

column, where the upper grip and the load cell are installed, was inclined and 

causing severe angular and concentric misalignment. For that reason, all torsional 

experiments were conducted on the Mechanical Testing Laboratory of the Military 

Institute of Engineering (IME), which already had an Instron 8874 with the 

recommended gripping system installed. Nevertheless, all performance evaluation 

of the designed pieces was conducted on a misaligned system. 

With the replacement of the helical pre-load washers for the inclined ones, 

torsional testing could be performed using torques up to 35Nm and frequencies up 

to 1.5 Hz. As expected, the double threaded bolt has not presented any defected or 

performance problems during all experimental works conducted on the machine 

after its installation. 

 

5.2  
Experimental Results  

The tensile-test mechanical properties for each material are listed in Tab. 5.1. 

Their cyclic Ramberg-Osgood plots and equations are shown in Figs. 5.1 and 5.2 

and Eqs. (5-1) and (5-2). For the εN curve fitting, data from Lima et al.’s work [16] 

was used in conjunction with new data acquired in the present work. Both εN curves 

are shown in Fig. 5.3 and Eqs. (5-3) and (5-4). For the γN curve fitting, ten (φa, N) 

points were measured for each material and converted to (γa, N) points, as shown 

in Fig. 5.4, resulting in Eqs. (5-5) and (5-6). All angular displacements and their 

corresponding number of cycles are listed in Tab. 5.2. Figs. 5.5 and 5.6 shows, for 

6351-T6 Al and SAE 1020 respectively, the comparison between the fitted εN curve 
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and the equivalent εN curves obtained from the shear data using von Mises and 

Tresca criteria. 

Table 5.1: Mechanical properties for SAE 1020 and 6351-T6 Al 

Property SAE 1020 Steel 6351-T6 Aluminum 

Su 599 MPa - 

Sy 558 MPa 223 MPa 

Syc 418 MPa 277 MPa 

ν 0.29 0.32 

E 194.4 GPa 69.4 GPa 

G 75.35 GPa 26.29 GPa 

AR 40% 57% [16] 

εy 0.00287 0.00321 

εu 0.616 0.844 

 

Table 5.2: Angular displacements and their corresponding number of cycles up to failure for SAE 

1020 and 6351-T6 Al 

SAE 1020 Steel 6351-T6 Aluminum 

Angular 

displacement (φa) 

Number of cycles 

up to failure (N) 

Angular 

displacement (φa) 

Number of cycles 

up to failure (N) 

8 1038 7 763 

7 2230 6 874 

6 2889 5 1780 

5 5190 5 2030 

4 10260 4.5 2525 

3.8 11837 4.2 6851 

3.8 10839 4 7428 

3.5 17507 4 6440 

3.5 18747 3.7 8819 

3 28664 3.5 18337 
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Figure 5.1: SAE 1020 cyclic Ramberg-Osgood curve. 

 

 

Figure 5.2: 6351-T6 Al cyclic Ramberg-Osgood curve. 

 

𝑆𝐴𝐸 1020 𝑆𝑡𝑒𝑒𝑙:  𝜀 = (
𝜎

𝐸
) + (

𝜎

1882.7
)

1
0.242

 
(5-1) 

6351 − 𝑇6 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚:  𝜀 =  (
𝜎

𝐸
) + (

𝜎

638.6
)

1
0.135

 
(5-2) 
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Figure 5.3: SAE 1020 and 6351-T6 Al εN curves. 

 

Figure 5.4: SAE 1020 and 6351-T6 Al γN curves. 

 

𝑆𝐴𝐸 1020 𝑆𝑡𝑒𝑒𝑙:  𝜀𝑎 = (
893.9   

𝐸
) (2𝑁)−0.099 + 0.368(2𝑁)−0.515 (5-3) 

6351 − 𝑇6 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚:  𝜀𝑎 = (
555.7

𝐸
) (2𝑁)−0.092 + 0.268(2𝑁)−0.682 (5-4) 

𝑆𝐴𝐸 1020 𝑆𝑡𝑒𝑒𝑙:  𝛾𝑎 = (
824.2

𝐺
) (2𝑁)−0.112 + 0.336(2𝑁)−0.476 (5-5) 

6351 − 𝑇6 𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚:  𝛾𝑎 = (
548.1

𝐺
) (2𝑁)−0.099 + 0.458(2𝑁)−0.590 (5-6) 
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Figure 5.5: Comparison between εN curves with (εN)Mises and (εN)Tresca equivalent curves for 

6351-T6 Aluminum. 

 

 

Figure 5.6: Comparison between εN curves with (εN)Mises and (εN)Tresca equivalent curves for 

SAE 1020 Steel. 
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5.3  
Discussion 

All stress-sample graphics used for the cyclic Ramberg-Osgood plot have 

shown that SAE 1020 Steel cyclic softens and 6351-T6 Aluminum cyclic hardens. 

This can also be seen by comparing their cyclic and monotonic yield strengths. SAE 

1020 Steel has Syc < Sy, showing the softening after some elastoplastic cycles. On 

the other hand, 6351-T6 Aluminum has Sy < Syc. 

For 6351-T6 Al (Fig. 5.5), since the fitted εN curve was lower than the von 

Mises and Tresca equivalent ones obtained from shear data, it can be concluded that 

it is more sensitive to tensile deformations instead of shear and, therefore, models 

such as SWT and Generalized Goodman are recommended for its fatigue damage 

calculation. In other words, at least under the zero mean loads applied in the tests, 

it is expected that a tensile microcrack is initiated in this material, instead of a 

classic Forsyth shear one. 

SAE 1020, on the other hand, had mixed results. As seen in Fig. 5.6, under low 

cycle fatigue its εN curve was higher than the von Mises and Tresca equivalent ones 

obtained from shear data. Therefore, a shear-sensitive low-cycle model such as 

Fatemi-Socie is recommended for its low cycle fatigue calculations. Note however 

that, under high cycle fatigue, this trend tends to reverse, with tensile damage 

becoming the major damage mechanism, as the tension-compression εN curve 

drops below the shear-equivalent ones. As a result, for long lives it should be 

recommended for this steel to use a tensile-based damage model such as the 

Generalized Goodman, instead of a shear-based such as Findley. In summary, the 

studied data indicates that this steel is shear-sensitive under low-cycle fatigue and 

tensile-sensitive for longer lives. 

Socie et al. [13] investigated in his work the crack initiation and propagation 

behavior in multiaxial fatigue for a few materials. For that, different materials were 

subjected to pure tension and pure torsion experiments, and the crack behavior was 

monitored up to failure during each test. With the gathered data, he created the so-

called Damage Maps in which the crack behavior is separated in nucleation, shear 

propagation and tensile propagation. Figure 5.7 shows the damage map for SAE 

1045 Steel under pure tension. Note that the y-axis is the damage fraction, which is 

the ratio between the number of cycles at each moment and the number of cycles 
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when failure occurred. So, a vertical line drawn on the damage map would tell the 

entire behavior of the crack up to failure.   

 

Figure 5.7: Damage Map for 1045 Steel [13].  

 

Note that, like the εN comparison graphics presented in this work, the damage 

maps can be used to characterize the shear-tensile sensitivity of the material, since 

the type of crack propagation dictated which type of stress is causing it.  

A similar pattern can be observed when the 1020 steel εN comparison graphic 

and the 1045 steel damage map are compared. Both had a mixed behavior, with a 

pronounced shear sensitivity on low-cycle fatigue and tensile sensitivity when 

fatigue transitions to a high-cycle regime. The life cycle where their transition 

begins is also very similar. While 1045 steel has its transition behavior in the range 

of 103 < 2N < 105, the studied SAE 1020 steel has its transition from shear-

dominated to tensile-dominated near 2N = 5·103 using Tresca and 2N = 5·104 using 

the von Mises criterion. 

To further explore the above comparison between 1020 and 1045 transition 

behaviors, data from Socie et al. [20] and Leese et al. [21] from 1045 steel testing 

were input on the curve-fitting software to plot its εN comparison graphics, which 

can be seen in Fig. 5.8. For the von Mises criterion, it can be seen in the figure that 

the SAE 1045 steel has its transition from shear-dominated to tensile-dominated 
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near 2N = 104, compatible with the 103 < 2N < 105 range from the damage map 

from Fig. 5.5. 

 

Figure 5.8: εN Comparison graphic of SAE 1045. 

 

Socie states that the Tresca criterion is not a good correlation parameter for the 

SAE 1045 steel, giving life prediction results in the range of a conservative factor 

of 7 to a non-conservative factor of 3.5 depending on the load configuration [20]. 

This is the reason why Fig. 5.8 only shows the comparison between the tensile and 

shear-equivalent von Mises εN curves, instead of Tresca’s. The εN Comparison 

graph for the SAE 1045 steel leads to the same conclusion towards the shear-tensile 

sensitivity behavior taken from its damage maps, which was also verified in the 

SAE 1020 steel studied in this work. 

Finally, the calibrated value of Fatemi-Socie’s αFS parameter also corroborates 

towards the conclusions stated about the shear-tensile sensitivity behavior of each 

material. For SAE 1020 Steel, αFS = 0.127 was the result from the solver, indicating 

a small influence of the tensile stress on the damage process of the material. 

Therefore, this steel is shear sensitive on the majority of its low-cycle life. However, 

αFS = 1.677 was the result for 6351-T6 Aluminum, which indicates that the tensile 

stress influence on the damaging process is almost the double of the shear strain. 
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This aluminum is, then, tensile sensitive and Fatemi-Socie is not a proper model to 

be used for it. 

 

 



 

 

6  
Conclusion 

In this work, shear (γN) and tensile (εN) low-cycle fatigue properties were 

measured for SAE 1020 Steel and 6351-T6 Aluminum alloys. Both materials are 

not present on Lagoda et al.’s list of low-cycle fatigue properties, thus this data 

serves as an expansion to their research. 

A simplified method was proposed to semi-empirically estimate the low-cycle 

fatigue properties under torsional constraints. This method was used to measure the 

shear low-cycle fatigue properties for each material. Using the measured tensile and 

shear sets of data, each material was characterized as either shear or tensile 

sensitive, and the most appropriate multiaxial critical-plane fatigue damage models 

were recommended accordingly. The characterization process of shear-tensile 

sensitivity was compared with the damage maps proposed by Socie et al., and 

similar results were obtained. Fatemi-Socie damage model was calibrated for each 

material, and the results of this process also led towards the same conclusions 

obtained from the comparison with the damage maps. Moreover, the elastoplastic 

behavior of each material was characterized.  

A methodology to adapt the Instron 8874 Biaxial System was proposed in order 

to perform cyclic torsional and multiaxial fatigue experiments using the grips from 

the Instron 8501 Fatigue Testing System. A pair of adapters and other components 

were manufactured, allowing the grips designed for one machine to be assembled 

onto the other. In the aforementioned mounting conditions, different types of 

misalignments were identified and their correction procedures were explained in 

detail. Problems caused by usage of non-properly aligned systems were listed and 

techniques to mitigate the consequential issues are discussed. Also, the performance 

of the manufactured components was evaluated on the misaligned machine. 

The methods discussed in this work, alongside with its recommendations and 

precautions, are valuable for many experimental measurements, and can be useful 

as a guide for the setup of future uniaxial and multiaxial testing. 
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6.1  
Future Works 

A set of strain-controlled torsional low-cycle fatigue experiments with tubular 

specimens is proposed for each material as future work. A comparison between the 

γN curve fitted using this data and the one proposed in the present work would lead 

to the evaluation of the stress gradient influence on the low-cycle fatigue behavior 

and life predictions of each material. 

High-cycle pure tension and pure torsional experiments are also proposed for 

each material, to better characterize in future work the shear-tensile sensitivity of 

the given materials under such circumstances.  

A deeper study of the Critical Plane Damage models is also suggested. The 

calculation of their α and β coefficients and their usage for fatigue life predictions 

under multiaxial out-of-phase experiments are of great contribution. 

Metallography and crack propagation measurements of the 6351-T6 

Aluminum are also a suggestion for future work, in order to plot its entire damage 

map along with the εN and γN initiation data in the present work. 
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Appendix A  
Programming Codes using MATLAB 

 

File gamma_eps_steel.m 

 

 

clear all; close all; clc; 

  
phi_a = [8 
7 
6 
5 
4 
3.8 
3.8 
3.5 
3.5 
3 
] 

  
N_gamma = [1038 
2230 
2889 
5190 
10260 
11837 
10839 
17507 
18747 
28664] 

  
D = 8.5; 
R = D/2 
L = 45.7; 

  
gamma_a = (R/L)*(pi/180)*phi_a 

  
eps_a = [0.003 
0.003 
0.0035 
0.0035 
0.004 
0.0045 
0.005 
0.006 
0.007 
0.008] 

  
N_eps = [17676 
19759 
13090 
18298 
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8802 
6340 
4273 
3788 
2547 
1380] 

  
E = 194400; 
v = 0.29; 
AR = 0.40; 
G = E/(2*(1+v)); 
Sy = 558; 
Su = 599; 
eps_y = Sy/E; 
eps_u = log(1/(1-AR)); 

  
fun = @(e)(e(1)/E)*(2*N_eps).^(e(2)) + e(3)*(2*N_eps).^(e(4)) - 

eps_a; 
lb = [Su,-0.2,eps_y,-0.9]; 
ub = [2*Su,-0.05,eps_u,-0.3]; 
e0 = [Su,-0.2,eps_y,-0.9]; 

  
e = lsqnonlin(fun,e0,lb,ub) 

  
fun = @(g)(g(1)/G)*(2*N_gamma).^(g(2)) + 

g(3)*(2*N_gamma).^(g(4)) - gamma_a; 
lb = [Su/2,-0.2,eps_y/2,-0.9]; 
ub = [2*Su,-0.05,eps_u,-0.3]; 
g0 = [Su,-0.2,eps_y,-0.9]; 
g = lsqnonlin(fun,g0,lb,ub) 

  
% N = 1:70000; 
N = 1:5000000; 
epsilon = (e(1)/E)*(2*N).^(e(2)) + e(3)*(2*N).^(e(4)); 
gamma = (g(1)/G)*(2*N).^(g(2)) + g(3)*(2*N).^(g(4)); 
gamma_tresca = 2*gamma/3; 
gamma_mises = gamma/sqrt(3); 

  
figure (1) 
loglog(2*N_eps,eps_a,'^','LineWidth',2); 
hold on 
plot(2*N,epsilon,'-','LineWidth',2); 
% xlim([100 100000]); 
% ylim([0.001 0.1]); 
xlim([100 10000000]); 
ylim([0.001 0.1]); 
title('\epsilon N Curve for SAE 1020 Steel'); 
xlabel('2N'); 
ylabel('\epsilon a') 
hold off 
grid on 

  
figure (2) 
loglog(2*N_gamma,gamma_a,'s','LineWidth',2); 
hold on 
plot(2*N,gamma,'-','LineWidth',2); 
% xlim([100 100000]); 
% ylim([0.001 0.1]); 
xlim([100 10000000]); 
ylim([0.001 0.1]); 
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title('\gamma N Curve for SAE 1020 Steel'); 
xlabel('2N'); 
ylabel('\gamma a') 
hold off 
grid on 

  
figure (3) 
loglog(2*N,epsilon,'-r','LineWidth',2); 
hold on 
plot(2*N,gamma_tresca,':k','LineWidth',2); 
plot(2*N,gamma_mises,'--k','LineWidth',2); 
% xlim([100 100000]); 
% ylim([0.001 0.1]); 
xlim([100 10000000]); 
ylim([0.001 0.1]); 
title('SAE 1020 Steel strain curves comparison'); 
xlabel('2N'); 
ylabel('\epsilon a') 
legend('\epsilon N', '\epsilon N (Tresca)', '\epsilon N 

(Mises)') 
hold off 
grid on 
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File gamma_eps_aluminum.m 

 
 

clear all; close all; clc; 

  
phi_a = [7 
6 
5 
5 
4.5 
4.2 
4 
4 
3.7 
3.5] 

  
N_gamma = [763 
874 
1780 
2030 
2525 
6851 
7428 
6440 
8819 
18337] 

  
D =  10; 
R = D/2 
L = 34.87; 

  
gamma_a = (R/L)*(pi/180)*phi_a 

  
eps_a = [0.003 
0.003 
0.0032 
0.0032 
0.0032 
0.0035 
0.0035 
0.004 
0.004 
0.004 
0.005 
0.005 
0.00594 
0.00594 
0.007 
0.007 
0.0075 
0.008 
0.004 
0.006 
0.007] 

  
N_eps = [29928 
19663 
21381 
17792 
17500 
13640 
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13291 
7000 
6595 
4319 
1894 
1493 
940 
612 
528 
422 
324 
258 
4855 
807 
664] 

  
E = 68200; 
v = 0.32; 
AR = 0.57; 
G = E/(2*(1+v)); 
Sy = 324; 
Su = 352; 
eps_y = Sy/E; 
eps_u = log(1/(1-AR)); 

  
fun = @(e)(e(1)/E)*(2*N_eps).^(e(2)) + e(3)*(2*N_eps).^(e(4)) - 

eps_a; 
lb = [Su,-0.2,eps_y,-0.9]; 
ub = [2*Su,-0.05,eps_u,-0.3]; 
e0 = [Su,-0.2,eps_y,-0.9]; 
e = lsqnonlin(fun,e0,lb,ub) 

  
fun = @(g)(g(1)/G)*(2*N_gamma).^(g(2)) + 

g(3)*(2*N_gamma).^(g(4)) - gamma_a; 
lb = [Su/2,-0.2,eps_y/2,-0.9]; 
ub = [2*Su,-0.05,eps_u,-0.3]; 
g0 = [Su,-0.2,eps_y,-0.9]; 
g = lsqnonlin(fun,g0,lb,ub) 

  
% N = 1:70000; 
N = 1:5000000; 
epsilon = (e(1)/E)*(2*N).^(e(2)) + e(3)*(2*N).^(e(4)); 
gamma = (g(1)/G)*(2*N).^(g(2)) + g(3)*(2*N).^(g(4)); 
gamma_tresca = 2*gamma/3; 
gamma_mises = gamma/sqrt(3); 

  
figure (1) 
loglog(2*N_eps,eps_a,'^','LineWidth',2); 
hold on 
plot(2*N,epsilon,'-','LineWidth',2); 
% xlim([100 100000]); 
% ylim([0.001 0.1]); 
xlim([100 10000000]); 
ylim([0.001 0.1]); 
title('\epsilon N Curve for 6351-T6 Aluminum'); 
xlabel('2N'); 
ylabel('\epsilon a') 
hold off 
grid on 
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figure (2) 
loglog(2*N_gamma,gamma_a,'s','LineWidth',2); 
hold on 
plot(2*N,gamma,'-','LineWidth',2); 
% xlim([100 100000]); 
% ylim([0.001 0.1]); 
xlim([100 10000000]); 
ylim([0.001 0.1]); 
title('\gamma N Curve for 6351-T6 Aluminum'); 
xlabel('2N'); 
ylabel('\gamma a') 
hold off 
grid on 

  
figure (3) 
loglog(2*N,epsilon,'-r','LineWidth',2); 
hold on 
plot(2*N,gamma_tresca,':k','LineWidth',2); 
plot(2*N,gamma_mises,'--k','LineWidth',2); 
% xlim([100 100000]); 
% ylim([0.001 0.1]); 
xlim([100 10000000]); 
ylim([0.001 0.1]); 
title('6351-T6 Aluminum strain curves comparison'); 
xlabel('2N'); 
ylabel('\epsilon a') 
legend('\epsilon N', '\epsilon N (Tresca)', '\epsilon N 

(Mises)') 
hold off 
grid on 
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File ramberg_osgood_steel 

 
 

clear all; close all; clc; 

  
'STEEL' 

  
eps = [0.003 
0.003 
0.0035 
0.0035 
0.004 
0.0045 
0.005 
0.006 
0.007 
0.008]; 

  
sigma = [405.8 
396.4 
401.3 
411.7 
521.3 
417.7 
412.9 
423.1 
417.0 
417.0]; 

  
E = 194400; 
Sy = 558; 

  
fun = @(h)sigma/E + (sigma/h(1)).^(1/h(2)) - eps; 
lb = [E/1000,0]; 
ub = [E/100,0.5]; 
h0 = [E/300,0.2]; 

  
h = lsqnonlin(fun,h0,lb,ub); 
Hc = h(1) 
hc = h(2) 
sig = 0:0.01:550; 
epsilon = sig/E + (sig/Hc).^(1/hc); 

  
Syc = Hc*(0.002)^hc 

  
plot(eps,sigma,'^','LineWidth',2); 
hold on 
plot(epsilon,sig,'-','LineWidth',2); 
title('Cyclic Ramberg-Osgood Curve for SAE 1020 Steel'); 
xlabel('\epsilon'); 
ylabel('\sigma [MPa]') 
hold off 
grid on 
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File ramberg_osgood_aluminum 

 
 

clear all; close all; clc; 

  
'ALUMINUM' 

  
eps = [ 
0.004 
0.004 
0.005 
0.005 
0.00594 
0.00594 
0.006 
0.007 
0.007 
0.008]; 

  
sigma = [ 
225.4 
249.6 
235.0 
244.2 
263.8 
292.1 
244.0 
260.1 
300.0 
291.7]; 

  
% E = 68200; 
 E = 67400; 

  
fun = @(h)sigma/E + (sigma/h(1)).^(1/h(2)) - eps; 
lb = [E/1000,0]; 
ub = [E/100,0.5]; 
h0 = [E/500,0.1]; 

  
h = lsqnonlin(fun,h0,lb,ub); 
Hc = h(1) 
hc = h(2) 
sig = 0:0.01:350; 
epsilon = sig/E + (sig/Hc).^(1/hc); 

  
Syc = Hc*(0.002)^hc 

  
plot(eps,sigma,'^','LineWidth',2); 
hold on 
plot(epsilon,sig,'-','LineWidth',2); 
title('Cyclic Ramberg-Osgood Curve for 6351-T6 Aluminum'); 
xlabel('\epsilon'); 
ylabel('\sigma [MPa]') 
hold off 
grid on 
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File socie_calibration_steel 

 

 
clear all; close all; clc; 

  
eps_a = [0.003 
0.003 
0.0035 
0.0035 
0.004 
0.0045 
0.005 
0.006 
0.007 
0.008]; 

  
N_eps = [17676 
19759 
13090 
18298 
8802 
6340 
4273 
3788 
2547 
1380]; 

  
sigma = [405.8 
396.4 
401.3 
411.7 
521.3 
417.7 
412.9 
423.1 
417.0 
417.0]; 

  
% material properties 
E = 194400; 
v = 0.29; 
v_eff = 0.5; 
G = E/(2*(1+v)); 

  
% low-cycle properties 
sigma_c = 893.9; 
eps_c = 0.368; 
b = -0.099; 
c = -0.515; 

  
tau_c = 824.2; 
gamma_c = 0.336; 
bs = -0.112; 
cs = -0.476; 

  
Syc = 417.9308; 

  
gamma_a = (1+v_eff)*eps_a; 
sigma_perp = sigma/2; 
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fun = @(alpha_fs)(tau_c/G)*(2*N_eps).^(bs) + 

gamma_c*(2*N_eps).^(cs) - 

gamma_a.*(1+(alpha_fs/Syc).*sigma_perp); 
alpha_fs = lsqnonlin(fun,1,0) 

  
y = gamma_a.*(1+(alpha_fs/Syc)*sigma_perp); 
x = (tau_c/G)*(2*N_eps).^(bs) + gamma_c*(2*N_eps).^(cs); 

  
hold on 
plot(x,y,'^','LineWidth',2); 
plot(0:0.01:1,0:0.01:1); 
xlim([0 0.02]); 
ylim([0 0.02]); 
title('Fatemi Socie equation for SAE 1020 Steel'); 
hold off 
grid on 

   

 

  



Appendix A. Programming Codes using MATLAB 84 
 

File socie_calibration_aluminum.m 

 
clear all; close all; clc; 

  
eps_a = [ 
0.004 
0.004 
0.005 
0.005 
0.00594 
0.00594 
0.006 
0.007 
0.007 
0.008]; 

  
N_eps = [ 
7000 
6595 
1894 
1493 
940 
612 
807 
528 
422 
258]; 

  
sigma = [ 
225.4 
249.6 
235.0 
244.2 
263.8 
292.1 
244.0 
260.1 
300.0 
291.7]; 

  
% material properties 
E = 67900; 
v = 0.32; 
v_eff = 0.5 
G = E/(2*(1+v)); 

  
% low-cycle properties 
sigma_c = 555.7; 
eps_c = 0.268; 
b = -0.092; 
c = -0.682; 

  
tau_c = 548.1; 
gamma_c = 0.458; 
bs = -0.099; 
cs = -0.590; 

  
Syc = 276.6842; 

  



Appendix A. Programming Codes using MATLAB 85 
 

gamma_a = (1+v_eff)*eps_a; 
sigma_perp = sigma/2; 

  
fun = @(alpha_fs)(tau_c/G)*(2*N_eps).^(bs) + 

gamma_c*(2*N_eps).^(cs) - 

gamma_a.*(1+(alpha_fs/Syc).*sigma_perp); 
alpha_fs = lsqnonlin(fun,1,0) 

  
y = gamma_a.*(1+(alpha_fs/Syc)*sigma_perp); 
x = (tau_c/G)*(2*N_eps).^(bs) + gamma_c*(2*N_eps).^(cs); 

  
hold on 
plot(x,y,'^','LineWidth',2); 
plot(0:0.01:1,0:0.01:1); 
xlim([0 0.02]); 
ylim([0 0.02]); 
title('Fatemi Socie equation for 6351-T6 Aluminum'); 
hold off 
grid on 

  

 


