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Abstract 

Assad, Marília Maurell. Analysis of control strategies for autonomous 

scale motorcycles stabilization and trajectory tracking. Rio de 

Janeiro, 2018. 131p. Tese de Doutorado - Departamento de Engenharia 

Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. 

Autonomous vehicles are an interesting and recent problem, with its 

application in cars and motorcycles still in its early stages. In addition to the 

inherent difficulties in making a vehicle move independently, the autonomous 

motorcycle has to be able to remain stable at any speed and trajectory. The 

vehicle’s stability can be achieved by different solutions and control 

techniques. The main objective of this work is to develop an autonomous 

electric motorcycle with low cost sensing system. For this, a dynamic model of 

two-wheeled vehicles is analyzed, capable of describing the dynamic behavior 

while being simple enough to allow the implementation of real-time linear 

control strategies. The controller has two different objectives: to maintain the 

motorcycle stable and to follow a desired trajectory, in an autonomous way. 

Experiments were carried out with the small scale motorcycle aiming to 

characterize its elements for the theoretical model; then the proposed control 

strategies were simulated with the adjusted dynamic model. Finally, the control 

algorithms are applied to the real system through an actuated platform capable 

of reproducing the dynamic behavior of single-track vehicles. At last, the 

present work is a tool for teaching engineering, involving multilevel students 

around a complex, but familiar, problem. The system allows for continuous 

learning with increasing difficulty, involving multibody dynamics, 

experimental results analysis via software simulations, electronics and filters 

present in the embedded instrumentation and many control techniques to keep 

the system stable in every desired path, culminating in the experimental 

application of cited concepts.  

Keywords 

Autonomous vehicles; Motorcycle dynamics; Stability control; 

Trajectory control; Engineering education. 
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Resumo 

Assad, Marília Maurell. Análise de estratégias de controle para 

estabilização e acompanhamento de trajetórias de motocicletas 

autônomas em escala. Rio de Janeiro, 2018. 131p. Tese de Doutorado - 

Departamento de Engenharia Mecânica, Pontifícia Universidade Católica 

do Rio de Janeiro. 

Veículos autônomos são um problema recente, com aplicação em carros 

e motocicletas ainda nos estágios iniciais. Além das dificuldades inerentes de 

fazer um veículo mover-se independentemente, a motocicleta autônoma deve 

permanecer estável em qualquer velocidade e trajetória. O objetivo principal 

deste trabalho é desenvolver uma motocicleta elétrica autônoma com sistema 

de instrumentação de baixo custo. Para tanto, foi analisado um modelo 

dinâmico de motocicleta, capaz de reproduzir o comportamento real e 

permitindo a implementação de estratégias de controle linear em tempo real. O 

controlador tem dois objetivos diferentes: manter a motocicleta estável e seguir 

uma trajetória desejada, de forma autônoma. Experimentos foram realizados 

com a motocicleta de escala reduzida com o objetivo de caracterizar seus 

elementos; as estratégias de controle propostas foram simuladas com o modelo 

dinâmico ajustado. Por fim, os algoritmos de controle são aplicados ao sistema 

real através de uma plataforma atuada capaz de reproduzir a dinâmica de 

veículos de duas rodas. O presente trabalho é uma ferramenta para o ensino de 

engenharia, envolvendo estudantes de diferentes níveis em torno de um 

problema complexo. O sistema permite uma aprendizagem contínua com 

dificuldade crescente, envolvendo temas como dinâmica de multicorpos; 

análise de resultados através de simulações de software; eletrônica e filtros na 

instrumentação embutida e técnicas de controle para manter o sistema estável 

em todos os caminhos desejados, culminando na aplicação experimental dos 

conceitos citados. 

Palavras-chave 

Veículos autônomos; Dinâmica de motocicletas; Controle de 

estabilidade; Controle de trajetória; Ensino de engenharia. 
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1 Introduction 

This chapter presents the main objectives, motivations and contributions 

of this work, as well as the organization of this document and literature review 

on autonomous two-wheeled vehicles. 

  

1.1 Objective 

The main objective of this work is to develop an autonomous electric 

motorcycle with low cost sensing system. To this end, a dynamic model of two-

wheeled vehicles is analyzed, which is capable of describing the real dynamic 

behavior while being simple enough to allow the implementation of real-time 

linear control strategies. The controller, in turn, has two different objectives: to 

maintain the motorcycle stable and to follow a desired trajectory, in an 

autonomous way. 

Experiments were carried out with the small scale motorcycle aiming to 

characterize its elements for the theoretical model; then the proposed control 

strategies were simulated with the adjusted dynamic model. Finally, the control 

algorithms are applied to the real system through an actuated platform capable 

of reproducing the dynamic behavior of single-track vehicles. 

 

1.2  Motivation 

Autonomous vehicles – defined as land vehicles capable of transporting 

people or cargo without a human driver – are an interesting and recent problem. 

Though autopilot has been used on planes and ships since 1950, its application 

in cars and motorcycles is still in its early stages. Therefore, there is much to be 

developed in the area, taking into consideration that, in addition to being able to 

position itself globally and predict trajectories, there is an extra difficulty in 

dealing with obstacles and traffic signs – a common situation for a human 

drives, but a complex combination of sensors and control techniques for these 

autonomous systems. 
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Since 2005, major automotive companies have started testing unmanned 

automotive systems. The most successful example so far is Waymo, previously 

known as Google’s standalone car. Through embedded sensing and a robust 

control system, the equipment is capable of generating detailed three-

dimensional maps of its surroundings, dealing with obstruction on the track, 

tracing and identifying traffic signs such as speed limits, traffic lights and 

pedestrian tracks (Figure 1.1). 

 

 

Source: <http://www.businessinsider.com/how-does-googles-waymo-self-driving-car-

work-graphic-2017-1> Accessed in July, 2017. 

Figure 1.1 –Autonomous car Waymo and its instrumentation system. 

Regarding autonomous vehicles, another option less explored is the 

motorcycle. In addition to the inherent difficulties in making a vehicle move 

independently, the autonomous motorcycle has to be able to remain vertically 

stable at any speed and trajectory. Without steering or velocity control, single-

track vehicles tend to capsize, an additional problem that needs to be 

addressed by the autonomous control algorithm. 

The industry has recently taken an interest in autonomous two-wheeled 

vehicles, with products such as the robot driver Motobot, from Yamaha (Figure 

1.2). Its main purpose is to mimic a human rider, without making any 

fundamental modifications to the vehicle itself, knowledge that can be later 

applied to commercial motorcycles. In 2017, the robot was able to reach over 

200 km/h while autonomously driving on a racetrack. 

http://www.businessinsider.com/how-does-googles-waymo-self-driving-car-work-graphic-2017-1
http://www.businessinsider.com/how-does-googles-waymo-self-driving-car-work-graphic-2017-1
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Source: <https://global.yamaha-motor.com/showroom/motobot/>. Accessed in October, 

2017. 

Figure 1.2 – Yamaha’s Motobot. 

Another solution to the roll stability problem of single-track vehicles, 

adopted by American company Lit Motors (Figure 1.3), is to use the controlled 

motion of masses, whose gyroscopic effect is capable of keeping the vehicle 

stable when moving, allowing it to lean itself into and out of turns and staying 

upright when stationary. 

 

 

Source: <http://litmotors.com/c1/> Accessed January,2018. 

Figure 1.3 – Motorcycle C1, from Lit Motors, and its gyroscopic stabilizers. 

A third control alternative, implemented on Honda’s Riding Assist-e, is to 

use the steer torque to balance the motorcycle (Figure 1.4). The system, not 

completely autonomous, aims to help inexperienced or inattentive pilots by 

steering the vehicle at low speeds, thus balancing itself while keeping a straight 

trajectory. 

Therefore, the interest of the market and automotive industry in 

autonomous systems is proven. For the particular case of motorcycles, other 

factors make it particularly challenging and the forms of solutions to its inherent 

vertical instability problem are varied. Additionally, two-wheeled systems are a 

complex multibody system while being familiar to most students, which makes it 

a good candidate as a tool for teaching engineering. 

https://global.yamaha-motor.com/showroom/motobot/
http://litmotors.com/c1/
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Source: < https://www.honda.com/mobility/riding-assist> Accessed February, 2017. 

Figure 1.4 – Honda’s Riding Assist-e. 

 

1.3  Literature review 

Several works in two-wheeled vehicles modeling and control - manned or 

unmanned - have been developed in order to overcome the problems inherent 

to this vertically unstable system. Regarding the mathematical modeling of the 

system, the most complete dynamical model of this type of vehicle is the 

nonlinear approach, such as the one developed in Yi et al (2009) and Zhang 

(2014). This model includes the complex tire-road interaction (Schiehlen, 2009), 

with tire deformation and slippage, and a constrained Lagrange modeling 

approach. The result, though physically more representative of a real 

motorcycle behavior, has greater complexity and implementation difficulty in a 

real-time control system. 

The opposite strategy is to consider a linear model with reduced order, as 

Getz (1995): the wheels of the vehicle are negligible, providing only roll 

movement without side or longitudinal-slip and the frame is considered a point 

mass. This inverted-pendulum approach is interesting as a study object, to 

analyze the system stability or to simulate linear control strategies; however, the 

limitations of the model suggest a low practicality when applying the results on 

experimental single-track vehicles. 

Multibody models bring a larger complexity to the system; the motorcycle 

is interpreted as a joint of rigid or flexible bodies, including the wheels, 

suspension, chassis, handlebar, fork and driver. Each body has a separate 

characteristic behavior, but when combined they influence the dynamics of one 

another. 

https://www.honda.com/mobility/riding-assist
DBD
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The main appeal of this method is the ability to add new elements while 

maintaining its linear characteristic, if necessary, or to be considered a junction 

of nonlinear components. The first approach results in lower order models 

which are, therefore, easier to simulate and implement control strategies 

(Aström et al, 2005).  

A multibody linear second-order model can be achieved by assuming the 

vehicle is rolling on the horizontal plane, the rider has a fixed position and 

orientation relative to the frame, the forward velocity is constant and the steer 

axis is vertical. Increasing once again the complexity of this multibody model 

results in a linear fourth-order model, in which the static front fork model is 

replaced with a dynamic model; this is the Whipple bicycle model, developed in 

1899, and still currently used in two-wheeled vehicles studies. 

Limebeer et al (2006) compared the differences between the cited 

approaches. The simpler inverted-pendulum models leads to conclude that 

steer angle and longitudinal speed are the only parameters that determine the 

lateral displacement, while self-stability characteristics are absent. The 

Whipple’s model and its second order linearization are simple enough to be the 

study object of classical and modern control strategies; they also contain a 

sufficient level of physical realism, with complex interactions between its 

variables. At last, the nonlinear models provide insights into tire-road 

interaction, driver behavior, chassis flexibility, among other factors, at the 

expense of higher computational effort. 

Due to the aforementioned advantages, this work uses the linear fourth-

order model developed by Sharp (1971), a derivation of Whipple’s bicycle 

model. The model considers four rigid bodies – two wheels, a rear frame with 

the rider rigidly attached to it and a front frame – characterized by 25 

parameters (Meijaard et al, 2007). The model accounts for steer and roll torque 

inputs and has a general geometry and mass distribution that allows self-

stability and uncontrolled steer dynamics effects. 

Once the motorcycle model is defined, it is necessary to measure its 

parameters in order to guarantee realistic simulations. Kooijman et al (2008) 

and Moore et al (2010) present some simple experiments to determine the 

geometrical and mass parameters of a bicycle, analogue to motorcycles. The 

first author used a torsional pendulum to measure the mass moments of inertia; 

the second author repeated the same tests to eight different bicycles, with 

consistent results, which corroborates the method efficiency. 

DBD
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It is interesting to analyze how the design parameters influence the 

maneuverability and stability of two-wheeled vehicles. Tak et al (2010) 

concludes that head (or camber) angle is the most significant parameter for the 

bicycle stability, followed by other front frame elements. Aström et al (2005) and 

Limebeer et al (2006) have expanded this analysis with unusual theoretical 

bicycles prototypes, such as the rear-steered model (Figure 1.5). Kooijman et al 

(2011) built an experimental two-mass-skate bicycle (Figure 1.6), capable of 

self-stability without trail. In summary, these works conclude that the stability of 

two-wheeled vehicles is affected by two dominant phenomena: a destabilizing 

gravity torque and the linear and angular acceleration due to steering. 

 

Figure 1.5 – Klein’s rear-steered bicycle (Aström et al , 2005). 

 

Figure 1.6 – Two-mass-skate bicycle (Kooijman et al , 2011). 

The precession of the front wheel has been thoroughly studied by many 

authors; Lowell and McKell (1982) argue that this gyroscopic torque contributes 

to the stability of the vehicle by balancing the lean caused by perturbations with 

a centrifugal force. On the other hand, the gyroscopic effect makes the front 

wheel direction more oscillatory, since steering corrections result in new 

perturbations to the vehicle motion.  
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A second interesting phenomenon that happens with the steering system 

is the counterintuitive need to turn the handlebar initially right when making a 

turn to the left. This countersteering produces a centrifugal force which leans 

the motorcycle frame to the opposite side – the initially intended turn side – 

similar to the inverted-pendulum behavior; once the centrifugal and gravitational 

torques balance, the lean angle reaches a steady state and the vehicle can be 

steered to the original intended direction (Fajans, 2000). The same result can 

be obtained from throwing the hips in the direction counter to the turn, strategy 

largely used by racing motorcycle riders at high speeds. 

A third well known phenomenon on motorcycles is the wobble effect, a 

spontaneous steering oscillation of the front wheel, which usually builds as the 

speed approaches a certain threshold (Ringwood and Feng, 2007). Ott et al 

(2010) analyzed the influence of cornering stiffness of the front tire, handling 

grip of rider and steering assembly on wobble. 

Finally, once the vehicle is completely defined by mathematical models, 

the missing element to the system is the rider. Much like the dynamical two-

wheeled vehicle model, the driver can be modeled with more or less degrees of 

freedom, depending on the rider control outputs expected. The simpler 

definition is to consider the driver a rigid extension to the rear frame, while more 

complex analysis can model it as an inverted pendulum with one or two joints – 

allowing upper body and hip movements – or even a separate multi-body with 

multiple links.  

Kooijman (2012) does an extensive study on rider modeling through the 

multi-body approach, with experimental observation of riders on a treadmill and 

on the road. The work has concluded that human rider predominantly uses 

steering actions to stabilize the bicycle in favor of leaning control motions, being 

easily described by a rigid extension of the rear frame. Lange (2011) opts for a 

different approach, by modelling the driver as a black box transfer function, 

whose parameters were tuned by comparison with experimental data from 

human drivers. 

Regarding the motorcycle stability control, authors are divided between 

two strategies: to control the vehicle steering the handlebar or through a 

physical balancer, imitating the inverted double pendulum effect caused by 

human drivers. The advantage of the second strategy is the possibility of 

remaining stable even at zero speeds, though Zhang et al (2011), unlike 

commonly expected, have proven a stationary riderless motorcycle can 

maintain its balance within a certain dynamic region only by steering. 
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The balancer controllers appears in many different settings: Beznos et al 

(1998) and the previously cited C1 prototype, from Lit Motors, use two coupled 

gyroscopes spinning in opposite directions; Gallaspy and Hung (1999) mounted 

a disc, spinning around the vertical axis, on the top of a bicycle. Yamakita et al 

(2006) utilized a balancer – an actuated rod – whose behavior resembles more 

a human driver’s upper body. Keo et al (2011) compared this controller to the 

flywheel approach, in which a spinning rod functions as a gyroscope, and 

concluded the balancer has a poorer performance stabilizing the vehicle and 

coping with larger disturbances, though it can perform more dynamic motions 

by changing the motorcycle’s center of gravity position. 

The steering control takes advantage of the aforementioned 

countersteering phenomenon: in order to yield a lean movement without an 

actuated pendulum, the vehicle is initially steered to the opposite desired 

direction, causing a centrifugal force that tilts the motorcycle in the desired 

direction. Aström and Murray (2010) present a simple linear steering controller, 

with the steer angle being proportional to the roll angle; Tanaka and Murakami 

(2004) develop a linear second order steering controller while Yi et al (2006) are 

able to keep the motorcycle upright, even when stationary, with a nonlinear 

balancing controller. As the objective of this work is to develop a small scale 

autonomous motorcycle, the steering control method is adopted in detriment of 

the balancer controller. 

Regarding the trajectory control, one of the most applied strategies is the 

path preview control, in which the system analyzes a single-point at a pre-

defined distance ahead and adjust the vehicle’s path accordingly. Largely used 

in autonomous four-wheeled vehicles, this technique needs an adaptation to 

single-track systems: the result of the path tracking controller is the input to a 

roll angle controller, guaranteeing the stability of the vehicle at any trajectory 

(Getz and Marsden, 1995). Dao and Chen (2011) and Schmitt et al (2009) use 

a full state feedback controller to achieve this goal, while Sharp (2007) 

simulates an optimal linear controller. Yi et al (2006) and Zhang et al (2011) use 

a nonlinear model to correct the actual vehicle’s path into the next desired 

trajectory point and to keep the equilibrium of the internal state, the roll angle. 

Other path tracking control strategies are worth mentioning, such as the 

reinforcement learning proposed by Randlov and Alstrom (1998), in which a 

neural network is trained to balance a bicycle and to drive to a specific place. 

Chen and Dao (2007) developed a PID controller for the roll angle equilibrium 

and a fuzzy controller for the path tracking problem – which is able to minimize 
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the distance between actual and desired position without using dynamic models 

as a basis – whose parameters are optimized via a genetic algorithm. Frezza et 

al (2004) present a model predictive controller, where the steering control action 

is calculated by considering the roll angle as an input and inverting the system’s 

dynamics. 

The control algorithms need information on the current motorcycle state to 

take the most appropriate actions. Since it is costly and inefficient to use a 

sensor for each state variable, the most interesting approach is to use a 

parameter estimation technique. Chenane et al (2012), for example, 

implemented a proportional two-integral observer capable of estimating the 

steering angle, its disturbance and the state variables (yaw and roll angular 

speeds, longitudinal velocity and roll angle) based on the linear dynamical 

motorcycle model. 

However, the most widespread estimation technique is the Kalman filter, 

due to its ability to merge information from different sensors while 

simultaneously filtering measurement uncertainties. Additionally, since the 

Kalman filter design depends on the considered model, it can be easily adjusted 

to the available sensors and desired estimated variables. Zhang et al (2013) 

applies an extended Kalman filter to merge the data from inertial measurement 

units in the bicycle and rider with force sensors on the seat, analyzing both the 

vehicle’s and driver states, as well as their interaction. 

Corbetta et al (2010) compares the performance of an unscented and 

extended Kalman filter when estimating the motorcycle roll angle through 

inertial measuring unit and electro-optimal triangulators on the side of the 

vehicle; Boniolo et al (2008), on the other hand, proposes to obtain the same 

result by using only gyrometers and a wheel encoder, and having two Kalman 

filters – one for high-frequency signals and one for low-frequency signals, 

processed via static relationships. Tanelli et al (2014) expands the former 

approach by adding a vehicle speed estimation filter, considering the wheel slip 

and fusing data from the wheel encoder and longitudinal accelerometer. 

Schilipsing et al (2012) also developed a filter to estimate a motorcycle’s 

roll angle, comparing the performance of an extended Kalman filter via inertial 

measurement unit with a purely video-based filter, concluding that each filter 

produce errors in different situations and a fusion of both methods can yield 

improvements. 
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The Kalman filter can also estimate the two-wheeled vehicles position. 

Gasbarro et al (2004) reconstruct a motorcycle trajectory by merging images 

from an on-board camera and MEMS accelerometers data; Guarnieri et al 

(2013) does the same through a cascade of a Kalman filter and Bayesian 

particle filter. Teerhuis and Jansen (2012) provide a more complete extended 

Kalman filter, estimating the motorcycle position and orientation via the data 

fusion of five sensors (steering angle encoder, inertial measurement unit, GPS, 

front and rear wheel speed sensors). 

At last, two-wheeled vehicles are an interesting study object, since it can 

be presented as a simple model to undergraduate students to a complex 

multibody system to advanced classes. Besides, bicycles are a familiar system 

to students, so they become a concrete example of a dynamic system that uses 

a full range of systems-theoretic tolls so as to be challenging, but not 

overpowering (Klein, 1989).  

Starting at the analysis of the dynamic model, students can learn to 

interpret a wide variety of concepts such as open-loop stabilization; the role of 

poles and zeros – especially in the right-half plane; the importance of a good 

design through parametric influences, as altering mass distribution or damping 

constants; physical limitations like maximum torque supplied by driver or motor.  

An additional parameter, inherent only to motorcycles, is the in-plane 

dynamics, in which the suspension system contributes to the vehicle stability. 

Though not explored in this work, this feature provides the opportunity of 

discussing frequency domain characteristics with the students, as presented in 

Cossalter (2006), Tanelli et al (2014) and Speranza Neto et al (2017). 

The next step is to simulate the expected results in a virtual ambient. 

Escalona and Recuero (2010) created an interactive real-time simulator using 

Matlab/Simulink and the non-linear equations of a bicycle, which helps 

engineering students to visualize the practical application of the previous 

computational analysis. Frezza et al (2004) broaden this concept by adding a 

driver to the simulation environment, allowing the reproduction of different 

control strategies. 

Evolving into the physical world, hardware-in-the-loop simulators merge 

dynamical simulations with real-time visual or physical responses, creating a 

controlled environment for reproducing dynamic behaviors or analyzing human 

responses in certain conditions. Schwab and Recuero (2013) developed a 

bicycle simulator using a haptic feedback handlebar and visual simulation; 

Tanelli et al (2014) built a full motorcycle mock-up with sensorized handlebar 
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and footpads, and fourteen degrees of freedom – including the reproduction of 

the vehicle’s main motions, such as lateral displacement, yaw, roll, pitch and 

steer rotations, all supplemented by a virtual scenario. 

Through a multidisciplinary approach, the two-wheeled vehicle is also a 

good study object, involving the previously cited multibody dynamics, 

electronics and filters present in the embedded instrumentation and many 

control techniques to keep the system stable in every desired path. The system 

allows for continuous learning with increasing difficulty, since the students start 

with identifying the physical parameters, progress to analyze its geometry and 

characteristics through computer software, test their own control strategy with 

the help of computational simulations and, at last, apply the result in the real 

system (Åström, 2005). 

This problem-based learning technique can involve multilevel students 

around one single and very complex problem, as advocated by Martins (2016). 

Undergraduate students from the first semester can become familiar with simple 

instrumentation tasks such as collecting data from inertial measurement units 

via low cost microcontrollers like Arduino, while more advanced classes may 

apply complex techniques such as modern control or sensors fusion to the 

same system. Additionally, students can develop different side projects on the 

same theme (Assad and Speranza Neto, 2017); these devices can be used for 

testing, simulating and optimizing prototypes, as well as engaging students to 

combine practical activities with theory. 

 

1.4 Original contributions 

As will be exposed in Chapter 3, the dynamic modelling of two-wheeled 

vehicles has intrigued scientists since the nineteenth century, with the Whipple 

model. It has gained greater repercussion since the seventies, with the increase 

of ecological consciousness and the search for alternative transports.  

The effort to characterize the dynamic model of single-track vehicles is 

notorious; Kooijman (2012) presented a literature review on the subject, starting 

with the Whipple model – the first equation of motion for a bicycle that could 

predict instability modes – up to the multibody approach (Meijaard, 2007), which 

demands the aid of computational programs.  

Other works develop different strategies, from simple transfer functions 

(Getz, 1995), to state space models (Aström et al, 2005) and nonlinear 

approaches (Yi et al, 2009; Zhang, 2014). Thus, it was not the scope of this 
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work to develop a new multibody model for motorcycles; the contribution of this 

thesis is to apply this widespread knowledge in a small scale system and verify 

its representativeness on this type of vehicle. 

As shown in Chapter 2, the use of model building technology is 

noteworthy, as previous works studied ridable bicycles or motorcycles. One 

exception (Beznos et al, 1998) employed a gyroscopic stabilization in a small 

bicycle with front wheel drive, which cannot be associated to conventional two-

wheeled vehicles – due to major differences in its design – as opposed to the 

small scale electric motorcycle analyzed in this work. 

Additionally, the pieces of equipment developed to characterize the scale 

system – namely, the center of mass measurer, IMU measurer and 

dynamometer – also use model building technology, being interesting study 

objects for engineering teaching. Klein (1989) and Aström et al (2005) 

reinforced the importance of using familiar systems as study objects to engage 

students’ curiosity; this work contributed with three scale low-cost equipment, 

which are easily manipulated by students with different levels and could be 

reused in other projects. 

Still focusing on using this thesis as an educational object, the control 

strategies developed in this work present an increasing complexity, in order to 

engage students. Regarding the stability control, previous works have studied 

linear control approaches such as proportional-integration-derivative feedback 

(Aström and Murray, 2010; Tanaka and Murakami, 2004), though not with the 

full state feedback, as developed here. This work also contributed with the use 

of a minimum-order observer to estimate the variables not directly measured by 

sensors. 

As for the trajectory control strategies, Schmitt et al (2009) developed a 

state feedback controller by shifting the unstable poles to the stable region of 

the s-plane; the system response is then dependent on the longitudinal speed 

of the system. This work contributed to this modern control approach by aiming 

to guarantee the same dynamic behavior independently of the speed, with the 

same desired eigenvalues for the pole placement technique. Another addition to 

the literature is the linear quadratic regulator controller applied to the linear 

model using exclusively the steering torque input. 

The sensor fusion strategy based on the use of low cost inertial 

measurement units brings economic advantages in the instrumentation costs 

and innovation, in the sense that previous works (Boniolo et al, 2010; Zhang, 

2014) use the fusion of accelerometers and gyrometers to determine only the 
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roll and pitch angle of the vehicle. This work, on the other hand, contributed to 

the study of the use of Kalman filters with the previous two sensors to 

additionally obtain the motorcycle position in the plane, without the aid of 

supplementary devices such as GPS, computer vision or external locators. 

Finally, this work developed a hardware-in-the-loop simulator, such as the 

ones built by Schwab and Recuero (2013) or Tanelli et al (2014). The scale 

actuated platform, besides aiding to visually verify the control and sensor fusion 

strategies implemented, may also serve as a teaching object to several 

undergraduate and graduate students, in the Mechanical and Control and 

Automation fields. The experimental bench is complex enough to allow three 

degrees of freedom motions, which can represent several vehicles, such as 

cars, bicycles or ships, while its graphic and real visualization simplifies to the 

students the dynamics happening in the background. 

 

1.5  Thesis organization 

Chapter 2 describes the experimental study object, its components and 

sensors, as well as the tests made to characterize the system. Chapter 3 brings 

the multibody linear model description – with greater detail in Appendix A – and 

a self-stability analysis. In Chapter 4, five control strategies are analyzed and 

simulated with the state space model adjusted to the experimental motorcycle. 

Chapter 5 describes a data fusion technique, the Kalman filter, applied to the 

system; an additional experiment test its validity, the IMU measurer. Finally, 

Chapter 6 presents a new actuated platform, built to simulate single-track 

vehicles dynamics as a risk-free environment to test the proposed control 

strategies. Chapter 7 brings suggestions for future work and the conclusions of 

the thesis. 
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2  System characterization 

In order to verify the validity of the proposed mathematical model and 

control strategies, a small-scale two-wheeled system is used as test rig. This 

chapter presents the motorcycle’s experimental characterization, including its 

main geometric and inertial characteristics, traction motor, steering system and 

embedded instrumentation. The vehicle studied in this work, represented in 

Figure 2.1, is a 1:5 scale motorcycle, propelled by a brushless motor, steered 

by a servomotor and originally radio-controlled. 

 

 

Figure 2.1 – Small scale motorcycle, Duratrax DX450. 

An instrumentation system - consisting of a tachometer on the rear wheel 

and a potentiometer on the handlebar - and microcontroller were embedded to 

measure the motorcycle’s linear and angular position, speed and acceleration, 

while guarantying its stability and trajectory (Figure 2.2). The main 

microcontroller is responsible for collecting the multiple sensors data, executing 

the control algorithm and applying the corrective signals to both electric motors, 

ensuring the vehicle’s stable path. 

The main advantages of using a scale model as study object are the 

easiness for transportation and visualization in classrooms, reduced workspace 

and low cost, since most of its components can be found in the accessible 

model building market. In the next sessions, the specifications and calibration 

tests of each component are further detailed. 
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Figure 2.2 – Motorcycle with instrumentation system. 

2.1  Data acquisition and control system 

The system has two microcontrollers: one is responsible for collecting 

information from the instrumentation system and the other makes the necessary 

calculations and applies the result of the control algorithm to the motorcycle’s 

speed and steer angle. The first task is accomplished by an Arduino Nano, 

which is exclusively dedicated to count the tachometer’s number of pulses in a 

certain time frame in order to calculate the motor’s angular speed in rpm, as 

well as to obtain the resistance value of the potentiometer; both information are 

then sent via serial communication to the main controller. 

The second task is executed by the main controller, a Pixhawk board, 

whose main features are at Table 2.1. Its principal advantage is having the main 

sensors needed for autonomous navigation already embedded, allied with a 

good processing capacity and lightweight. Additionally, the board has a radio 

telemetry system that allows for real time data analysis via computer, and a SD 

card system, for post-processing analysis. With a multithreading architecture in 

C language, the board is capable of managing simultaneously the sensor’s data 

acquisition – from both the Arduino board and the embedded sensors, sensor 

fusion and feedback control techniques. 

The Pixhawk board has five sensor modules, a gyrometer, accelerometer, 

magnetometer, barometer and GPS. Only the first two sensors were used in 

this work: the magnetometer’s reading was highly influenced by the electric 

brushless motor, being no longer able to correctly identify the Earth’s magnetic 
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field; the barometer measures altitude from different atmospheric pressures, 

which is only interesting in flying vehicles; finally, the GPS module does not 

work indoors, where all the tests of this work were done. 

The first sensor module consists of a gyrometer, capable of measuring the 

angular velocities on three axes; this MEMS (MicroElectroMechanical System) 

equipment measures the vibration of objects under a rotational effect, with a 

maximum range of 2000 degrees per second. The second module contains an 

accelerometer and a magnetometer, both capable of sensing linear 

accelerations and the Earth’s magnetic field on three axes, at a maximum range 

of 16 times the gravity acceleration and 12 gauss; the third module used 

contained another set of three axe gyrometer and accelerometer, for 

redundancy. 

Table 2.1 – Pixhawk technical features. 

Manufacturer 3DRobotics 

Weight 39 [g] 

Dimensions 50x15,5x81,5 [mm] 

Telemetry frequency 915 [MHz] 

Sensor modules 

ST Micro L3GD20 3-axis gyrometer 

ST Micro LSM303D 
3-axis accelerometer 

3-axis magnetometer 

Invensense MPU 6000 
3-axis gyrometer 

3-axis accelerometer 

 

2.2  Inertial properties 

The Duratrax DX450 motorcycle has been completely disassembled and 

all parts have been measured and weighed so that the virtual model represents 

accurately the real system. Figure 2.3 shows the final result in SolidWorks; the 

vehicle’s center of mass and inertial moments were then calculated through the 

computational model and later verified through experiments. 
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Figure 2.3 – Virtual model of motorcycle. 

The system was divided in four main bodies: the front and rear wheel, the 

steering system and the main body (Figure 2.5), and the end result is in Table 

2.2, with additional parameters explicit on Figure 2.4, such as the distance 

between wheels (𝑤), caster angle (𝜖), trail distance (𝑡) and approximate center 

of mass for the motorcycle (𝑥𝑡 , 𝑧𝑡). Appendix A explicits how those parameters 

are combined in order to create the linearized two-wheeled vehicle model. It is 

interesting to note that the virtual position of the whole vehicle’s center of mass 

is close to zero on the y axis, which corroborates the hypothesis of the 

motorcycle being symmetrical on this particular axis. 

 

 

Figure 2.4 – Motorcycle’s additional parameters. 
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(a) (b) 

 
 

(c) (d) 

Figure 2.5 – Motorcycle four main bodies: (a) Rear wheel; (b) Main body;  

(c) Steering body; (d) Front wheel. 

In order to validate the motorcycle’s inertial and geometric properties 

calculated via software, a simple experiment was used to obtain the vehicle 

center of mass. The apparatus consisted of two scales (TrackStar Corner) 

capable of measuring up to 2 kg with 0.5 g of uncertainty; the test rig is free to 

move in the x and z axis, i.e., both scales have variable distance and height, as 

exposed in Figure 2.6. 

 

Figure 2.6 – Experimental rig to measure center of mass. 
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Table 2.2 – Motorcycle’s parameters. 

Parameter Symbol Value 

Wheel base 𝑤 0.311 m 

Trail 𝑡 0.053 m 

Caster angle 𝜖 0.99 rad 

Longitudinal speed 𝑣𝑥 Up to 15 m/s 

Gravity 𝑔 9.81 m/s² 

   

Rear wheel   

Radius 𝑟𝑟𝑤 0.064 m 

Mass 𝑚𝑟𝑤 0.704 kg 

Mass moments of 

inertia 
(𝐽𝑟𝑤𝑥𝑥 , 𝐽𝑟𝑤𝑦𝑦 , 𝐽𝑟𝑤𝑧𝑧) (5.30 9.39 5.30)10−4 kg-m² 

   

Main body   

Position center of 

mass 
(𝑥𝑚, 𝑦𝑚, 𝑧𝑚) (0.133 0 −0.125) m 

Mass 𝑚𝑚 1.180 kg 

Mass moments of 

inertia 
[

𝐽𝑚𝑥𝑥
0 𝐽𝑚𝑥𝑧

0 𝐽𝑚𝑦𝑦
0

𝐽𝑚𝑥𝑧
0 𝐽𝑚𝑧𝑧

] [
30.70 0 0.79
0 59.42 0
0.79 0 36.86

] 10−4 kg-m² 

   

Steering body   

Position center of 

mass 
(𝑥𝑠, 𝑦𝑠, 𝑧𝑠) (0.267 0 −0.150) m 

Mass 𝑚𝑠 0.177 kg 

Mass moments of 

inertia 
[

𝐽𝑠𝑥𝑥
0 𝐽𝑠𝑥𝑧

0 𝐽𝑠𝑦𝑦
0

𝐽𝑠𝑥𝑧
0 𝐽𝑠𝑧𝑧

] [
6.54 0 −3.4
0 7.68 0

−3.4 0 3.19
]10−4 kg-m² 

   

Front wheel   

Radius 𝑟𝑓𝑤 0.067 m 

Mass 𝑚𝑓𝑤 0.136 kg 

Mass moments of 

inertia 
(𝐽𝑓𝑤𝑥𝑥 , 𝐽𝑓𝑤𝑦𝑦 , 𝐽𝑓𝑤𝑧𝑧) (1.82 3.55 1.82)10−4 kg-m² 
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The first test performed was with each scale horizontally aligned under 

both wheels, as shown in Figure 2.7 and Figure 2.8, to determine the distance 

between the rear wheel and the center of mass in the x axis. Considering the 

motorcycle at rest in the described position, the sum of forces and moments 

acting in the system are given by Eq. (2.1); Table 2.3 brings the test results. 

 

{
∑𝐹𝑧 = 𝑚𝑡𝑔 = 𝑁𝑓𝑓 +𝑁𝑟𝑓

∑𝑀𝑂 =𝑚𝑡𝑔 𝑥𝑡 = 𝑁𝑟𝑓𝑤
∴ 𝑥𝑡 =

𝑁𝑟𝑓𝑤

𝑁𝑓𝑓 +𝑁𝑟𝑓
 (2.1) 

 

 

Figure 2.7 – Center of mass measurement in x axis. 

 

Figure 2.8 – Schematic of center of mass measurement in x axis. 

Table 2.3 – Experimental position of 𝒙𝒕. 

Reaction (N)      Mean 

𝑁𝑟𝑓 8.432 8.514 8.395 8.380 8.357 8.416 

𝑁𝑓𝑓 13.675 13.636 13.724 13.685 13.734 13.691 

Mass (kg) 2.254 2.258 2.255 2.249 2.252 2.254 

𝒙𝒕 (𝒎) 0.118 0.119 0.118 0.118 0.117 0.118 
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The following test, to determine the center of mass position in the z axis, 

involved raising the motorcycle at different heights (Figure 2.9 and Figure 2.10) 

and calculating the center of mass projection at both axis. Eq. (2.2) illustrates 

the sum of forces and moments acting on the system, while Eq. (2.3) explicit 

some geometric relations; combining both equations results in the height of the 

center of mass with respect to the floor-rear wheel contact point (Eq. (2.4)). 

Table 2.4 to Table 2.6 contains the experimental data for this configuration. 

 

 

Figure 2.9 – Center of mass measurement in z axis. 

 

 

Figure 2.10 – Schematic of center of mass measurement in z axis. 

 

{
∑𝐹𝑧 = 𝑚𝑡𝑔 = 𝑁𝑓𝑓 +𝑁𝑟𝑓

∑𝑀𝑂 =𝑚𝑡𝑔 𝑥′𝑡 = 𝑁𝑟𝑓𝑤′
∴ 𝑥′𝑡 =

𝑁𝑟𝑓𝑤′

𝑁𝑓𝑓 +𝑁𝑟𝑓
 (2.2) 

{
sin(𝜃) = −ℎ/𝑤

𝑥𝑡 cos(𝜃) = 𝑥𝑡
′ + (𝑧𝑡 − (−𝑟𝑟𝑤)) sin(𝜃)

 (2.3) 

𝑧𝑡 = −𝑟𝑟𝑤 −
𝑥𝑡

tan(𝜃)
+

𝑁𝑟𝑓

𝑁𝑟𝑓 +𝑁𝑓𝑓
.
𝑤

tan(𝜃)
= −𝑟𝑟𝑤 +

𝑤 𝑤′

ℎ
[

𝑁𝑟𝑓

𝑁𝑟𝑓 +𝑁𝑓𝑓
−
𝑥𝑡
𝑤
] (2.4) 
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Table 2.4 – Experimental position of 𝒛𝒕, with 𝒉 = 𝟎. 𝟏𝟑𝟓 𝒎. 

Reaction (N)      Mean 

𝑁𝑟𝑓 7.503 7.681 7.492 7.487 7.484 7.529 

𝑁𝑓𝑓 14.323 14.479 14.695 14.676 14.637 14.562 

Mass (kg) 2.225 2.259 2.262 2.259 2.255 2.252 

𝒛𝒕 (𝒎) -0.086 -0.084 -0.090 -0.089 -0.089 -0.088 

 

Table 2.5 – Experimental position of 𝒛𝒕, with 𝒉 = 𝟎. 𝟎𝟖𝟓 𝒎. 

Reaction (N)      Mean 

𝑁𝑟𝑓 8.020 8.083 8.113 8.319 8.093 8.126 

𝑁𝑓𝑓 14.784 14.951 14.833 14.951 14.892 14.882 

Mass (kg) 2.325 2.348 2.339 2.372 2.343 2.345 

𝒛𝒕 (𝒎) -0.093 -0.094 -0.091 -0.087 -0.093 -0.091 

 

Table 2.6 – Experimental position of 𝒛𝒕, with 𝒉 = 𝟎. 𝟎𝟒𝟓 𝒎. 

Reaction (N)      Mean 

𝑁𝑟𝑓 8.196 8.240 8.281 8.341 8.184 8.248 

𝑁𝑓𝑓 14.019 13.950 13.921 13.852 13.969 13.942 

Mass (kg) 2.265 2.262 2.263 2.262 2.258 2.262 

𝒛𝒕 (𝒎) -0.086 -0.081 -0.080 -0.072 -0.085 -0.081 

 

The final results and comparison between the center of mass calculated 

via software and experimentally are summarized in Table 2.7. The errors 

between theoretical and experimental values are approximately 6 and 1 

milimeter for the x and z axis. Due to the small errors between experimental and 

software results, it is assumed the other simulated variables are representative 

of the real system, such as moments of inertia and mass distribution. 

Table 2.7 – Center of mass via software and experiments. 

Axis Software (m) Experimental (m) 

𝑥𝑡 0.112 0.118 

𝑧𝑡 -0.089 -0.088 

 

  

DBD
PUC-Rio - Certificação Digital Nº 1321779/CA



Chapter 2 – System characterization  37 

2.3 Traction system 

The traction system is actuated by an electric brushless DC motor, a 

three-phase synchronous motor powered by a constant voltage source, passing 

through an integrated inverter that will produce the alternating electrical signal 

needed to start the motor. This type of engine is usually controlled by an 

electronic circuit known as ESC (electronic speed control); capable of varying 

the speed and direction of rotation of the electric motor, in addition to being able 

to function as a dynamic brake. The original radio signal to the ESC was 

substituted by a pulse-width modulation signal (PWM) sent by the main 

microcontroller; additionally, the reverse and brake functions were disabled, 

meaning the motor has angular speed only in one direction (forward). Table 2.8 

brings the main technical features of the brushless motor. 

Table 2.8 – Traction motor technical features. 

Manufacturer DURATRAX/ DTXC4602 

Motor type Brushless DC 

Signal Pulse-Width Modulation (PWM) 

Velocity constant 3900 [RPM/V] 

Battery type 7,2V NiCd/NiMH ou 7,4V LiPo 

 

To characterize the traction system, two experiments were performed: the 

first was to identify the torque applied to the system, detailed in Appendix B; the 

information is useful for a velocity control strategy, which was not on the subject 

of this work. The second experiment was to correlate the command signal and 

the motorcycle’s final longitudinal speed; considering no slippage on neither 

tires, the rear wheel angular speed has a direct relation with the linear velocity. 

The test used a tachometer connected to the brushless motor and a Hall effect 

sensor attached with four magnets equally distributed onto the rear wheel. 

The transmission system, illustrated on Figure 2.11, is defined by four 

gears: the first (E1) is directly connected to the motor engine and the last (E4), to 

the rear wheel. The sizes of each gear is detailed on Table 2.9; the ratio 

between the motor and rear wheel angular speeds (N) is defined by Eq. (2.5), 

which results in 14.45 to the specified system – this means the motor rotates 

almost fifteen times faster than the rear wheel. 
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Table 2.9 – Transmission system. 

Gear E1 E2 E3 E4 

Number of teeth 13 65 9 26 

 

{

 𝑣𝐸1 = 𝑣𝐸2
𝜔𝐸2 = 𝜔𝐸3
𝑣𝐸3 = 𝑣𝐸4

  ∴   
𝜔𝐸1𝑁𝐸1 = 𝜔𝐸2𝑁𝐸2
𝜔𝐸2 = 𝜔𝐸3
𝜔𝐸3𝑁𝐸3 = 𝜔𝐸4𝑁𝐸4

⇒ 𝜔𝐸1 =
𝑁𝐸2𝑁𝐸4
𝑁𝐸1𝑁𝐸3⏟    

𝑁

𝜔𝐸4  (2.5) 

 

 

Figure 2.11 – Transmission system computational model. 

The tests consisted of varying the input signal sent to the brushless motor 

coupled directly to the motorcycle’s rear wheel, which could spin freely without 

contact with the ground. The experiment consisted of an increasing and 

decreasing command signal with step amplitude of 10%, 20%, 30%, 40% and 

50%, ignoring the range between 70% and 100% - where the motor presents a 

saturation and no increase of angular speed is observed. 

Due to the transmission system, the maximum amplitude variation is 50% 

between input signals before an overcurrent, when the motor is already 

spinning; from the start, all tests were first stabilized at 10%. The results of the 

motor and rear wheel angular speeds are in Figure 2.12 to Figure 2.13; the 

experimental ratio between both velocities is, in average, 14.52, very close to 

the result calculated via the transmission setup. 
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Considering the angular speeds obtained in this experiment as an upper 

limit to the velocity developed by the motorcycle in contact with the floor, it is 

possible to calculate the maximum longitudinal speed of the vehicle through a 

linear relation (Eq. (2.6)). Since the highest angular speed for the wheel is 

approximately 240 rad/s and the rear wheel radius is in Table 2.2, the maximum 

linear speed for the studied vehicle is 14.5 m/s. 

𝑣𝑥 = 𝜔𝑤ℎ𝑒𝑒𝑙  × 𝑟𝑟𝑤 (2.6) 

 

Figure 2.12 – Transmission system test with 10% step. 

 

Figure 2.13 – Transmission system with 50% step.  
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2.4  Steering system 

The steering system is actuated by a servomotor – an electric motor with 

feedback, capable of position (angle) control. The device is also controlled by a 

Pulse Width Modulation (PWM) signal sent by the microcontroller, where each 

different duty cycle represents a desired angle position, varying from 0 to 60 

degrees. Further information of the servo used is at Table 2.10. 

Table 2.10 – Steering motor technical features. 

Manufacturer TACTIC/ TSX200 

Motor type Servomotor 

Signal Pulse Width Modulation (PWM) 

Voltage 4.8 V 

Torque 0.32 N.m 

Speed (without load) 0.16 sec/60 degrees or 6.54 rad/s 

 

The next step to characterize the steering system is to correlate the signal 

sent by the microcontroller and the final angle made by the steering axis; the 

experiment setup is illustrated on Figure 2.14. Using a protractor, the angle 

between the front wheel and the main body/rear wheel axis is measured; a 

potentiometer, coupled to the motorcycle handlebar, yields the same 

information with an electric voltage variation, read by the Arduino and sent to 

the Pixhawk via a serial communication. Following the right-hand rule and the 

proposed axis configuration, clockwise rotations on the handlebar are 

considered positive, i.e., steer angles to the right are positive and to the left, 

negative. 

 

 

Figure 2.14 – Steering system experiment setup. 
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The final relation between the potentiometer readings and the measured 

steering angle – in radians – is given by Eq. (2.7) and illustrated in Figure 2.15. 

The potentiometer signal is interpreted as an analog input by the Arduino, with 

range of 1024; after the normalization, the signal has a bias of 0.49, removed at 

further analysis. The proposed linear fit presents an error of 5.65%. 

 

𝛿 = −3.91 𝑃𝑜𝑡 + 0.061 (2.7) 

 

 

Figure 2.15 – Potentiometer versus steering angle. 

 

Afterwards, it is necessary to stablish the relation between the command 

signal sent by the microcontroller and the resultant front wheel steer angle. 

Respecting the physical assembly and constraints of the system, the command 

signals sent to the servomotor vary from zero to -0.7; the front wheel is aligned 

with the main body at a -0.3 input, which indicates that the handlebar steers 

further to the left than to the right. 

Removing the servomotor and potentiometer’s bias and using Eq. (2.7), it 

is possible to correlate the command signal to the servo and final front wheel 

steer angle, in radians. Figure 2.17 and Figure 2.18 bring the experimental 

result to different step amplitudes between commands, at distinct start points; 

the angle response to the servo actuation is almost instantaneous, unlike the 

traction system, in which the inertial load takes up to three seconds to achieve 

steady state. Therefore, a linear relation between steering angle and command 

signal can be extrapolated from the data (Eq. (2.8) and Figure 2.16), with 1.23% 
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of error. The previous images also illustrate the proposed linear fit, with a 

maximum error of 0.07 rad, or approximately 5 degrees, representing 10% of 

the total cursor. 

 

𝛿 = 0.86𝑢𝑠 + 0.07 (2.8) 

 

 

Figure 2.16 – Command signal versus steering angle. 

 

Figure 2.17 – Steering system with 10% step. 
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Figure 2.18 – Steering system with 40% step. 

This chapter presented the chosen experimental vehicle for this work: a 

scale electric motorcycle, in which the proposed control algorithms will be 

implemented. The study object had its main components characterized. First, 

the data flow was detailed: the main microcontroller receives the 

instrumentation measurements, executes the control algorithm and sends the 

resulting commands to both electric motors. Then, its geometric and inertial 

parameters were identified via computational simulation and ratified through 

simple experiments.  

At last, both electric motors were characterized and its coupled sensors 

were calibrated: a relation was determined between respective command 

signals and the final steady state obtained (longitudinal speed for the traction 

system and steering angle for the steering system). 

In the next chapter, a two-wheeled vehicle dynamic model is presented, in 

which the parameters determined in the experimental characterization of the 

system are used. 
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3  Two-wheeled vehicle dynamics 

In the previous chapter, the experimental scale motorcycle was 

characterized, with its principal parameters being determined through 

computational simulations and simple test rigs. This chapter presents a linear 

dynamic model for two-wheeled vehicles (Sharp, 1971 and Meijaard, 2007) 

based on cited parameters and analyzes the self-stability of the uncontrolled 

scale motorcycle. 

A detailed and realistic motorcycle’s dynamic model is highly complex due 

to the vehicle’s many degrees of freedom and non-trivial geometry; in order to 

simplify the model while keeping its dynamic effects, some aspects have to be 

taken into consideration such as which components can be omitted, how to deal 

with the wheel-to-ground interaction and the complexity that should be given to 

the driver model. 

In this work, the motorcycle is considered as a four rigid bodies system: 

two wheels, the main body and the steering body, consisting of a front fork with 

handlebar; the influence of other usual parts of the vehicle – belts, shock 

absorber, pedals, brake system – are neglected. Tires deformity and slippage 

are not considered, i.e., the wheels provide exclusively rolling, non-holonomic 

constraints on the longitudinal, lateral and yawing motions of the vehicle. The 

longitudinal speed of the vehicle is considered constant and the steering system 

is free to steer itself. 

Since the final objective of this work is to build an autonomous vehicle, the 

driver – or controller system – is represented in the dynamic model solely by the 

torque applied to the handlebars, without taking into account its mass on the 

main body or the double inverted pendulum phenomenon that physically exists 

with a real pilot. 

Next, the procedure to obtain the motorcycle dynamic model is detailed, 

based on the Whipple bicycle model, and taking into account the two main 

elements of interest to the autonomous two-wheeled system: stability and 

trajectory control. 
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3.1  Linearized dynamic model 

The linear model was built based on Sharp’s bicycle model (1971), where 

the multibody approach to a two-wheeled vehicle considers two structures, or 

frames, joined together by a revolution joint in the handlebars, with each frame 

holding a free to rotate axisymmetric wheel. Both frames are considered having 

a uniformly distributed mass and the wheels provide purely a rotational 

movement, i.e., there is no tire deformation or slippage. 

In the original work, the driver is modelled as a rigid extension to the main 

frame, which results in a higher and closer to the rear center of mass, since the 

average human body is heavier than the usual bicycle frame. This center mass 

final location is particularly true in motorcycles, with a heavier frame, so the 

same hypothesis can be applied on this system, even on an unmanned vehicle. 

In order to reduce the model complexity, the four body have been 

simplified to two sets: the front frame includes the handlebar, fork and front 

wheel; the rear frame consists of the main body and rear wheel. Figure 3.1 

illustrates the model’s main parameters, based on Meijjard (2007): the roll, pitch 

and yaw angles are defined as, respectively, 𝜑, 𝜃, 𝜓, the steering angle is 𝛿; 

some geometric parameters such as the wheel base (𝑤), caster angle or head 

trail (𝜖) and trail (𝑡) are also depicted, alongside with the approximate front and 

rear frames center of mass localization (𝑚𝑓𝑓 , 𝑚𝑟𝑓). 

Figure 3.2 brings the global and local coordinates systems, the latter with 

origin at the rear wheel and floor contact point, indicated as O in the figures. It is 

worth emphasizing the unusual coordinate orientation, with z axis being positive 

in gravity’s favor; this configuration allows for a positive angular speed when the 

vehicle is falling or heading to the right, i.e., the roll and yaw rates are positive 

when clockwise. The same principle applies to the steering angle, with right 

steer as positive, but the wheel rotation has a negative forward motion. 

The motorcycle and bicycle multibody model is defined by 25 design 

parameters, which are further detailed on Appendix A. The experimental 

numerical parameters of the small scale vehicle analyzed in this work also 

appear on Table 2.2. With these parameters and considering a two-wheeled 

vehicle moving freely in a plane with constant longitudinal speed (𝑣𝑥), the 

linearized motion equations of the system are based on two main degrees of 

freedom: the roll and steer angles (𝜑 and 𝛿).  
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Figure 3.1 – Motorcycle geometry main parameters.  

 

Figure 3.2 – Global and local coordinate systems. 

Other important parameters to the linear model are the gravity at each 

mass center (𝑚𝑓𝑓 , 𝑚𝑟𝑓), positive in the z direction; vertical and horizontal 

ground reaction force at the front wheel (−𝑔𝑚𝑡𝑥𝑡/𝑤 and 𝐹𝑦, respectively); a lean 

moment (𝑇𝜑) applied to the rear frame by the driver, responsible for the 

motorcycle rolling; a steer torque (𝑇𝛿) applied to the handlebar, positive when 

clockwise, and applied in the opposite direction in the rear frame. 

The three main dynamic equations are derived from the angular 

momentum balance for the roll, steer and yaw (𝜓) movements, respectively Eq. 

(3.1) to (3.3). The only unknown force, the front wheel lateral reaction 𝐹𝑦, can be 

eliminated by combining Equations (3.2) and (3.3). 
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  − 𝑚𝑡𝑧𝑡�̈�𝑟𝑤 + 𝐽𝑥𝑥�̈� + 𝐽𝑥𝑧�̈� + 𝐽𝜖𝑥�̈� + 𝑣𝑥𝑆𝑡�̇� + 𝑣𝑥𝑆𝑓 cos(𝜖) �̇� =  
(3.1) 

= 𝑇𝜑 − 𝑔𝑚𝑡𝑧𝑡𝑠𝑒𝑛(𝜑) + 𝑔𝑆𝑢𝑠𝑒𝑛(𝛿) 

    𝑚𝑓𝑓𝑢�̈�𝑟𝑤 + 𝐽𝜖𝑥�̈� + 𝐽𝜖𝑧�̈� + 𝐽𝜖𝜖�̈� + 𝑣𝑥𝑆𝑓 (−�̇� cos(𝜖) + �̇�𝑠𝑒𝑛(𝜖)) = 
(3.2) 

 = 𝑇𝛿 − 𝑡 cos(𝜖) 𝐹𝑦 + 𝑔𝑆𝑢(𝑠𝑒𝑛(𝜑) + 𝑠𝑒𝑛(𝛿)𝑠𝑒𝑛(𝜖)) 

    𝑚𝑡𝑥𝑡�̈�𝑟𝑤 + 𝐽𝑥𝑧�̈� + 𝐽𝑧𝑧�̈� + 𝐽𝜖𝑧�̈� − 𝑣𝑥𝑆𝑡�̇� − 𝑣𝑥𝑆𝑓𝑠𝑒𝑛(𝜖)�̇� − 𝑤𝐹𝑦 = 0 (3.3) 

 

Assuming small roll, steer and yaw angles, the motorcycle would be 

moving almost parallel to the global x-axis, so the wheels forward speeds, �̇�𝑓𝑤 

and �̇�𝑟𝑤, can be simplified to Eq. (3.4) and (3.5), obtained via kinematic 

relations. The last result, Eq. (3.6), is an equation correlating the yaw and steer 

angles whose time derivative can be substituted in the previous equations. 

 

    �̇�𝑟𝑤 = 𝑣𝑥𝜓 (3.4) 

    
�̇�𝑓𝑤 =

𝑑

𝑑𝑡
(𝑦𝑟𝑤 +𝑤𝜓 − 𝑡𝛿 cos(𝜖)) = 𝑣𝑥𝜓 + 𝑣𝑥𝛿 cos(𝜖)

 = �̇�𝑟𝑤 +𝑤�̇� − 𝑡�̇� cos(𝜖) = 𝑣𝑥𝜓 + 𝑣𝑥𝛿 cos(𝜖)
 (3.5) 

�̇� =
cos(𝜖)

𝑤
[𝑡�̇� + 𝑣𝑥𝛿] (3.6) 

 

Therefore, eliminating the variable 𝐹𝑦 and considering the previous rolling 

constraints, the three angular momentum balance equations become two linear 

equations with just the roll and steer (and their time derivative) angles as the 

unknown variables, as explicit in Eq. (3.7) and (3.8). 

 

 𝐽𝑥𝑥�̈� + 𝑔𝑚𝑡𝑧𝑡𝜑 + [𝐽𝜖𝑥 + 𝑓𝐽𝑥𝑧]�̈� + [𝑆𝑓 cos(𝜖) + 𝑓(𝑆𝑡 −𝑚𝑡𝑧𝑡)+ 

(3.7) 

+
cos(𝜖)

𝑤
𝐽𝑥𝑧] 𝑣𝑥�̇� + [(𝑆𝑡 −𝑚𝑡𝑧𝑡)

cos(𝜖)

𝑤
𝑣𝑥
2 − 𝑔𝑆𝑢] 𝛿 = 𝑇𝜑 

  

   [𝑓𝐽𝑥𝑧 + 𝐽𝜖𝑥]�̈� − [𝑓𝑆𝑡 + 𝑆𝑓𝑐𝑜𝑠(𝜖)]𝑣𝑥�̇� − 𝑔𝑆𝑢𝜑 + [𝑓
2𝐽𝑧𝑧 + 2𝑓𝐽𝜖𝑧 + 𝐽𝜖𝜖]�̈�

+ 

(3.8) 
+[𝑓𝑆𝑢 +

cos(𝜖)

𝑤
(𝑓𝐽𝑧𝑧 + 𝐽𝜖𝑧)] 𝑣𝑥�̇� + [(𝑆𝑢 + 𝑆𝑓𝑠𝑒𝑛(𝜖))

cos(𝜖)

𝑤
𝑣𝑥
2 − 

−𝑔𝑆𝑢𝑠𝑒𝑛(𝜖)]𝛿 = 𝑇𝛿 
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Finally, the system can be written in matrix form, which gives Eq. (3.9), 

summarized in Eq. (3.10) – with 𝑞 = [𝜑 𝛿]𝑇 and 𝜏 = [𝑇𝜑 𝑇𝛿]𝑇. 

 

   [
𝐽𝑥𝑥 𝑓𝐽𝑥𝑧 + 𝐽𝜖𝑥

𝑓𝐽𝑥𝑧 + 𝐽𝜖𝑥 𝑓2𝐽𝑧𝑧 + 2𝑓𝐽𝜖𝑧 + 𝐽𝜖𝜖
] [
�̈�

�̈�
]+ 

(3.9) 

+𝑣𝑥 [
0 𝑆𝑓 cos(𝜖) + 𝑓(𝑆𝑡 −𝑚𝑡𝑧𝑡) + 𝐽𝑥𝑧 cos(𝜖) 𝑤⁄

−𝑓𝑆𝑡 − 𝑆𝑓𝑐𝑜𝑠(𝜖) 𝑓𝑆𝑢 + (𝑓𝐽𝑧𝑧 + 𝐽𝜖𝑧) cos(𝜖) 𝑤⁄
] [
�̇�

�̇�
]

+ 

+(𝑔 [
𝑚𝑡𝑧𝑡 −𝑆𝑢
−𝑆𝑢 −𝑆𝑢𝑠𝑒𝑛(𝜖)

] + 𝑣𝑥
2 [
0 (𝑆𝑡 −𝑚𝑡𝑧𝑡) cos(𝜖) 𝑤⁄

0 (𝑆𝑢 + 𝑆𝑓𝑠𝑒𝑛(𝜖)) cos(𝜖) 𝑤⁄
]) [

𝜑
𝛿
] 

= [
𝑇𝜑
𝑇𝛿
] 

  

   𝑀�̈� + 𝑣𝑥𝐶�̇� + (𝑔𝐾0 + 𝑣𝑥
2𝐾2)𝑞 = 𝜏 (3.10) 

 

Eq. (3.10) allows for a parallel with the mechanical mass-spring-damper 

second order model. M is a symmetric and positive-defined matrix and 

corresponds to the mass matrix. The matrix C functions as the damping system, 

linearly dependent to the longitudinal speed, and illustrates the gyroscopic 

torques due to steer and roll rates as well as inertial reactions due to steer rate. 

At last, K is the stiffness matrix, formed by two subsystems: a part proportional 

to the gravity (𝐾0), which gives potential energy information, and a part 

quadratic in the forward speed (𝐾2), which gives the gyroscopic and centrifugal 

effects. The system can also be represented in a state space form, which gives 

Eq. (3.11).  

 

[
�̈�
�̇�
] = [

−𝑀−1𝑣𝑥𝐶 −𝑀−1(𝑔𝐾0 + 𝑣𝑥
2𝐾2)

𝐼2×2 02×2
] [
�̇�
𝑞
] + [

𝑀−1

02×2
] [𝜏] (3.11) 

 

Using the numerical results from Table 2.2 and the parameters described 

on Appendix A, the state space model is explicit on Eq. (3.12). 
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�̇� = 𝐴𝑋 + 𝐵𝑈  

[
 
 
 
�̈�

�̈�
�̇�

�̇�]
 
 
 
= [

−0.48 𝑣𝑥 −1.9 𝑣𝑥 75 −14 𝑣𝑥
2 − 13

2.7 𝑣𝑥 −3.5 𝑣𝑥 −6.6 0.33 𝑣𝑥
2 + 144

1 0 0 0
0 1 0 0

] [

�̇�

�̇�
𝜑
𝛿

]

+ [

51 −100
−100 566
0 0
0 0

] [
𝑇𝜑
𝑇𝛿
] 

(3.12) 

 

At last, the model is missing only the global position of the vehicle in the 

inertial reference axis to fully represent its state. The yaw angle, described on 

Eq. (3.6), is dependent of the motorcycle longitudinal speed and the steering 

state variables – both angular speed and position. Considering that the vehicle 

does not slip, the rear contact point position, therefore, can be described by 

Equation (3.13). 

 

    �̇�𝑟𝑤 = 𝑣𝑥 cos(𝜓)     �̇�𝑟𝑤 = 𝑣𝑥 sin(𝜓) (3.13) 

 

With the small angle hypothesis, the previous equation can be linearized: 

the motorcycle global position on the x axis is the integration of the constant 

longitudinal speed and the y axis has a linear relation between its acceleration 

and the yaw angular speed, given by Eq. (3.14). 

 

�̈�𝑟𝑤 = 𝑣𝑥�̇� =
cos(𝜖)

𝑤
[𝑣𝑥𝑡�̇� + 𝑣𝑥

2𝛿]  (3.14) 

 

Finally, Eq. (3.6) and (3.14) are added to the output of the state-space 

model, described on Eq. (3.15), already with the numerical values from Table 

2.2. 

 

𝑌 = 𝐶𝑋 + 𝐷𝑈  
 

[
 
 
 
 
 
�̇�

�̇�
𝜑
𝛿
�̇�
�̈�𝑟𝑤]

 
 
 
 
 

=

[
 
 
 
 
 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0.09 0 1.76 𝑣𝑥
0 0.09𝑣𝑥 0 1.76𝑣𝑥

2]
 
 
 
 
 

[

�̇�

�̇�
𝜑
𝛿

] + 06×2 [
𝑇𝜑
𝑇𝛿
] (3.15) 
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3.2  Analysis of the uncontrolled vehicle 

In the previous section, the mathematical model of a two-wheeled vehicle, 

controlled by torques in the handlebar (steering) and rear frame (rolling), was 

developed. However, it is known that, for certain speed ranges, bicycles and 

motorcycles are able to remain stable without the driver aid. Therefore, it is 

essential to analyze the stability of the uncontrolled motorcycle, with zero input 

torque. 

The motorcycle lateral movements stability depends on the four poles to 

the system’s characteristic equation, that is, the eigenvalues to matrix A defined 

on Eq. (3.12). Considering the geometry of typical motorcycles and bicycles, the 

fourth order model has usually two real and one pair of complex eigenvalues. 

The smallest real eigenvalue – with positive or negative part – is 

associated with capsize mode, depicted in Figure 3.3, related to the roll angle. 

This mode happens when the vehicle falls sideways with the rolling angle 

increasing slowly, in a tightening spiral movement.  

 

 

Figure 3.3 – Capsize mode, by <www.dynamotion.it>. 

The second non-oscillating mode is the castering, associated with the 

larger real eigenvalue and the steer angle. This characteristic movement occurs 

when the front frame rapidly aligns with the headed direction, following the 

steering motion. This mode is typically associated with a negative real pole and, 

therefore, represents a stable behavior. This phenomenon happens because 

the extension of the steering axis is slightly in front of the front wheel-floor 

contact point (the trail distance), which allows this ‘following the path’ pattern, 

like the caster wheels in shopping carts or furniture. 

  

DBD
PUC-Rio - Certificação Digital Nº 1321779/CA



Chapter 3 – Two-wheeled vehicle dynamics  51 

The weave mode is an oscillatory movement (Figure 3.4), where the 

motorcycle oscillates around the headed direction, usually with a slight phase 

lag between the steer and roll angles, resulting in a sinuously path. This mode 

is associated with the pair of conjugated complex eigenvalues and since its real 

part can be either positive or negative, the final movement may result in, 

respectively, an unstable or stable trajectory. At low speeds, the unstable mode 

may be easily corrected but, at high speeds, its natural frequency may be too 

high to be controlled by the driver, which could be potentially dangerous. 

 

 

Figure 3.4 – Weave mode, by <www.dynamotion.it>. 

A fourth mode is very typical in two-wheeled vehicles, but is not predicted 

by the model used in this work: the wobble mode, illustrated in Figure 3.5. In 

this mode, the front frame oscillates while the rest of the motorcycle remains in 

the same direction; this effect requires lateral sliding of the front wheel, which is 

not foreseen by the proposed model. Therefore, although this phenomenon is 

well observed in real motorcycles at mid-range speeds, there is not a specific 

pole associated with this behavior in this work. 

 

 

Figure 3.5 – Wobble mode, by <www.dynamotion.it>. 
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By varying the forward speed 𝑣𝑥 up to 10 m/s, it is possible to analyze 

how the eigenvalues change its characteristics with the longitudinal speed, 

becoming more or less stable. Figure 3.6 separates the eigenvalues’ real and 

imaginary parts, with an additional comparison to the benchmark bicycle, by 

Meijaard et al (2007); Figure 3.7 illustrates the motorcycle’s result on the s-

plane. 

From the first image, it is clear that at small speeds - approximately up to 

1.5 m/s - the weave poles are purely real, indicating a non-oscillatory behavior. 

Since their real parts are positive, this indicates an unstable condition, which 

translates to falling like an inverted pendulum. 

Still regarding the weave poles, after they acquire an oscillatory 

characteristic, their real parts tend to become more stable, i.e., less positive, 

with the speed increase. However, in the motorcycle’s case, they are unable to 

effectively cross to the stable area – the negative real part of the plane. The 

same does not happens to the benchmark bicycle, who can acquire a stable 

weave mode after 4 m/s (Hopf bifurcation). For both models, the imaginary 

parts increase with the vehicle’s speed, which indicates higher frequency 

oscillations with higher velocity. 

The capsize and castering modes are represented by purely real 

eigenvalues. The first tend to become less stable with the speed increase, since 

its negative module diminishes, and eventually crosses to the positive real 

semi-plane, becoming mildly unstable – at 12 m/s for the motorcycle and 6 m/s 

for the bicycle. The second mode, on the other hand, becomes even more 

stable with the speed increase, since its module moves away from the origin 

and positive semi-plane. 

The main difference between both models is that, between 4 and 6 m/s, 

the benchmark bicycle model’s eigenvalues all present negative real parts, 

which guarantees its self-stability at this speed range, i.e., the bicycle is able to 

keep itself in a upright position without a driver. The same phenomenon does 

not appears on the designed motorcycle’s system, which indicates an inability to 

stand upright without a control strategy. Since the vehicle is originally radio 

controlled, this feature was probably not a concern during its design; therefore, 

the next chapter presents some control algorithms to work around this issue.  
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(a) (b) 

Figure 3.6 – Regions of instability and self-stability of the motorcycle with 

forward speed increase: (a) Motorcycle system (b) Benchmark bicycle 

system, Meijaard et al (2007). 

 

 

Figure 3.7 – Motorcycle’s poles values with forward speed increase.  
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This chapter presented a dynamic model for two-wheeled vehicles, based 

on the works of Sharp (1971) and Meijaard (2007). The multibody model divides 

the vehicle into four rigid bodies and accounts for the gyroscopic relation 

between them. Some simplifications are assumed, such as no tire slippage or 

deformation, constant longitudinal speed and small roll and yaw angles. 

The parameters used were the ones experimentally determined in the 

previous chapter, which resulted in a fourth-order linear model with the 

handlebar torque as input and four state variables – the angular roll and steer 

speeds as well as roll and steer angles. A kinematic relation between yaw 

angle, lateral position and the aforementioned state variables was also included 

in the final state space model. 

At last, the self-stability of the motorcycle was analyzed, i.e., the dynamic 

eigenvalue behavior that depends on the longitudinal speed, without a leaning 

or steering torque as input. Unlike what happens to real bicycles and 

motorcycles, the scale vehicle does not present a range of self-stability speed, 

in which the vehicle is capable of keeping upright without a rider. Therefore, the 

next chapter presents five different control strategies to maintain the single-

track vehicle stability and assure its trajectory. 
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4  Control strategies 

The previous chapter demonstrated how two-wheeled vehicles are 

capable of keeping upright without a driver, at a certain speed range, depending 

on its geometric design. However, in order to maintain its stability in every 

speed range as well as follow a determined path, an adequate control strategy 

is necessary. 

This chapter presents five control algorithms for the proposed fourth-order 

linear model, based on modern control techniques (Ogata, 2010); two control 

strategies exclusively to maintain the roll stability, two strategies aiming to track 

a desired trajectory, and a fifth strategy combining both objectives. Each 

algorithm presents an increasing complexity, introducing the subject in a 

didactic order. 

As seen on Chapter 3, human drivers combine two types of control to 

achieve this, adjusting the course via the steering system and tilting its body to 

avoid capsizing or to induce a roll movement. Since the studied motorcycle 

does not contain a mechanical counterbalance to represent the pilot’s body, 

both stabilization and path tracking control has to be done exclusively through 

the steering torque. Therefore, the state space model considered for this 

chapter’s proposed control strategies is defined by Eq. (4.1) and ((4.2), in which 

the lean moment (𝑇𝜑) is disregarded. 

 

[
 
 
 
�̈�

�̈�
�̇�

�̇�]
 
 
 
= [

−0.48 𝑣𝑥 −1.9 𝑣𝑥 75 −14 𝑣𝑥
2 − 13

2.7 𝑣𝑥 −3.5 𝑣𝑥 −6.6 0.33 𝑣𝑥
2 + 144

1 0 0 0
0 1 0 0

] [

�̇�

�̇�
𝜑
𝛿

] + [

−100
566
0
0

] [𝑇𝛿] (4.1) 

[
 
 
 
 
 
�̇�

�̇�
𝜑
𝛿
�̇�
�̈�𝑟𝑤]

 
 
 
 
 

=

[
 
 
 
 
 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0.09 0 1.76 𝑣𝑥
0 0.09𝑣𝑥 0 1.76𝑣𝑥

2]
 
 
 
 
 

[

�̇�

�̇�
𝜑
𝛿

] + 06×1[𝑇𝛿] (4.2) 
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4.1 Stability control through state feedback 

The first step to an autonomous motorcycle is to balance itself; 

considering all state variables ideally measurable, it is possible to make a full 

state feedback in order to guarantee the vehicle’s stability, as depicted in Figure 

4.1, based on Eq. (4.1). The considered model is completely observable and 

controllable, to any given longitudinal speed. Since the control input is defined 

by Eq. (4.3) and considering the desired state variables as null – aiming to 

achieve zero roll and steer angular speeds and positions –, Eq. (4.4) brings the 

new state space model for the system. 

 

 

Figure 4.1 – Block diagram for stability control through state feedback.  

 

𝑈 = 𝑋𝑑 − 𝐾𝑋 = = −[𝐾1 𝐾2 𝐾3 𝐾4] [

�̇�

�̇�
𝜑
𝛿

]  (4.3) 

�̇� = (𝐴 − 𝐵𝐾)𝑋 (4.4) 

 

The new state space model will have eigenvalues depending on the 

chosen feedback gain; once the system is completely controllable, it is possible 

to change these poles through and adequate gain set, a technique known as 

pole placement. 

Considering three different constant speeds (5, 10 and 15 m/s), the state 

feedback controller is designed to keep the poles’ absolute values while 

maintaining them at the negative quadrant of the s-plane. Table 4.1 brings the 

feedback gain vectors to the same desired closed-loop poles: 

[−10 −15 −20 −25], chosen in order to keep the stabilization time under 

one second with overdamped characteristics. 
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It is important to note that, for every control strategy, the steer angle is 

limited at -20 and 25 degrees (or -0.35 and 0.44 radians) and the steering 

torque, at 0.32 N-m, the servo maximum torque. 

Figures 4.2 and 4.3 illustrate the simulation results to an initial condition of 

0.5 rad/s roll angular speed: both angular speeds stabilize at zero, guaranteeing 

the system’s stability; the roll and steer angles reach a null steady state value 

while keeping the small angle assumption for the model, so the stabilization 

criteria for the state feedback controller has been met. At last, the torque input 

calculated via the controller is under the servo limit, i.e., under 0.32 N-m. 

 

Table 4.1 – State feedback gain to three different speeds. 

Speed (m/s) State feedback gain 𝑲 

5 [−0.07 0.08 −0.82 2.25] 

10 [0.02 0.06 −0.24 2.91] 

15 [0.06 0.03 −0.12 3.21] 

 

 

Figure 4.2 – Angular speed and position results for stability control 

through state feedback. 
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Figure 4.3 – Torque input for stability control through state feedback. 

 

4.2  Stability control through observer feedback 

In experimental setups, it is common to not have all sensors available; on 

the studied motorcycle, only the steer angle (𝛿), given by the potentiometer, and 

the roll angular speed (�̇�), measured by a gyrometer, are directly measurable. 

Therefore, it is necessary to have a state observer estimating the missing 

variables in order to calculate the controller input. 

Since the main objective is to stabilize the motorcycle, the model used in 

this section is represented by Eq. (4.5); the model has been reorganized in 

order to separate the measured variables from the estimated ones. Since the 

new system is completely observable, at any given speed, it is possible to build 

an adequate observer such as described in Figure 4.4. 

 

[
 
 
 
�̈�

�̇�
�̇�

�̈�]
 
 
 
= [

−0.48 𝑣𝑥 −14 𝑣𝑥
2 − 13 75 −1.9 𝑣𝑥

0 0 0 1
1 0 0 0

2.7 𝑣𝑥 0.33 𝑣𝑥
2 + 144 −6.6 −3.5 𝑣𝑥

] [

�̇�
𝛿
𝜑

�̇�

] + [

−100
0
0
566

] [𝑇𝛿]

𝑌 = [
1 0 0 0
0 1 0 0

] [

�̇�
𝛿
𝜑

�̇�

] + 02×1[𝑇𝛿]

  (4.5) 

 

 

Figure 4.4 – Block diagram for stability control through observer 

feedback. 
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Provided that the observer is estimating only the variables not directly 

measured, i.e., the steer angular speed and the roll angle, it is classified as a 

reduced-order observer. Eq. (4.6) and (4.7) bring, respectively, a generic state-

space and observer model, with 𝑥𝑎 being the 𝑚 measured variables and 𝑥𝑏 the 

𝑛 observed ones (Ogata, 2010). Equation (4.8 describes the generic observer 

state-space model, which gives the observer poles and allows to calculate the 

gain matrix (𝐾𝑒) through pole placement. 

 

[
�̇�𝑎
�̇�𝑏
] = [

𝐴𝑎𝑎 𝐴𝑎𝑏
𝐴𝑏𝑎 𝐴𝑏𝑏

] [
𝑥𝑎
𝑥𝑏
] + [

𝐵𝑎
𝐵𝑏
] 𝑈

𝑌 = [𝐼𝑛×𝑛 0𝑛×𝑚] [
𝑥𝑎
𝑥𝑏
]

 (4.6) 

�̇̂� = �̂��̂� + �̂�𝑌 + �̂�𝑈

    = (𝐴𝑏𝑏 −𝐾𝑒𝐴𝑎𝑏) �̂� + (�̂�𝐾𝑒 + 𝐴𝑏𝑎 − 𝐾𝑒𝐴𝑎𝑎)𝑌 + (𝐵𝑏 − 𝐾𝑒𝐵𝑎)𝑈

𝑥 = �̂��̂� + �̂�𝑌 = [
0𝑛×𝑛
𝐼𝑚×𝑚

] �̂� + [
𝐼𝑛×𝑛
𝐾𝑒

] 𝑌

 (4.7) 

 �̇�𝑏 − �̇�𝑏 = (𝐴𝑏𝑏 − 𝐾𝑒𝐴𝑎𝑏) (𝑥𝑏 − 𝑥𝑏)⏟      
𝜂

 
(4.8) 

 

With the motorcycle state-space model presented in Eq. (4.5) and the 

previous generic observer equations, it is possible to build the motorcycle 

observer, defined in Eq. (4.9). It is important to emphasize that only the roll 

angle and steer singular speed being estimated by the observer (�̂�), this means 

the final observed state variable (�̂�) will contain both the measured and 

estimated variables. 

 

�̂� = [�̂� �̂̇�]
𝑇
 𝑌 = [�̇� 𝛿]𝑇 𝑈 = [𝑇𝛿] �̂� = [�̇� 𝛿 �̂� �̇̂�]

𝑇
  

�̂� = [
0 0

−6.6 −3.5𝑣𝑥
] − 𝐾𝑒2×2 [

75 −1.9𝑣𝑥
0 1

] 

(4.9) �̂� = �̂�𝐾𝑒2×2 + [
1 0

2.7𝑣𝑥 0.33𝑣𝑥
2 + 144

] − 𝐾𝑒2×2 [
−0.48𝑣𝑥 −14 𝑣𝑥

2 − 13
0 0

] 

�̂� = [
0
566

] − 𝐾𝑒2×2 [
−100
0

] �̂� = [
02×2
𝐼2×2

] �̂� = [
𝐼2×2
𝐾𝑒2×2

] 

 

Eq. (4.10) presents the feedback control equation; since the observer (𝐾𝑒) 

and feedback (𝐾) gains are independent, it is possible to choose two different 

sets of desired eigenvalues for the final closed loop system, the observer and 
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the state feedback poles. The state feedback follows the same logic applied to 

the previous control algorithm: yielding a stable and non-oscillatory time 

response, by keeping the state poles at the negative and real side of the s-

plane. The same set of desired poles was used, [−10 −15 −20 −25]; 

therefore, the state feedback gain 𝐾 is the same as presented in Table 4.1, 

adjusting the gain vector order to the new state variable. 

 

𝑈 = 𝑋𝑑 − 𝐾�̂� = = −[𝐾1 𝐾4 𝐾3 𝐾2]

[
 
 
 
�̇�
𝛿
�̂�

�̇̂� ]
 
 
 
 (4.10) 

 

Usually, the observer poles are designed to have a dynamic faster than 

the system’s (Ogata, 2010); in this work, since only two variables are being 

estimated, it is necessary to choose two desired poles. Thus, the observer 

eigenvalues are set to be three times faster than the state poles, i.e., they are 

equal to the lowest real part of the feedback poles multiplied by three. The 

observer gain is calculated through pole placement, using Eq. (4.8), where the 

observer state matrix 𝐴 is highlighted. The observer desired eigenvalues and 

gain to three different speeds is detailed at Table 4.2. 

For comparison between control strategies performance, the same 

conditions are applied to the system simulation: an initial condition of 0.5 rad/s 

roll angular speed, with steer angle saturation at 20 degrees and steer torque 

up to 0.32 N-m. Figure 4.5 illustrates the angles and angular speeds behavior: 

though less oscillatory than the previous control strategy, the roll angle 𝜑 – 

determined by the observer – peaks to high values; the worst case is at the 

highest speed, where it reaches a maximum of 0.2 rad or 11 degrees, 

approximately, which maintains the small angles hypothesis. 

The steer angle varies to a maximum of 0.03 rad (1.7 degrees). Figure 4.6 

shows the torques applied to the system’s handlebar, all being smaller than the 

servo saturation torque. Briefly, the observer feedback controller presents a less 

damped time response, when compared to the full state feedback, with higher 

roll amplitudes, though it is in conformity with the small angles hypothesis and 

servo saturation, while also keeping the roll and steer angles null at the steady 

state. 
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Table 4.2 – Observer feedback gain to three different speeds. 

Speed (m/s) Desired eigenvalues Observer feedback gain 𝑲𝒆 

5 [−30 −45] [
0.40 3.80
−0.09 26.67

] 

10 [−30 −45] [
0.40 7.60
−0.09 8.33

] 

15 [−30 −45] [
0.40 11.40
−0.09 −10.01

] 

 

 

Figure 4.5 – Angular speed and position results for stability control 

through observer feedback. 

 

Figure 4.6 – Torque input for stability control through observer feedback. 
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4.3  Path tracking through state feedback 

The next step to control an autonomous motorcycle is to make it follow a 

desired trajectory, at any given speed. The mathematical model used to achieve 

this goal is a modification of the one presented in Eq. (4.1) and (4.2), in which 

the motorcycle yaw angle (𝜓), lateral velocity (�̇�𝑟𝑤) and position (𝑦𝑟𝑤) are 

included. In order to avoid the double integration from the lateral acceleration, 

the model is rewritten in Eq. (4.11) and (4.12), with the yaw angle and lateral 

position as new state variables. 

 

[
 
 
 
 
 
 
�̈�

�̈�
�̇�

�̇�
�̇�
�̇�𝑟𝑤]

 
 
 
 
 
 

=

[
 
 
 
 
 
−0.48 𝑣𝑥 −1.9 𝑣𝑥 75 −14 𝑣𝑥

2 − 13 0 0

2.7 𝑣𝑥 −3.5 𝑣𝑥 −6.6 0.33 𝑣𝑥
2 + 144 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0.09 0 1.76𝑣𝑥 0 0
0 0 0 0 𝑣𝑥 0]

 
 
 
 
 

[
 
 
 
 
 
�̇�

�̇�
𝜑
𝛿
𝜓
𝑦𝑟𝑤]

 
 
 
 
 

+

[
 
 
 
 
 
−100
566
0
0
0
0 ]

 
 
 
 
 

[𝑇𝛿] (4.11) 

Y =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

[
 
 
 
 
 
�̇�

�̇�
𝜑
𝛿
𝜓
𝑦𝑟𝑤]

 
 
 
 
 

+ 06×1[𝑇𝛿] (4.12) 

 

Considering all variables ideally measured, it is possible to feedback the 

state signals in order to guarantee both the motorcycle stability and trajectory; 

Figure 4.7 brings the block diagram to the state feedback. This feedback 

strategy is only possible because the system is completely controllable. 

 

 

Figure 4.7 – Block diagram for path tracking through output feedback. 
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Eq. (4.13) illustrates the controller definition, in which the input torque 

becomes the desired trajectory minus a proportional gain to the state variables, 

and Eq. (4.14) shows the feedback state-space model, considering the D matrix 

null. 

𝑈 = 𝐾(𝑋𝑑 − 𝑋) = [𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6]

[
 
 
 
 
 

�̇�

�̇�
𝜑
𝛿
𝜓

𝑦𝑑 − 𝑦𝑟𝑤]
 
 
 
 
 

 (4.13) 

�̇� = (𝐴 − 𝐵𝐾)𝑋 + 𝐵𝐾𝑋𝑑 

�̇� = (𝐴 − 𝐵𝐾)𝑋 + 𝐵𝐾6𝑦𝑑 
(4.14) 

 

Like the previous control strategies, the desired eigenvalues are the same 

to every speed simulated, in order to guarantee an equal time response at 

different speeds. The control gain vector 𝐾, is once again defined by the pole 

placement technique; Table 4.3 brings the feedback gain vector (𝐾) for three 

different speeds, considering the desired eigenvalues as 

[−10 −15 −20 −25 −30 −35]. 

Table 4.3 – Path tracking state feedback gain to three different speeds. 

Speed (m/s) State feedback gain 𝑲 

5 [−2.09 −0.17 −18.25 −10.56 −66.57 −43.24] 

10 [−0.55 0.07 −5.18 0.50 −33.86 −10.81] 

15 [−0.21 0.10 −2.42 4.67 −22.70 −4.80] 

 

The simulation executed with this control algorithm was a double lane 

change, a common trajectory when avoiding obstacles. The desired path had a 

lateral displacement of one meter with a slope, to fit the small angle and 

displacement hypothesis. Figure 4.8 illustrates a comparison between the path 

traveled in each velocity, in which the counter-steering effect is slightly 

perceptible, with the simulated path initially going against the desired path and 

latter aligning to the same direction. The motorcycle trajectory is delayed in 

comparison to the path input, with a maximum error of 0.237 meters at the 

highest speed, or approximately 24% of the maximum trajectory. Figure 4.9 

compares the input torque in each simulation and Figure 4.10 describes the roll, 

steer and yaw angular speed and positions; all cited variables are under the 

saturation limits and small angle hypothesis. 
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Figure 4.8 –Position results for path tracking through state feedback. 

 

Figure 4.9 – Torque input for path tracking through state feedback. 

 

Figure 4.10 – Angular speed and position results for path tracking through 

state feedback. 
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4.4  Path tracking through linear quadratic regulator 

Another interesting control strategy applied to the path tracking problem is 

the linear quadratic regulator, in which the feedback control gain matrix is 

calculated in order to minimize a performance index, instead of the pole-

placement method.  

The steering torque (input) is still proportional to the state variables – Eq. 

(4.15) – but the gain matrix 𝐾𝑙 minimizes the cost function presented in Eq. 

(4.16). The parameters of matrices Q and R are designed to penalize deviations 

on the state variables and control signals, respectively; since all variables are 

considered independent, these matrices become diagonal weights. 

𝑈 = 𝐾𝑙(𝑋𝑑 − 𝑋) = [𝐾𝑙1 𝐾𝑙2 𝐾𝑙3 𝐾𝑙4 𝐾𝑙5 𝐾𝑙6](𝑋𝑑 −

[
 
 
 
 
 
�̇�

�̇�

𝜑

𝛿

𝜓

𝑦
𝑟𝑤]
 
 
 
 
 

) (4.15) 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0

 (4.16) 

 

In this control approach, higher gains – or penalties – were assigned to 

the roll angle, steer angle and, mainly, lateral displacement, in order to 

guarantee they are closer to the desired reference value. The gains were 

adjusted after simulations aiming to keep the minimum path error, which was 

around 30% of the total course. Eq. (4.17) brings the matrices used in all 

speeds simulated, where it resulted in different closed loop poles, explicit in 

Table 4.4. 

𝑄�̇� 𝑄�̇� 𝑄𝜑 𝑄𝛿 𝑄𝜓 𝑄𝑦𝑟𝑤 𝑹 

(4.17) 

0.1 0.1 0.5 0.5 0.1 100 𝟎. 𝟏 

Table 4.4 – Linear quadratic regulator gain to three different speeds. 

Speed 

(m/s) 

Closed loop 

eigenvalues 
LQR gain 𝑲𝒍 

5 [
−4.7 ± 5.4𝑖 −5.7
−15 ± 11𝑖 −577

] 
 [−3.45 0.44 −28.7 3.79 −68.7 −31.6] 

10 [
−4.8 ± 5.3𝑖 −5.6
−28 ± 25𝑖 −577

] 
 [−2.85 0.56 −23.5 9.69 −126.3 −31.6] 

15 [
−4.7 ± 5.3𝑖 −5.6
−41 ± 39𝑖 −577

] 
 [−2.66 0.61 −21.9 15.6 −184.2 −31.6] 
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With the stable poles from the linear quadratic regulator, it is possible to 

apply a desired double lane change to the motorcycle’s lateral displacement. 

Figure 4.11 brings the resulting paths, in which it is clear the vehicle is capable 

of following the desired trajectory, but with greater delay than the previous 

control strategy. Figure 4.12 describes the torque input applied to the system, 

with amplitude within the servomotor’s saturation limits, 0.32 N-m; Figure 4.13 

illustrates the behavior of angular speeds and position, all maintaining the small 

angles hypothesis, i.e., under 0.2 rad or 11 degrees. 

 

 

Figure 4.11 – Position results for path tracking through LQR. 

 

Figure 4.12 – Torque input for path tracking through LQR. 
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Figure 4.13 – Angular speed and position for path tracking through LQR. 

 

4.5  Path tracking through trajectory preview 

At last, the final control strategy applied to the motorcycle system is the 

path tracking through trajectory preview (Dao, Chen; 011). The previous 

strategies were passively responding to changes on the target path: once the 

error is considerably, the vehicle is actuated in order to steer closer to the 

trajectory goal. In real riding experience, the human driver looks forward at a 

preview point and adjust its trajectory aiming at future positions. 

Unlike four-wheeled vehicles, path tracking for motorcycles has to take 

into account the roll stability, in addition to the planar motion information such 

as position, speed and orientation. Therefore, this control strategy is divided in 

two parts: a roll stability and trajectory controllers. For the roll angle control, a 

full state feedback was used – similar to the one depicted in Section 4.2 – and 

is illustrated in Figure 4.14.  
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Figure 4.14 – Block diagram for roll angle control. 

The roll angle control is composed of two loops: a state feedback control 

(inner loop) and an integral control between the error comparator and the plant. 

This integrator was added to attenuate the effect of external disturbances. The 

control law is described in Eq. (4.18), where 𝐾 is a vector gain with the same 

dimension as the state variable (Eq. (4.3)), 𝐾𝜉 is a constant control gain and 𝜉 is 

the integral of the roll tracking error (Eq. (4.19)). 

 

𝜏 = −𝐾 𝑋 − 𝐾𝜉  𝜉 (4.18) 

�̇� = 𝜑𝑑 − 𝜑 = 𝜑𝑑 − �̃�𝑋 (4.19) 

 

Considering a full state feedback, the 𝐶 matrix is equal to the identity 

matrix and the �̃� = [0 0 1 0]𝐶 matrix is the third row of 𝐶, where the value 

of the roll angle is located. A new state space model can be derived from 

adding the tracking error to the state variables, as exemplified in Eq. (4.20). The 

input torque can then be calculated as a feedback from the new state space 

model (Eq. (4.21)).  

 

[
�̇�
�̇�
] = [

𝐴 0
−�̃� 0

] [
𝑋
𝜉
] + [

𝐵
0
] 𝜏 + [

0
1
]𝜑𝑑 (4.20) 

𝜏 = −�̃� [
𝑋
𝜉
] = −[𝐾1×4 𝐾𝜉] [

𝑋
𝜉
] (4.21) 
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The gain vector �̃� can be determined through the pole placement 

technique, considering the new �̃� and �̃� matrices. Since the new state space 

matrix has a null line, the additional pole to the open loop system is equal to 

zero, which could cause instabilities. All speeds have the same desired 

eigenvalues, [−10 −15 −20 −25 −30], and the resulting feedback gain 

vector is at Table 4.5. 

Table 4.5 – Roll control feedback gain to three different speeds. 

Speed (m/s) Roll control feedback gain (�̃�) 

5 [−0.24 0.10 −3.58 3.32 11.55] 

10 [−0.03 0.10 −1.02 5.13 2.81] 

15 [0.03 0.08 −0.48 5.89 1.24] 

 

To validate the analytical results, the motorcycle’s model was simulated 

following a sinusoidal reference roll angle with 0.2 rad (11 degrees) amplitude 

and 0.16 Hz (1 rad/s) frequency. The result can be observed on Figure 4.15, 

which brings the comparison between target and simulated roll angle; in all 

three speeds, the roll angle behavior was the same, with a maximum error of 

0.05 rad (3 degrees) or 28% of the total amplitude. In Figure 4.17 it is possible 

to notice that at higher speeds, it is necessary a smaller steer angle to obtain 

the same roll angle, which is corroborated by the torque behavior, at Figure 

4.16. 

 

Figure 4.15 – Roll angles results for roll control through path preview. 

 

Figure 4.16 – Torque input for roll control through path preview. 
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Figure 4.17 – Angular speed and position in simulation for roll control. 

In order to analyze the efficiency of the proposed roll control, a 

comparison is made with the stability control via state feedback, presented in 

sub item 4.1. Using the same desired roll angle as an input – a sinusoidal wave 

with 0.2 rad amplitude and 1 rad/s frequency –, the result for three different 

longitudinal speeds is shown in Figure 4.18.  

The simulation demonstrates that, even though the state feedback 

strategy is capable of eliminating input noises on the roll angle and keeping it at 

a null steady state, it is not able to efficiently track a desired roll angle. In all 

three longitudinal speeds, the resulting roll angle has a sinusoidal pattern with 

the expected frequency still presenting a gain in comparison with the desired 

output. Therefore, the state feedback strategy is capable of stabilizing the 

system, but not of tracking a desired roll angle. Thus, the new roll angle control 

is necessary for the path preview strategy, in which a precise roll movement is 

crucial to the trajectory developed by the vehicle. 
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Figure 4.18 – Comparison between roll control strategies. 

Once the motorcycle has an effective stabilization control, the next step is 

to guarantee its trajectory tracking ability. The main goal of this second loop is 

to minimize the distance error 𝑒𝑃 between the vehicle’s current position and the 

predicted target path, illustrated in Figure 4.19. 

 

 

Figure 4.19 – Path preview schematic. 

Human drivers look forward to a preview point on the same direction the 

vehicle is moving; the distance of this point is speed dependent, being closer to 

the current position the lower the velocity. Considering small yaw angles, the 

motorcycle is parallel to the global reference system and a simplification can be 

done to estimate the preview point given a time window (Eq. (4.22)). 
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𝑥𝑃 = 𝑥 + 𝑣𝑥 𝑇𝑃 𝑦𝑝 = 𝑣𝑥𝑇𝑝𝜓 (4.22) 

 

With the preview point determined, it is possible to calculate the look-

ahead error 𝑒𝑃, which is the trajectory tracking error projected a distance in front 

of the vehicle, as described in Eq. (4.23). The trajectory error (𝑒𝑝) is the 

difference between the next estimated vehicle position in the global Y axis and 

the next target lateral position - defined by a function f of longitudinal distance. 

The trajectory error has a positive value when the target path is on the right side 

of the motorcycle and negative otherwise. 

 

𝑒𝑃 = 𝑦𝑝 − 𝑓(𝑥𝑝) (4.23) 

 

With the distance and orientation error between the target path and the 

actual vehicle trajectory, it is possible to build the path-tracking controller as in 

Figure 4.20. The position error generate a reference roll angle, in order to keep 

the vehicle stable while pursuing the desired track. 

Considering the countersteering effect, to make the motorcycle turn to one 

side, it is interesting to have a roll angular speed initially to the opposite side, 

creating a momentum, which will help the vehicle negotiate the curve. 

Therefore, when the motorcycle has to turn to the right – positive distance error 

𝑒𝑝 between vehicle and target path – its body should tilt to the left, which 

represents a negative roll angle on the considered vehicle’s coordinate system. 

Thus, contrary to what is commonly done with feedback gains, the values 

of distance error gains are negative, to ensure a roll angular speed in the 

opposite direction of the motorcycle lateral displacement. These values were 

adjusted considering a longitudinal speed of 15 m/s and a time preview of 0.5 

seconds. The best results were obtained with a distance gain of 𝐾𝑃 = −0.7 and 

an additional derivative gain was added to the displacement error to attenuate 

trajectory oscillations, with the value of 𝐾𝑑𝑝 = −0.1.  
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Figure 4.20 – Block diagram for trajectory control through path preview. 

Finally, in order to validate the proposed control strategy, the same 

desired trajectory from previous simulations was used as input, a double lane 

change maneuver with lateral displacement of one meter. 

Table 4.6 brings the error between desired and simulated roll angles and 

lateral trajectories to three different longitudinal speeds; the higher amplitude of 

the roll control angle was approximately 0.2 rad, to the 15 m/s longitudinal 

speed. Though the roll control presents higher errors – in the magnitude of 40% 

of the total amplitude – the trajectory controller was able to keep the vehicle at 

under 4% error, which is a very effective performance. 

Table 4.6 – Maximum error to path preview controller. 

Speed 

(m/s) 

Roll control 

error (rad) 

Roll control 

error (%) 

Path tracking 

error (m) 

Path tracking 

error (%) 

5 0.055 39.3 0.010 1.0 

10 0.114 41.0 0.025 2.5 

15 0.177 42.1 0.039 3.9 

 

Figure 4.21 brings the trajectory behavior to the double lane change 

maneuver at three different longitudinal velocities; an overshoot is visible at high 

speeds, when the motorcycle has greater resistance to sudden trajectory 

changes. The torque applied to the handlebars (Figure 4.22) prove the motor 

saturation is satisfied. Figure 4.23 to Figure 4.25 shows the angular speeds and 

positions of the motorcycle and the countersteering is clear in the steer angle 

graphs, in which the handlebar is first turned to the opposite direction before 

being steered to the same direction of the trajectory. 
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Figure 4.21 – Vehicle position and error in simulation for trajectory control 

through path preview. 

 

Figure 4.22 – Torque input for trajectory control through path preview. 

 

Figure 4.23 – Angular speed and position in simulation for trajectory 

control through path preview, at 5m/s. 
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Figure 4.24 – Angular speed and position in simulation for trajectory 

control through path preview, at 10m/s. 

 

Figure 4.25 – Angular speed and position in simulation for trajectory 

control through path preview, at 15m/s. 

At last, it is interesting to compare the performance between all three 

trajectory control strategies: considering the speed of 10 m/s, Figure 4.26 brings 

the comparison between all three trajectory control strategies to the previous 

demonstrated double lane change maneuver. 

An additional simulation was made, with the target path as the slalom 

maneuver, represented by a sine wave with two meters of amplitude and one 

rad/s frequency. Figure 4.27 brings the final comparison between the full output 

feedback, linear quadratic regulator and path preview controllers.  
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Both graphs illustrates how the output feedback controller and linear 

quadratic regulator present a similar performance, with a considerable delay 

between the target path and simulated trajectory, since the motorcycle steer 

and roll angles are actuated after it already exists an error between the vehicle’s 

position and the desired road. The path preview controller presents an improved 

response due to its ability to react to the distance error before it actually 

happens. 

 

Figure 4.26 – Comparison between control strategies with the double lane 

change maneuver, at 10m/s. 

 

 

Figure 4.27 – Comparison between control strategies with the slalom 

maneuver, at 10m/s. 
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This chapter presented five control strategies, all based on modern control 

techniques such as pole placement and state observers. To guarantee the 

application of these procedures, it was first analyzed that the proposed dynamic 

model is completely observable and controllable, for every longitudinal speed 

considered. 

Two control algorithms were aimed to solve the problem of natural vertical 

instability, present in two-wheeled vehicles and aggravated by the fact that the 

studied scale object does not display a self-stability speed range. The first 

controller assumed all state variables were ideally measured, while the second 

considered a state observer to estimate the variables not directly measured 

through sensors. 

The following two control algorithms aimed to keep the motorcycle along a 

desired trajectory, through state feedback but different control gain vectors 

determination. The last control technique combines both objectives (stability 

and trajectory tracking) while decreasing the delay presented in the previous 

algorithms. 

To apply any of the proposed control techniques to the experimental 

system, it is necessary to first analyze its embedded instrumentation. Since not 

all state variables are directly measured, due to high costs and physical 

barriers, the next chapter proposes a sensor fusion algorithm, in order to 

estimate the full state of the vehicle with the available sensors. 

 

DBD
PUC-Rio - Certificação Digital Nº 1321779/CA



 
 

5  State estimation through sensor fusion technique 

An autonomous vehicle needs its instrumentation system to be 

embedded, in order to be completely independent in any environment – indoors 

or outdoors. To the studied object, because of its reduced scale, the size and 

weight of the instrumentation system is even more significant, since it should 

not influence the geometry and dynamic of the original motorcycle. Thus, an 

effective embedded instrumentation system has to be lightweight, reduced in 

size and with great reliability and performance. 

The previous conditions indicate that redundant sensors must be 

eliminated, as it is less costly to use known relations between variables to 

estimate its values than to directly measure it. For this purpose, it is necessary 

an algorithm to effectively predict the unknown variables, based on their indirect 

relations and noisy measurements from sensors. One of the most outstanding 

algorithm in this task is the Kalman filter, in which the system's dynamical 

model, control inputs and multiple sequential measurements form an estimate 

of the system's state variables. 

In this chapter, the Kalman filter is used to combine the noisy sensory 

data from four different sensors in the instrumentation system, as well as to 

estimate the state variables that are not directly measured from these devices. 

At last, this filtered and combined data can be used by the previously proposed 

control strategies as the measured state of the motorcycle. 

 

5.1  Kalman filter algorithm 

The Kalman filter is a mathematical algorithm that works in a two-step 

process: in the prediction step, it produces estimates of the current state 

variables based on a state-space model and the input to the system; in the 

update step, these estimates are adjusted using a weighted average between 

the predicted state and noisy measurements, with more weight being given to 

estimates with higher certainty. Since the filter uses not only the observable 

data but also the relation between state variables, it produces a better estimate 

than using individual sensor measurements. 
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Considering a general continuous linear state-space model, as described 

by Eq. (5.1), an approximation of its discrete model is presented in Eq. (5.2), 

given a discretization period equal to 𝑇. 

 

�̇� = 𝐴𝑋 + 𝐵𝑈
𝑌 = 𝐶𝑋

 (5.1) 

𝑋𝑘+1 = (𝐼 + 𝑇𝐴)𝑋𝑘 + (𝑇𝐵)𝑈𝑘 = 𝐹𝑘𝑋𝑘 + 𝐺𝑘𝑈𝑘
𝑌𝑘 = 𝐶𝑋𝑘 = 𝐻𝑘𝑋𝑘

 (5.2) 

 

The first step to the recursive Kalman filter is to provide the initial 

conditions, i.e., the estimated state variable (𝑥𝑘) and estimated error covariance 

matrix (�̂�𝑘) – which can be defined as the measure of the state estimate 

accuracy. If the state variable noises are considered independent, the matrix �̂�𝑘 

can be simplified to a diagonal matrix. 

The prediction step is then able to estimate the current variable state (�̅�𝑘)  

and error covariance matrix (�̅�𝑘)  with the discrete model, control input and the 

previously estimated state and error covariance matrix (Eq. (5.3)). The matrix 𝑄 

is the covariance of the process noise, or the covariance of input 𝑢𝑘; a good 

estimate for this matrix is to consider the standard deviation of the input 

variables, which results in 𝑄 = 𝐺𝑘𝐺𝑘
𝑇𝜎𝑢

2. 

 

�̅�𝑘 = 𝐹𝑘𝑥𝑘 + 𝐺𝑘𝑢𝑘
�̅�𝑘 = 𝐹𝑘�̂�𝑘𝐹𝑘

𝑇 + 𝑄
 (5.3) 

 

An intermediate step is dedicated to calculate the optimal Kalman gain, 

Eq. (5.4), which is later used in the update step. The observation matrix 𝐻 

defines which state variables are being measured by sensors while the 

observation noise covariance matrix 𝑅 models the noise variance from the 

devices measurements; a common estimate of this matrix is to consider the 

sensors noises independent, which results in 𝑅 = 𝑑𝑖𝑎𝑔(𝜎𝑠𝑒𝑛𝑠𝑜𝑟𝑖
2 ). 

 

𝐾𝑘 = �̅�𝑘𝐻𝑘
𝑇(𝐻𝑘�̅�𝑘𝐻𝑘

𝑇 + 𝑅)
−1

 (5.4) 

 

On the update step, a new state (𝑥𝑘+1) and error covariance (�̂�𝑘+1) are 

estimated using the current predicted state and noisy measurements from the 

sensors (𝑧𝑘). The Kalman gain filter is then responsible for merging the 
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information predicted from the discrete model with the data coming from the 

sensors, providing greater weight to whichever has less covariance, that is, 

relying more on the results with smaller error. 

 

𝑥𝑘+1 = �̅�𝑘 + 𝐾𝑘(𝑧𝑘 −𝐻𝑘�̅�𝑘)

�̂�𝑘+1 = �̅�𝑘 − 𝐾𝑘𝐻𝑘�̅�𝑘
 5.5 

 

5.2 Motorcycle sensor fusion strategy 

The motorcycle model used was the same applied to the path tracking 

strategies, reproduced in Eq. (5.6), considering only the steer torque as the 

control input of the system. The model has six state variables – roll and steer 

angular speeds and position; yaw angular velocity and lateral displacement – 

and one additional element, the longitudinal speed, considered constant in this 

linear model. 

 

[
 
 
 
 
 
 
�̈�

�̈�
�̇�

�̇�
�̇�
�̇�𝑟𝑤]

 
 
 
 
 
 

=

[
 
 
 
 
 
−0.48 𝑣𝑥 −1.9 𝑣𝑥 75 −14 𝑣𝑥

2 − 13 0 0

2.7 𝑣𝑥 −3.5 𝑣𝑥 −6.6 0.33 𝑣𝑥
2 + 144 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0.09 0 1.76𝑣𝑥 0 0
0 0 0 0 𝑣𝑥 0]

 
 
 
 
 

[
 
 
 
 
 
�̇�

�̇�
𝜑
𝛿
𝜓
𝑦𝑟𝑤]

 
 
 
 
 

+

[
 
 
 
 
 
−100
566
0
0
0
0 ]

 
 
 
 
 

[𝑇𝛿] (5.6) 

 

For the sensor fusion algorithm, the instrumentation system needs to be 

related to the state variables described by the model. The sensors available in 

the work are: a three-axis accelerometer, which measures accelerations, in 

m/s2; a three-axis gyrometer, which provides angular velocities, in rad/s; a 

tachometer, which gives the propulsion motor rotation, in rpm, and a 

potentiometer coupled to the handlebar, which measures the steering angle 

applied to the vehicle. Appendix C illustrates the test bench used to verify the 

linear and angular accelerations measured by the IMU. 

The inertial measurement unit (IMU) also contains a magnetometer, which 

measures the Earth’s magnetic field and is usually used as a compass. This 

device was not used in this work because of strong magnetic influences from 

the electric motor, positioned very close to the sensor due to the reduced 

dimensions of the motorcycle.  

Therefore, the motorcycle model variables directly measured by sensors 

are: the lateral acceleration determined by the accelerometer, roll and yaw 

angular speeds measured by the gyrometer, steer angle given by the 
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potentiometer and the longitudinal speed, which can be inferred by the 

tachometer, considering no slippage at the rear wheel. 

However, the measurements made by the IMU (accelerometer and 

gyrometer) cannot be considered directly equal to the motorcycle’s acceleration 

and angular speeds because the device is not positioned at the considered 

coordinate origin point – at the contact point between rear wheel and the floor – 

nor at the vehicle’s center of mass. Thus, it is necessary to convert the sensors 

measurements to the correct origin point, which is done via a filter prior to the 

motorcycle dynamical model, based on Zhang et al (2013); additionally, the 

tachometer’s data can be fused with the accelerometer to obtain a more reliable 

longitudinal speed value. 

 

5.2.1  IMU conversion filter 

Considering the motorcycle and the rear-frame fixed IMU, three main 

reference systems can be considered (Figure 5.1): the inertial frame, I, fixed to 

the ground; the plane R, moving with the motorcycle and with its x axis aligned 

to the wheels’ contact points with the floor – its origin is at the rear wheel (point 

O) and it has a yaw angle (𝜓) in relation to the reference I. Finally, the plane B, 

fixed to the motorcycle’s main body, presents a roll angle (𝜑) in relation to the 

plane R. 

 

Figure 5.1 – Motorcycle rotational planes. 
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The vehicle is considered to experience only two rotations: roll on the x 

axis and yaw on the z axis; this means the pitch angle, around y axis, is 

disregarded as the motorcycle moves exclusively in flat terrain and, even with 

vibrations in its body, the IMU can be considered parallel to the ground. 

The distance between the inertial measurement unit and the considered 

coordinate system’s origin point O is illustrated in Figure 5.2; the calculated 

values are 𝑟𝑥 = 0.0986 m and 𝑟𝑧 = −0.2082 m. 

 

 

Figure 5.2 – Distance from IMU to origin point. 

The motorcycle angular speeds at the origin point O ( 𝜔𝑅 𝑚) can be 

correlated to the angular rates measured by the gyrometer ( 𝜔𝐵 𝑚) by a rotation 

matrix. Considering 𝑅𝐵
𝑅 = 𝑅𝑥(𝜑) is the rotational matrix from R to B, the inverse 

correlation is described in Eq. (5.7); the sine and cosine functions were 

simplified to, respectively, s and c. 

 

𝜔𝐵 𝑚 = 𝑅𝑥
𝑇(𝜑) 𝜔𝑅 𝑚  

[

𝜔𝑥
𝜔𝑦
𝜔𝑧
] = 𝑅𝑥

𝑇(𝜑) [

�̇�
0
�̇�
] = [

�̇�

−𝑠𝜑�̇�

𝑐𝜑�̇�

] 
(5.7) 
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The direct relation between sensor and Euler angles is expressed in the 

previous equation; it is, however, the inverse relation that is used in the Kalman 

filter (Eq. (5.8)). There would be discontinuities in the model if the roll angle 

reaches 90 degrees, but this would be a situation of irreversible instability to the 

vehicle, and should be primarily avoided by the control algorithm. 

 

[
�̇�

�̇�
] = [

1 0 0
0 0 1/cos(𝜑)

] [

𝜔𝑥
𝜔𝑦
𝜔𝑧
] (5.8) 

 

The acceleration of origin point O is described by Eq. (5.9), while Eq. 

(5.10) brings the angular rate of the motorcycle’s body, both in the reference 

frame R. Eq. (5.11) illustrates the distance from the IMU to the origin point, 

considering the reference frame B.  

 

𝑎𝑅 𝑂 = [�̈�𝑟𝑤 �̈�𝑟𝑤 𝑔]𝑇 (5.9) 

𝜔𝑅 𝑚 = [�̇� 0 �̇�]𝑇 (5.10) 

𝑟𝐼𝑀𝑈
𝐵 = [𝑟𝑥 0 −𝑟𝑧]

𝑇 (5.11) 

 

Thus, the acceleration of the IMU in the reference frame R is calculated 

with the previous equations, resulting in Eq. (5.12). Eq. (5.13) brings the result 

to the same acceleration, but in the reference B, where the data is being 

acquired, i.e. 𝑎𝐼𝑀𝑈
𝐵 = [𝑎𝑥 𝑎𝑦 𝑎𝑧]𝑇.  

 

𝑎𝐼𝑀𝑈
𝑅 = 𝑎𝑅 𝑂 + �̇�𝑅 𝑚 × 𝑅𝐵

𝑅  𝑟𝐼𝑀𝑈
𝐵 + 𝜔𝑅 𝑚 × 𝜔𝑅 𝑚 ×  𝑅𝐵

𝑅  𝑟𝐼𝑀𝑈
𝐵   

𝑎𝐼𝑀𝑈
𝑅 = [

�̈�𝑟𝑤
�̈�𝑟𝑤
𝑔
] + [

0 0 −𝑟𝑧𝑠𝜑
𝑟𝑧𝑐𝜑 0 𝑟𝑥
𝑟𝑧𝑠𝜑 0 0

] [

�̈�
0
�̈�
] + [−

−�̇��̇�𝑟𝑧𝑐𝜑 − �̇�
2𝑟𝑥

�̇�2𝑟𝑧𝑠𝜑 − �̇�
2𝑟𝑧𝑠𝜑

�̇�2𝑟𝑧𝑐𝜑 + �̇��̇�𝑟𝑥

] 
(5.12) 

𝑎𝐼𝑀𝑈
𝐵 = 𝑅𝑇𝐵

𝑅 𝑎𝐼𝑀𝑈
𝑅 = 𝑅𝑥

𝑇(𝜑) 𝑎𝐼𝑀𝑈
𝑅  (5.13) 

 

Finally, the acceleration of the motorcycle at the origin point O can be 

calculated through the two previous equations; the result is in Eq. (5.14). 

Considering the vehicle’s longitudinal speed is constant, its acceleration is null 
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(�̈� ≈ 0); the linear acceleration parameters are described as nonlinear functions 

of the accelerometer and gyrometer measurements, Eq. (5.15). 

 

𝑎𝑅 𝑂 = 𝑅𝑥 (𝜑) 𝑎𝐼𝑀𝑈
𝐵 − �̇�𝑅 𝑚 × 𝑅𝐵

𝑅  𝑟𝐼𝑀𝑈
𝐵 − 𝜔𝑅 𝑚 × 𝜔𝑅 𝑚 ×  𝑅𝐵

𝑅  𝑟𝐼𝑀𝑈
𝐵   

[

�̈�𝑟𝑤
�̈�𝑟𝑤
𝑔
] = [

𝑎𝑥
𝑎𝑦𝑐𝜑 − 𝑎𝑧𝑠𝜑
𝑎𝑦𝑠𝜑 + 𝑎𝑧𝑐𝜑

] − [

0 −𝑟𝑧𝑠𝜑
𝑟𝑧𝑐𝜑 𝑟𝑥
𝑟𝑧𝑠𝜑 0

] [
�̈�

�̈�
] − [

−�̇��̇�𝑟𝑧𝑐𝜑 − �̇�
2𝑟𝑥

−�̇�2𝑟𝑧𝑠𝜑 − �̇�
2𝑟𝑧𝑠𝜑

�̇�2𝑟𝑧𝑐𝜑 + �̇��̇�𝑟𝑥

] (5.14) 

�̈� =
−1

𝑟𝑧𝑠𝜑
[𝑎𝑥 + �̇��̇�𝑟𝑧𝑐𝜑 + �̇�

2𝑟𝑥]

�̈� =
1

𝑟𝑧𝑠𝜑
[𝑎𝑦𝑠𝜑 + 𝑎𝑧𝑐𝜑 − 𝑔 − �̇�

2𝑟𝑧𝑐𝜑 − �̇��̇�𝑟𝑥]

�̈�𝑟𝑤 = 𝑎𝑦𝑐𝜑 − 𝑎𝑧𝑠𝜑 − 𝑟𝑧𝑐𝜑�̈� − 𝑟𝑥�̈� + �̇�
2𝑟𝑧𝑠𝜑 + �̇�

2𝑟𝑧𝑠𝜑

 (5.15) 

 

The defined IMU conversion equations provide the motorcycle’s lateral 

linear acceleration and roll and yaw angular speeds; however, the desired state 

variables to the dynamical motorcycle model are the longitudinal and lateral 

position, as well as roll and yaw angles. Thus, it is necessary to manipulate the 

IMU results to obtain the cited parameters. 

Considering the linear and angular speeds and accelerations constant for 

small time intervals, Eq. (5.8) and (5.15) can be discretized through a kinematic 

model, presented in Eq. (5.16), where 𝑎𝑘 represents the system’s acceleration, 

𝑣𝑘 its velocity and 𝑝𝑘, position while 𝑇 is the discretization interval. 

 

𝑣𝑘+1 = 𝑣𝑘 + 𝑎𝑘𝑇

𝑝𝑘+1 = 𝑝𝑘 + 𝑣𝑘𝑇 + 𝑎𝑘𝑇
2/2

 (5.16) 

 

The kinematic model to the IMU fusion data is explicit in Eq. ((5.17), 

considering all linear and angular parameters. The combined gyrometer and 

accelerometer data (Eq. (5.15)) become the input 𝑢 to the model, while the 

gyrometer data (Eq. (5.8)) is a measurement in the vector 𝑧.  

The rear wheel tachometer also provides information on the longitudinal 

speed 𝑣𝑥 and, considering the small yaw angle hypothesis, the lateral speed is 

𝑣𝑦 = 𝑣𝑥𝜓 (Eq. (3.13)). The roll and yaw angles will be obtained via the 

dynamical motorcycle model; Figure 5.3 illustrates the data flow on this 

kinematic Kalman filter. 
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[
 
 
 
 
 
 
 
𝑥𝑟𝑤
�̇�𝑟𝑤
𝑦𝑟𝑤
�̇�𝑟𝑤
𝜑
�̇�
𝜓

�̇� ]
 
 
 
 
 
 
 

𝑘+1

=

[
 
 
 
 
 
 
 
1 𝑇 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 𝑇 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 𝑇 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 𝑇
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑥𝑟𝑤
�̇�𝑟𝑤
𝑦𝑟𝑤
�̇�𝑟𝑤
𝜑
�̇�
𝜓

�̇� ]
 
 
 
 
 
 
 

𝑘

+

[
 
 
 
 
 
 
 
 
 
 
0 0 0
0 0 0
𝑇2

2
0 0

𝑇 0 0

0
𝑇2

2
0

0 𝑇 0

0 0
𝑇2

2
0 0 𝑇 ]

 
 
 
 
 
 
 
 
 
 

[

�̈�𝑟𝑤
�̈�

�̈�
] (5.17) 

𝑧 = [

𝐺𝑦𝑟𝑜𝑚𝑒𝑡𝑒𝑟
𝐺𝑦𝑟𝑜𝑚𝑒𝑡𝑒𝑟
𝑇𝑎𝑐ℎ𝑜𝑚𝑒𝑡𝑒𝑟
𝑇𝑎𝑐ℎ𝑜𝑚𝑒𝑡𝑒𝑟 ∗ 𝜓

] = [

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

] 

[
 
 
 
 
 
 
 
𝑥𝑟𝑤
�̇�𝑟𝑤
𝑦𝑟𝑤
�̇�𝑟𝑤
𝜑
�̇�
𝜓

�̇� ]
 
 
 
 
 
 
 

𝑘

 (5.18) 

 

 

Figure 5.3 – Kinematic Kalman filter schematic. 

Once the IMU data has been adjusted to the desired motorcycle state 

variables, it is possible to use the dynamical model to estimate the vehicle 

position. The kinematic filter provides the longitudinal velocity, used to build the 

continuous model, which is then discretized in the next step and the input 

torque 𝑇𝛿 is given by the control strategy. The potentiometer yields the steer 

angle at the handlebar, which is concatenate with the kinematic filter estimated 

variables to form the measurements vector (Eq. (5.19)); Figure 5.4 illustrates 

this process. 
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𝑧 =

[
 
 
 
 
𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑓𝑖𝑙𝑡𝑒𝑟
𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑓𝑖𝑙𝑡𝑒𝑟
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟
𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑓𝑖𝑙𝑡𝑒𝑟
𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑓𝑖𝑙𝑡𝑒𝑟]

 
 
 
 

=

[
 
 
 
 
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 

 

[
 
 
 
 
 
�̇�

�̇�
𝜑
𝛿
𝜓
𝑦𝑟𝑤]

 
 
 
 
 

𝑘

 (5.19) 

 

 

Figure 5.4 – Dynamical filter schematic. 

To obtain the final motorcycle state, the kinematic and dynamical filters 

are concatenated (Figure 5.5). First, the noisy measurements from 

accelerometer, gyrometer and tachometer are fused and filtered by the IMU 

conversion filter, which provides the motorcycle’s longitudinal speed, lateral 

position, roll angular rate and position and yaw angle. Then, this output is used 

as measured data by the dynamical filter, with the addition of the 

potentiometer’s measurements and the steer torque input, given by the control 

algorithm. The output from the second filter is the vehicle’s full state: the yaw 

angle information is fed back to the kinematic filter while the full state is used as 

input by the controller, resulting in the steer torque, closing the loop. 

 

 

Figure 5.5 – Concatenated Kalman filters schematic. 
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5.2.2  Results 

In order to verify the validity of the proposed sensor fusion filter, the path 

preview simulation presented on the previous chapter was reproduced, with the 

double lane change and slalom maneuvers at three different speeds (5, 10 and 

15 m/s). The gyrometer data was generated using the relation explicit in Eq. 

(5.7), while the accelerometer measurements were fabricated via Eq. (5.14); the 

torque input was the same as the foreseen by the control algorithm while the 

tachometer and potentiometer data were assumed as the longitudinal speed 

and steer angle simulation results with white noise. The sampling interval was 

0.05 second and Figure 5.6 illustrates a generated set of sensors data for the 

double lane change maneuver at 15 m/s. 

 

 

 

Figure 5.6 – Generated noisy data. 
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The initial estimated state variable (𝑥𝑘) was considered null on both filters, 

as well as the initial estimated error covariance matrix (�̂�𝑘); all variable errors 

were considered independent, i.e. the process covariance matrix Q and the 

state covariance matrix R are diagonal matrices. All matrices on both filters 

were considered equal to the identity. 

Figure 5.7 compares the filter performance for three different speeds by 

reproducing the double lane change maneuver, while Figure 5.8 does the same 

to the slalom trajectory. Though the filter is able to maintain the overall shape of 

the target path, a drift phenomenon is clear on both simulations; since the 

kinematic filter is an integration over time, this result was expected, due to error 

accumulation. 

 

 

Figure 5.7 – Kalman filter on the double lane change maneuver. 

 

Figure 5.8 – Kalman filter on the slalom maneuver. 
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This chapter presented a sensor fusion strategy to estimate the state 

variables of the dynamical model based on the embedded instrumentation 

system. The chosen approach was the Kalman filter, an algorithm that 

estimates the unknown state variables by combining noisy measurements and 

the expected result based on the state model. 

The instrumentation system consisted of a tachometer, measuring the 

traction motor rotation; a potentiometer, sensing the steering angle, and an 

Inertial Measurement Unit (IMU), providing angular velocities through a 

gyrometer and linear accelerations through an accelerometer. 

The first step for the sensor fusion was to calibrate all sensors; the 

tachometer and potentiometer were characterized in Chapter 2, while the IMU is 

analyzed in Appendix C. An additional step is necessary to correlate the IMU 

measurements to the state variables, since the sensor is positioned at a 

different location than the considered system origin. The sensor and the origin 

are considered as two points connect via a rigid body, with relative rotation and 

conjoined translation. 

The IMU equations provide the motorcycle lateral and linear accelerations 

and roll and yaw angular speeds, which need to be integrated to become the 

considered state variables – longitudinal and lateral position, as well as roll and 

yaw angles. 

The previous  result is then combined with the potentiometer readings and 

torque input calculated from the control algorithm as input data to the Kalman 

filter, using the dynamic model of the motorcycle as a prediction state. 

This concatenated double Kalman filter was tested on the double lane 

change simulations, considering the path preview control strategy, with the IMU 

measurements being simulated via an added white noise to the state variables. 

The estimated position maintained the overall shape of the target path, but 

presented an error accumulation over time – attributed to the considered 

integrations – which could be improved with lateral dynamic equations, instead 

of the considered kinematic relations. 

With the system dynamic model, control strategy and embedded 

instrumentation characterized and combined, the next step is to test this 

complete system. The following chapter details an actuated platform capable of 

imitating the motorcycle’s main dynamical behaviors, in order to act as a risk-

free test bench for the proposed control strategies. 
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6  Actuated platform for motorcycle’s simulation 

On the previous chapters, the mathematical model of the motorcycle 

dynamical behavior was developed; control algorithms to keep the vehicle 

stable and at a certain target path were designed and a filter to merge the data 

from different sensors was elaborated. Since, virtually, all the proposed 

algorithms were effective, the last step is to verify the feasibility and accuracy of 

these methods in the physical small scale system. 

The obvious alternative would be to test the system in an open field, with 

the risk of it capsizing and even being permanent damaged should the control 

system not be properly adjusted. Thus, another strategy is presented in this 

chapter: an actuated platform to simulate the dynamical characteristics of a 

motorcycle, on a risk-free and student friendly environment. 

 

6.1 Hardware in the loop 

Simulators have the ability of reproducing real systems behaviors under 

safe and controlled circumstances; however, a reliable simulator can become 

costly and highly complex. On the other hand, computational models, alone, are 

not capable of predicting every response of the system to the real world. The 

hardware in the loop technique, then, appears as an intermediate solution 

between both approaches. 

The latter technique consists of including some of the studied hardware in 

the computational simulation loop, rather than testing the algorithm performance 

in a purely numeric model. It has the main advantage of avoiding the need to 

replicate the full physical system while adding complexity and realism to the 

simulator.  

A hardware-in-the-loop simulation data flow usually starts at an electrical 

emulation of the system sensors or actuators, which is controlled by the plant 

simulation and read by the embedded system under test. The former 

implements its control algorithm, changing the sensors or actuators signals, 

resulting in different variable values in the plant simulation, closing the feedback 

loop. Briefly, the hardware in the loop simulation interacts real sensors with 

simulated actuators and plants. 
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The proposed actuated platform is a hardware in the loop simulation since 

it uses the linear dynamical model of the motorcycle to determine the roll, yaw 

and lateral position of the vehicle, applies it to the physical system through 

actuators and reads the real-time response of its embedded instrumentation. 

 

6.2  Actuated platform 

The built actuated platform is able to imitate the motorcycle behavior on 

the plane due to three main degrees of freedom: the roll movement, yaw motion 

and lateral displacement. A fourth degree of freedom could be beneficial to the 

simulations, though not applied in this first prototype: the longitudinal 

movement, represented by a treadmill. 

Figure 6.1 brings the SolidWorks model, which guided the dimensions of 

the project so that it would be light enough to use in demonstrations at 

engineering classes while also being visually interesting. The final object is 

represented in Figure 6.2, with the studied motorcycle attached. 

The chosen degrees of freedom allow for the visualization of the 

motorcycle movements while its sensors process the accelerations and angular 

rates imposed to the system. The roll and yaw motions are executed by 

servomotors, whose position control ensure a higher angle accuracy; the first 

motion has a total range of thirty degrees while the second, of eighty degrees, 

which is sufficient to reproduce the considered linear movements of a two-

wheeled vehicle. 

The lateral displacement, on the other hand, is implemented with an 

electric motor along with an encoder, which ratifies the travelled distance and 

ensures the platform’s lateral position. The motor is directly attached to a gear 

connected to a strap, i.e., there is no reduction system. With 2064 steps at each 

motor revolution, connected to a gear of 0.675 cm radius, the precision of the 

system is of 0.0021 cm/step. The total displacement is of 10 cm: the initial 

motorcycle position is at the center of the track and, for safety reasons, the 

maximum course is limited to 4 cm to each side. Additionally, the maximum 

speed of the system, with the motorcycle attached, is of 0.015 m/s. 

All three electric motors are actuated by an Arduino microcontroller, which 

is also responsible for the startup routine – guaranteeing the initial platform 

position, with the roll angle perpendicular to the ground, the yaw angle aligned 

with the X axis and the lateral position at the center of the track – and shutdown 

routine, which reproduces the initial configuration.  
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Figure 6.1 – Actuated platform concept. 

 

Figure 6.2 – Actuated platform device. 

As for the software, a Labview program is the main responsible for 

commanding and integrating the multiple hardware on this simulator. In this first 

prototype, the program reads a Matlab simulation with the linear dynamical 

model of a motorcycle to determine the desired roll and yaw angle as well as 

lateral position; this information is sent to the Arduino board via serial 

communication, which then guarantees the three electrical motors reproduce 

the target behavior. 
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Simultaneously, the Pixhawk controller embedded to the motorcycle is 

responsible for reading sensors data, filtering it and applying control techniques 

as if the vehicle was free to roll on the plane. All this information is, fed back to 

the computer via radio communication and received by the main Labview 

program. Figure 6.3 illustrates the data flow of the system. 

 

 

Figure 6.3 – Data flow on actuated platform. 

The last step of this hardware in the loop simulator is to exhibit in real time 

a virtual representation of the motorcycle movement to the user. The final result 

is illustrated Figure 6.4: a rear view of the motorcycle is at the far right, followed 

by a X-Z view of the motion (or exclusively the roll movement) and a X-Y view 

(a combined yaw and lateral displacement motion); the graphs indicate the 

executed trajectory as sensed by the embedded instrumentation. 

 

 

Figure 6.4 – Real-time Labview interface. 
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6.3 Experiments 

To test the platform, two experiments were performed: the first, intended 

to verify exclusively the roll and yaw motions, was a reproduction of the roll 

control simulation calculated in item 4.5, for the longitudinal speed of 5 m/s. The 

desired roll angle is a sinusoidal function of 0.2 rad amplitude – or 

approximately 11.5 degrees – and the expected yaw angle is determined 

through its kinematic relation to the steer angular speed and position, described 

in Eq. (3.6). The result was a sinusoidal function of 0.7 rad amplitude (40 

degrees), close to the maximum yaw movement physically allowed by the 

platform. The lateral displacement for this movement had larger amplitude than 

the platform track and was therefore disregarded. 

Using the relation established on Eq. (5.8) and Eq. (5.15), it is possible to 

calculate the roll and yaw angles based on the gyrometer and accelerometer 

data. The measurements are in Figure 6.5 while the Kalman filter results are in 

Figure 6.6. Even though the lateral acceleration is missing, the sensor fusion 

data was able to approach the expected curve. 

 

 

Figure 6.5 – Roll control measurements from IMU.  
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Figure 6.6 –Simulation versus measurements for roll control. 

On the second test, a new target path was simulated, respecting the 

lateral speed and position boundaries. The simulated trajectory and respective 

angles performance for one of this tests are exhibited in Figure 6.7 and Figure 

6.8, where the motorcycle follow through the complete track with maximum 

lateral speed, while at the highest longitudinal speed (15 m/s). From the 

graphics, it is clear the roll and yaw angles will not be visually observable, since 

they are under one degree (0.018 rad). 

The results measured from the motorcycle’s embedded instrumentation 

are shown in Figure 6.9: as expected, the angular speeds are not measured by 

the sensors, since its small values are in the same magnitude of noises. The 

accelerometer, on the other hand, was not capable of measuring the lateral 

acceleration: analyzing the target path, the maximum lateral acceleration is  

0.03 m/s², while the minimum detectable acceleration from the sensors is        

0.6 m/s². Thus, on the present conditions, the maximum speed of the platform is 

not measured by the IMU. 
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Figure 6.7 – Trajectory and torque on path tracking simulation for 

platform. 

 

Figure 6.8 – Angular speeds and positions on path tracking simulation for 

platform. 
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Figure 6.9 – Path tracking measurements from IMU. 

This chapter presented an actuated platform, designed to test control 

algorithms for the autonomous motorcycle in a risk-free environment. The 

platform has three degrees of freedom, being able to reproduce roll and yaw 

movements, as well as lateral displacement. All movements are actuated by 

electric motors, with the angular motions being operated by servomotors while 

the lateral displacement is actuated by a DC motor. 

This hardware-in-the-loop simulator integrates dynamic simulation 

(performed previously with Matlab) with real-time motion. A Labview program is 

responsible for integrating the simulation, sending the signals to the electric 

motors (via Arduino) and the data obtained by the instrumentation system, 

embedded on the motorcycle. 

Experimental results with the roll and yaw movements prove the 

apparatus is capable of reproducing this dynamic behavior of two-wheeled 

vehicles. However, the lateral speed and displacement provided by the 

simulator was smaller than the expected by the dynamic model and could be 

improved in a next prototype, to reproduce more realistic movements. 
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7 Conclusions 

This work has presented a linear dynamic model of a two-wheeled 

vehicle. First, the geometric and inertial properties of a small scale electric 

motorcycle have been determined through a computational model and verified 

with an experiment; since the centers of mass position were equivalent, the 

numeric model was deemed representative of the studied object. 

Then, the electric propulsion and steer systems were characterized: for 

the first motor, a relation between input signal and final rear wheel longitudinal 

speed was determined, based on the measurements of a tachometer connected 

to the motor’s electric phases; the second system yielded a function between 

input signal and resulting steer angle, measured by a potentiometer embedded 

to the handlebar. Both relations are fundamental to the motorcycle dynamical 

model, playing a vital role to the vehicle stability and the control strategies. 

Next, the unmanned single-track vehicle is analyzed, to verify the 

influence of design parameters and longitudinal speed to the vehicle self-

stability. Unlike normal sized bicycles studied by Meijaard, the chosen electric 

motorcycle does not present a self-stable velocity range, which is attributed to 

its singular design, with a heavier rear wheel. 

To solve the motorcycle stability problem and to guarantee a path 

trajectory, five control strategies were numerically analyzed. The first two 

focused exclusively on keeping the vehicle upright, without any considerations 

to the trajectory executed; one of the models simulated a more plausible 

environment by not considering all state variables directly measured by 

sensors. Both strategies were able to maintain the roll angle of the motorcycle 

under 15 degrees, respecting the small angle hypothesis of the considered 

linear model. 

The remaining three control strategies focused on following a target path 

while also keeping the motorcycle stable. The best performance came from the 

preview path controller, in which the error of future positions is considered in the 

feedback loop. This strategy approaches a human behavior, unlike the other 

two algorithms, which passively responded to the difference between actual and 

desired positions. 
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Once the control strategy to the autonomous motorcycle has been 

adjusted, it is necessary to implement it on the embedded instrumentation 

system. Since not all state variables are directly measured by sensors, and 

some sensors provide redundant data, it is necessary to apply a sensor fusion 

strategy. The chosen method was the classic Kalman filter approach, capable of 

attenuating noises and estimating parameters according to a given model. The 

numerical result was satisfactory, but with an expected drift due to the lack of 

position sensors; this estimate could be improved with dynamic equations for 

the lateral movement, in lieu of the kinematic relations used in this work. 

At last, an actuated platform was built to test the control and sensor fusion 

strategies on a risk-free environment. Following the hardware in the loop 

simulation approach, the project is able to reproduce roll, yaw and small lateral 

displacements with the motorcycle. Though the prototype can benefit from 

upgrades, its performance was enough to visually demonstrate the most 

characteristic motions of single-track vehicles. 

 

7.1 Main contributions 

The dynamic modelling of two-wheeled vehicles has intrigued scientists 

since the nineteenth century, with the Whipple model, having gained greater 

repercussion since the seventies with the increase of ecological consciousness 

and the search for alternative transports. Thus, it was not the scope of this work 

to develop a new multibody model for motorcycles; the contribution of this thesis 

is to apply this widespread knowledge in a small scale system and verify its 

representativeness on this type of vehicle. 

The use of model building technology is noteworthy, as previous works 

studied ridable bicycles or motorcycles; the small scale electric motorcycle 

analyzed in this work can be equated to conventional two-wheeled vehicles and 

the developed control strategies resemble the techniques applied to the former.  

Additionally, the pieces of equipment developed to characterize the scale 

system – namely, the center of mass measurer, IMU measurer and 

dynamometer – also use model building technology and are interesting study 

objects for engineering teaching. Previous authors reinforced the importance of 

using familiar systems as study objects to engage students’ curiosity; this work 

contributed with three scale low-cost equipment, which are easily manipulated 

by different levels students and could be reused in other projects. 
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Still focusing on using this thesis as an educational object, the control 

strategies developed by this work present an increasing complexity, in order to 

engage students. Regarding the stability control, previous works have studied 

linear control approaches such as proportional-integration-derivative feedback, 

though not with the full state feedback, as developed by this thesis. This work 

also contributed with the use of a minimum-order observer to estimate the 

variables not directly measured by sensors. 

As for the trajectory control strategies, this work contributed to the full 

state feedback control by aiming to guarantee the same dynamic behavior 

independently of the speed, with the same desired eigenvalues to the pole 

placement technique. Another addition to the literature is the linear quadratic 

regulator applied to the linear model using exclusively the steering torque input. 

The sensor fusion strategy based on the use of low cost inertial 

measurement units brings economic advantages in the instrumentation costs 

and innovation. This work contributed to the study of the use of Kalman filters 

with an accelerometer and gyrometer to additionally obtain the motorcycle 

position in the plane, without the aid of supplementary devices such as GPS, 

computer vision or external locators. 

Finally, this work developed a hardware-in-the-loop simulator; the scale 

actuated platform, besides aiding to visually verify the control and sensor fusion 

strategies implemented, may also serve as a teaching object to several 

undergraduate and graduate students, in the Mechanical and Control and 

Automation fields. The experimental bench is complex enough to allow three 

degrees of freedom motions, which can represent several vehicles, such as 

cars, bicycles or ships, while its graphic and real visualization simplifies to the 

students the dynamics happening in the background. 

 

7.2 Future works 

In order to enhance the linear model used in this work, it would be 

interesting to identify the behavior of the motorcycle tire, in order to add the 

drag motion between wheels in the predictions of the dynamic model. With this 

information, the model developed on Speranza Neto, M., Assad, M. M., 

Medeiros, V.S (2017) could be applied to the studied small scale motorcycle. 

This test would also require new experimental benches, such as a platform to 

identify the wheels characteristics, which can evolve to a test rig to analyze the 

gyroscopic effect on single-track vehicles. 
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Similarity tests with real motorcycles or bicycles could also benefit the 

work, ensuring that the control strategies developed for the small scale system 

would also be successful in real equipment, if a known proportion between the 

two systems is observed. The opposite would also be true, in the sense that 

known parameters of real motorcycles could be applied on the small scale 

system without the need for further tests and experiments. 

The control strategies analysis could be expanded to a nonlinear model, 

in order to account for more interesting phenomena, such as tire slippage or 

lateral dynamics. A feedback linearization technique could be used to transform 

the nonlinear system into an equivalent linear system and then utilize the 

proposed control strategies; otherwise, a gain scheduling approach could apply 

linear controllers to different operating points of the system. 

The sensor fusion technique with inertial units to identify the plane 

position was not observed in other works in the area, which opens space for 

new analyzes. The system drift should be investigated and attenuated by other 

low cost solutions, keeping in mind the reduced dimensions of the system. A 

nonlinear approach to the problem could also be considered, such as an 

extended or unscented Kalman filter. 

Lastly, the actuated platform could benefit from two main improvements: a 

larger lateral displacement course and a real time interaction between the 

simulation plant and the physical sensors. At the moment, the numerical 

simulation is done offline: Matlab calculates the expected motions by the 

motorcycle, which is then reproduced by the test rig, and checked with the 

instrumentation system. A larger track could allow more sudden and realistic 

movements. 

 

7.3 Thesis publications 

During the development of this work, four conference papers were 

published. With the financial support of Conselho Nacional de Desenvolvimento 

Científico e Tecnológico (CNPq), a paper was presented in the international 

conference Diname, held in São Sebastião, Brazil. 

ASSAD, M. M.; SPERANZA NETO, M. Small Scale Motorcycle as 

Educational and Research Engineering Tool. In 11th International 

Technology, Education and Development Conference, pp. 4656-4665, Valencia, 

Spain, 2017. 
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ASSAD, M. M.; SPERANZA NETO, M.; MEGGIOLARO, M. A. Analysis 

of control strategies for autonomous motorcycles stabilization and 

trajectories tracking. In XVII International Symposium on Dynamic Problems 

of Mechanics, São Paulo, Brazil, 2017. 

SPERANZA NETO, M.; ALBUQUERQUE, A. N.; ASSAD, M. M. Small 

Scale Mechatronics Devices as Educational and Research Engineering 

Tools. . In 11th Symposium on Advances in Control Education, Volume 49, 

Number 6, pp. 248-255, Bratislava, Slovakia, 2016. 

SPERANZA NETO, M.; ASSAD, M. M.; MEDEIROS, V.S. Bicycles and 

motorcycles as an educational object for modeling, analysis and 

simulation of stability, speed, suspensions, attitude and trajectory control. 

In 24th International Congress of Mechanical Engineering, Curitiba, Brazil, 2017. 

Another conference paper has been developed besides the work of the 

thesis, together with other two graduate students. 

COSTA, M. S. M.; MEGGIOLARO, M. A.; SPERANZA NETO, M., 

Albuquerque, A. N.; ASSAD, M. M. Performance evaluation of a sensor 

fusion algorithm for attitude estimation using commercial IMU and a scale 

Stewart platform. In 23rd International Congress of Mechanical Engineering, 

Rio de Janeiro, Brazil, 2015. 

Lastly, the following journal paper has been accepted by the ABCM 

Series. 

ASSAD, M. M.; SPERANZA NETO, M.; MEGGIOLARO, M. A. Analysis 

of control strategies for autonomous motorcycles stabilization and 

trajectories tracking. In ABCM Series on Mechanical Sciences and 

Engineering - Proceedings of DINAME 2017, Springer, 2017. 
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Appendix A.  Coefficients of the linearized two-
wheeled model equations 

The multibody model (Meijaard, 2007) is initially designed by obtaining the 

front and rear frames center of mass and inertias in respect to the chosen origin 

– the rear wheel and floor point contact, represented by O in Figure 3.1. 

Considering a particle system, 𝑃𝑖, 𝑖 = 1, … , 𝑛, each with 𝑚𝑖 mass and located 

with coordinates 𝑟𝑖, the global center of mass is defined as Eq. (A.1). 

 

𝑅 =
1

∑ 𝑚𝑖
𝑛
𝑖=1

∑𝑚𝑖𝑟𝑖

𝑛

𝑖=1

 (A.1) 

 

Thus, the front frame center of mass is a combination of the front wheel 

and steering system’s centers of mass and the rear frame combines the main 

body and rear wheel. Eq. (A.2) to (A.4) bring, respectively, the front frame 

(subscript 𝑓𝑓), rear frame (subscript 𝑟𝑓) and motorcycle (subscript 𝑡) resulting 

mass and center of mass position on axis x and z. 

 

    𝑚𝑓𝑓 = 𝑚𝑠 +𝑚𝑓𝑤        𝑥𝑓𝑓 =
𝑚𝑠𝑥𝑠 +𝑤𝑚𝑓𝑤

𝑚𝑓𝑓
     𝑧𝑓𝑓 =

𝑚𝑠𝑧𝑠 −𝑚𝑓𝑤𝑟𝑓𝑤

𝑚𝑓𝑓
 (A.2) 

    𝑚𝑟𝑓 = 𝑚𝑟𝑤 +𝑚𝑚       𝑥𝑟𝑓 =
𝑚𝑚𝑥𝑚
𝑚𝑟𝑓

                   𝑧𝑟𝑓 =
𝑚𝑚𝑧𝑚 −𝑚𝑟𝑤𝑟𝑟𝑤

𝑚𝑟𝑓
 (A.3) 

    𝑚𝑡 = 𝑚𝑟𝑓 +𝑚𝑓𝑓      𝑥𝑡 =
𝑚𝑟𝑓𝑥𝑟𝑓 +𝑚𝑓𝑓𝑥𝑓𝑓

𝑚𝑡
       𝑧𝑡 =

𝑚𝑟𝑓𝑧𝑟𝑓 +𝑚𝑓𝑓𝑧𝑓𝑓

𝑚𝑡
 (A.4) 

 

The moments and products of inertia of a multibody system can be 

redefined at the same reference point by the parallel axis theorem. Being 𝐼𝑖𝑗 the 

inertial tensor calculated in the center of mass of a body with mass 𝑀, a new 

inertia tensor 𝐽𝑖𝑗, displaced from its origin by a vector 𝑅, is calculated in Eq. 

(A.5). 
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𝐽𝑖𝑗 = 𝐼𝑖𝑗 + 𝑀 (𝑅
2𝛽
𝑖𝑗
− 𝑅𝑖𝑅𝑗)  

(A.5) 

𝑅 = 𝑅1�̂� + 𝑅2�̂� + 𝑅3�̂�                    𝛽𝑖𝑗 = {
1  𝑖 = 𝑗
0  𝑖 ≠ 𝑗

 

 

The moments of inertia and inertial products of the rear and front frames 

should be calculated in respect to their respective centers of mass – (𝑥𝑟𝑓, 𝑧𝑟𝑓) 

and (𝑥𝑓𝑓 , 𝑧𝑓𝑓). Thus, it is necessary to move the inertia tensors of the four 

bodies to those two reference points, as explicit by the previous equation. Eq. 

(A.6) to (A.8) bring the results to the front frame in respect to the x (subscript 

xx), z (subscript zz) and combined axis (subscript xz), while Eq. (A.9) to (A.11), 

to the rear frame. 

 

𝐽𝑓𝑓𝑥𝑥 = 𝐽𝑠𝑥𝑥 +𝑚𝑠(𝑧𝑠 − 𝑧𝑓𝑓)
2
+ 𝐽𝑓𝑤𝑥𝑥 +𝑚𝑓𝑤(−𝑟𝑓𝑤 − 𝑧𝑓𝑓)

2

= 𝐽𝑠𝑥𝑥 +𝑚𝑠(𝑧𝑠 − 𝑧𝑓𝑓)
2
+ 𝐽𝑓𝑤𝑥𝑥 +𝑚𝑓𝑤(𝑟𝑓𝑤 + 𝑧𝑓𝑓)

2  (A.6) 

𝐽𝑓𝑓𝑧𝑧    = 𝐽𝑠𝑧𝑧 +𝑚𝑠(𝑥𝑠 − 𝑥𝑓𝑓)
2
+ 𝐽𝑓𝑤𝑧𝑧 +𝑚𝑓𝑤(𝑤 − 𝑥𝑓𝑓)

2
 (A.7) 

𝐽𝑓𝑓𝑥𝑧
= 𝐽𝑠𝑥𝑧

−𝑚𝑠(𝑥𝑠 − 𝑥𝑓𝑓)(𝑧𝑠 − 𝑧𝑓𝑓) − 𝑚𝑓𝑤(𝑤 − 𝑥𝑓𝑓)(−𝑟𝑓𝑤 − 𝑧𝑓𝑓)

= 𝐽𝑠𝑥𝑧
−𝑚𝑠(𝑥𝑠 − 𝑥𝑓𝑓)(𝑧𝑠 − 𝑧𝑓𝑓) + 𝑚𝑓𝑤(𝑤 − 𝑥𝑓𝑓)(𝑟𝑓𝑤 + 𝑧𝑓𝑓)

 (A.8) 

𝐽𝑟𝑓𝑥𝑥
= 𝐽𝑚𝑥𝑥

+ 𝑚𝑚(𝑧𝑚 − 𝑧𝑟𝑓)
2
+ 𝐽𝑟𝑤𝑥𝑥

+𝑚𝑟𝑤(−𝑟𝑟𝑤 − 𝑧𝑟𝑓 )
2

= 𝐽𝑚𝑥𝑥
+ 𝑚𝑚(𝑧𝑚 − 𝑧𝑟𝑓)

2
+ 𝐽𝑟𝑤𝑥𝑥

+𝑚𝑟𝑤(𝑟𝑟𝑤 + 𝑧𝑟𝑓 )
2

 (A.9) 

𝐽𝑟𝑓𝑧𝑧
= 𝐽𝑚𝑧𝑧 + 𝑚𝑚(𝑥𝑚 − 𝑥𝑟𝑓)

2
+ 𝐽𝑟𝑤𝑧𝑧

+ 𝑚𝑟𝑤(0 − 𝑥𝑟𝑓)
2

= 𝐽𝑚𝑧𝑧 + 𝑚𝑚(𝑥𝑚 − 𝑥𝑟𝑓)
2
+ 𝐽𝑟𝑤𝑧𝑧

+ 𝑚𝑟𝑤𝑥𝑟𝑓
2

 (A.10) 

𝐽𝑟𝑓𝑥𝑧
= 𝐽𝑚𝑥𝑧

− 𝑚𝑚(𝑥𝑚 − 𝑥𝑟𝑓)(𝑧𝑚 − 𝑧𝑟𝑓) −𝑚𝑟𝑤(0 − 𝑥𝑟𝑓)(−𝑟𝑟𝑤 − 𝑧𝑟𝑓)

= 𝐽𝑚𝑥𝑧
− 𝑚𝑚(𝑥𝑚 − 𝑥𝑟𝑓)(𝑧𝑚 − 𝑧𝑟𝑓) −𝑚𝑟𝑤𝑥𝑟𝑓(𝑟𝑟𝑤 + 𝑧𝑟𝑓)

 (A.11) 

 

Finally, using the origin point O as reference to the whole system, the 

previous moments of inertia and inertial products should be once again 

displaced and the final result regarding the global axis x and z are explicit on 

Eq. (A.12) to (A.14). 

    𝐽𝑥𝑥 = 𝐽𝑟𝑓𝑥𝑥 +𝑚𝑟𝑓𝑧𝑟𝑓
2 + 𝐽𝑓𝑓𝑥𝑥 +𝑚𝑓𝑓𝑧𝑓𝑓

2  (A.12) 

    𝐽𝑧𝑧 = 𝐽𝑟𝑓𝑧𝑧 +𝑚𝑟𝑓𝑥𝑟𝑓
2 + 𝐽𝑓𝑓𝑧𝑧 +𝑚𝑓𝑓𝑥𝑓𝑓

2  (A.13) 

    𝐽𝑥𝑧 = 𝐽𝑟𝑓𝑥𝑧 −𝑚𝑟𝑓𝑥𝑟𝑓𝑧𝑟𝑓 + 𝐽𝑓𝑓𝑥𝑧 −𝑚𝑓𝑓𝑥𝑓𝑓𝑧𝑓𝑓 (A.14) 
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A variable that constantly appears throughout the model is the 

perpendicular distance u from the front frame center of mass to the steering 

axis, as illustrated in Figure A.1 and calculated in Eq. (A.15).  

 

  |𝑧𝑓𝑓| = 𝑢 sin(𝜖)⁄ + 𝑤 − 𝑥𝑓𝑓 + 𝑡 tan(𝜖)⁄   

   𝑢 = (𝑥𝑓𝑓 −𝑤 − 𝑡) cos(𝜖) + |𝑧𝑓𝑓| sin(𝜖) (A.15) 

 

 

Figure A.1 – Perpendicular distance u (Sharp ,1971). 

Additionally, the front frame needs three extra inertia variables: the 

moment of inertia in respect to the steering axis and the inertia products relative 

to the points at which the steering axis (subscript 𝜖) intercepts the global axes x 

and z. The inertia products provide torque information on one axis due to the 

angular acceleration of another, i.e., the gyroscopic effect. These new variables 

are described in Eq. (A.16) to (A.18) and Figure A.2 illustrates the steering axis. 

 

    𝐽𝜖𝜖 = 𝑚𝑓𝑓𝑢
2 + 𝐽𝑓𝑓𝑥𝑥 sin(𝜖)

2 + 2𝐽𝑓𝑓𝑥𝑧 sin(𝜖) cos(𝜖) + 𝐽𝑓𝑓𝑧𝑧 cos(𝜖)
2 (A.16) 

   𝐽𝜖𝑥 = −𝑚𝑓𝑓 𝑢 𝑧𝑓𝑓 + 𝐽𝑓𝑓𝑥𝑥  sin(𝜖) + 𝐽𝑓𝑓𝑥𝑧 cos(𝜖) (A.17) 

    𝐽𝜖𝑧 = 𝑚𝑓𝑓 𝑢 𝑥𝑓𝑓 + 𝐽𝑓𝑓𝑥𝑧sin(𝜖) + 𝐽𝑓𝑓𝑧𝑧cos (𝜖) (A.18) 
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(a) (b) 

Figure A.2 – Axis in relation to frames: (a) Global axis at rear frame  

(b) Steering axis at front frame (Sharp ,1971). 

The last geometric variable to be defined is the ratio between the 

mechanical trail and the front wheel basis, that is, the perpendicular distance 

that the front wheel contact point is behind the steering axis, in Eq. (A.19). 

 

𝑓 = 𝑡 cos(𝜖)/𝑤 (A.19) 

 

Finally, the angular momentum of a body (Eq. (A.20)) can be defined by 

its linear speed and the ratio 𝑆 between its moment of inertia and angular radius 

of rotation. Therefore, the rear and front wheels angular momenta - 𝑆𝑟 and 𝑆𝑓 – 

with respect to the 𝑦 axis and its sum (𝑆𝑡) represent the gyrostatic effect 

coefficients, as described by Eq. (A.21). At last, Eq. (A.22) brings a frequently 

appearing static inertia term. 

 

𝐿 = 𝐽𝜔 = 𝐽 (𝑉 𝑟⁄ ) = 𝑆𝑉 (A.20) 

𝑆𝑓 = 𝐽𝑓𝑤𝑦𝑦
𝑟𝑓𝑤⁄    𝑆𝑟 = 𝐽𝑟𝑤𝑦𝑦 𝑟𝑟𝑤⁄  𝑆𝑡 = 𝑆𝑓  + 𝑆𝑟 (A.21) 

𝑆𝑢 = 𝑚𝑓𝑓𝑢 + 𝑚𝑡𝑥𝑡𝑓 (A.22) 
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Appendix B. Traction motor characterization 

An interesting parameter to analyze when characterizing motors is to 

identify the torque applied with the command signal. For this test, it was used a 

dynamometer, built previously by undergraduate students to identify DC motors 

parameters. It has a known inertial load (wood disc) with two diametrically 

opposite magnets coupled with a Hall effect sensor, working as a tachometer 

(Figure B.1). Using a National Instruments data acquisition board, by monitoring 

the number of peaks (or half rotations) within a window of 0.3 seconds it is 

possible to calculate the angular velocity of the disc, in rad/s (Eq. (B.1)). 

 

𝜔(𝑡) = (2𝜋 ∆𝑡⁄ ) × (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑎𝑘𝑠 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑔𝑛𝑒𝑡𝑠⁄ ) (B.1) 

 

 

Figure B.1 –Dynamometer for electric motors. 

The tests consisted of increasing and decreasing the command signal 

with constant amplitude variations, equal to 10%, 20% and 30% of the 

maximum power. Through the experiment, it was noted no speed increase after 

70% of the signal, due to an ESC limitation; the subsequent tests were adjusted 

to ignore this range of command signal. The disc has a mass of 120 g and 

radius of 5 cm - which results in an load of 1.5 10-4 N.m – which is six times 

smaller than the rear wheel moment of inertia in the y axis. The motor torque 

has a linear relation with the disc angular acceleration and inertial load, as 

explicit in Eq. (B.2). 
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𝜏 = 𝐽�̇� (B.2) 

 

 

Figure B.2 –Dynamometer test with 10% step. 

 

Figure B.3 –Dynamometer test with 20% step. 
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Figure B.4 –Dynamometer test with 30% step. 

With this experiment, it was possible to analyze that the maximum step 

between command signals is 30%, since higher amplitudes cause a battery 

overcurrent; additionally, for the same reason, the motor can only be started at 

a maximum of 20%. Finally, the maximum torque for the motor is of 0.07 N.m. 
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Appendix C.  IMU measurer 

To validate the measurements from the inertial measurement unit, it was 

used an IMU measurer, developed by Schuback (2014). The device consists of 

an electrical DC motor that spins a board clockwise, connected to an encoder; 

with different voltage levels, the equipment produces varied angular speeds, 

which results in different centripetal accelerations. Figure C.1 brings the 

device’s concept in SolidWorks and the built result. 

 

  

Figure C.1 – IMU measurer. 

The centripetal acceleration exercised over the IMU has a direct relation 

between the system’s angular speed and the distance to the rotational axis (Eq. 

(C.1)). The angular speed is measured by both the IMU’s gyrometer and the 

incremental encoder, whose pulses are read and interpreted as angular rate by 

an Arduino, which in turn transmits the data to a computer via serial 

communication. The Pixhawk microcontroller saves the IMU data obtained 

during the tests on a SD card for later analysis and also sends the signal via 

serial communication. A Labview routine was responsible for receiving data 

from both devices and providing real-time graphs. 

 

𝑎 = 𝑟𝜔2 (C.1) 
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The first test consisted of applying three different voltage levels to the 

motor (4, 8 and 12V) and analyzing the measurements made by the encoder 

and the IMU. The test was repeated with the IMU spinning at three different 

axis; Figure C.3 to Figure C.7 illustrates the results to, respectively, the x, y and 

z axis in the same direction as the tangential velocity. 

 

  

Figure C.2 – Accelerations with planar position on the x axis. 

 

Figure C.3 – Comparison with encoder measurements, x axis. 
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Figure C.4 – Accelerations with planar position on the y axis. 

 

 

Figure C.5 – Comparison with encoder measurements, y axis. 

DBD
PUC-Rio - Certificação Digital Nº 1321779/CA



Appendix C. IMU measurer 127 

 

Figure C.6 – Accelerations with planar position on the z axis. 

 

 

Figure C.7 – Comparison with encoder measurements, z axis. 
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The second test consisted of repeating the previous one, with an 

additional inclination to the IMU, simulating a constant roll angle to the system 

(Figure C.8). The IMU was fixed with a 15 degrees (0.26 rad) inclination and the 

new relations between centripetal acceleration and angular speed are defined in 

Eq. (C.2) and (C.3). Figure C.10 present the results, considering the x axis 

positive in the direction of the tangential speed, y axis positive in the centripetal 

direction and the z axis, positive in the gravitational direction. 

 

 

Figure C.8 – Inclined IMU position. 

 

𝑎𝑐 = 𝑟𝜔
2 = 𝑎1 cos(𝛽) − 𝑎2 sin(𝛽) (C.2) 

𝜔 = 𝜔1 sin(𝛽) + 𝜔2 cos(𝛽) (C.3) 

 

 

Figure C.9 – Accelerations with leaning position on the x axis. 
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Figure C.10 – Comparison with encoder measurements, leaning position 

on the x axis. 
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Appendix D. Programs 

The following programs were used during this thesis and can be obtained 

in the attached CD. The Matlab version used was R2015a; the Labview license 

was 2013; the Arduino ide was the version 1.6.9 and the Pixhawk firmware was 

version 1.4. 

 

Chapter 2 

Matlab 

Center_of_mass.m 

TractionSystem_Dynamometer.m 

TractionSystem_Embedded.m/ calcula_w.m / dvx_dt.slx 

SteeringSystem.m/ steering_simulation.slx 

 

Labview 

Arduino_serial.vi 

Main_Motor_Moto.vi 

Matlab_Plot.vi 

Pwm.vi 

Px4_Start.vi/ Px4_Stop.vi 

 

Arduino 

Read_Hall_RPM_Sensor.ino 

 

Chapter 3 

Model_analysis.m 

 

Chapter 4 

Control_main.m 

Error_prediction.m/ error_prediction.slx 

LQR_feedback.m/ lqr_feedback.slx 

Observer_feedback.m/ observer_feedback.slx 

Output_feedback.m/ output_feedback.slx 
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Path_comparison.m 

Path_preview.m/ path_preview.slx 

Roll_review.m/ roll_preview.slx 

State_feedback.m/ state_feedback.slx 

 

Chapter 5 

Filter_part1.m 

Filter_part2.m 

Kalman_loop.m 

Motorcycle_IMU.m 

Sensor_AccGiro.m 

Simulation_with_WhiteNoise.m 

 

Chapter 6 

Matlab 

Read_Labview.m 

 

Labview 

Arduino_Read.vi 

Arduino_Send.vi 

Arduino_Write.vi 

Draw_bike.vi 

PlataformaAtuada_Main.vi 

Px4_Read.vi / Px4_Start.vi/ Px4_Stop.vi 

Simulacao_Teste2.txt 

 

Arduino 

Arduino_Plataforma_Atuada.ino 

 

Pixhawk 

rc.txt 

arduino_publisher.c 

kalman_orientation.c/ kalman_orientation.h 

kalman_publisher.c 

matrix_manipulation.c/ matrix_manipulation.h 

motorcycle.c 

motorcycle_parameter.c/ motorcycle_parameter.h 
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