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Abstract

Medeiros, Vivian Suzano; Meggiolaro, Marco Antonio (Advisor).
Trajectory Optimization for Hybrid Wheeled-Legged Ro-
bots in Challenging Terrain. Rio de Janeiro, 2020. 135p. Tese
de Doutorado – Departamento de Engenharia Mecânica, Pontifícia
Universidade Católica do Rio de Janeiro.

Wheeled-legged robots are an attractive solution for versatile locomotion
in challenging terrain. They combine the speed and efficiency of wheels with
the ability of legs to traverse challenging terrain. In general, the challenges
with wheeled-legged locomotion involve trajectory generation and motion con-
trol for trajectory tracking. This thesis focuses in particular on the trajectory
optimization task for wheeled-legged robots navigating in challenging terrain.
For this, a motion planning framework is proposed that optimizes over the
robot’s base position and orientation, and the wheels’ positions and contact
forces in a single planning problem, taking into account the terrain information
and the robot dynamics. The robot is modeled as a single rigid-body, which
allows to plan complex motions for long time horizons and still keep a low
computational complexity to solve the optimization quickly. The knowledge of
the terrain map allows the optimizer to generate feasible motions for obstacle
negotiation in a dynamic manner, at higher speeds. Such motions cannot be
discovered without taking into account the terrain information. Two different
formulations allow for either purely driving motions, where obstacle negotia-
tion is enabled by the legs, or hybrid driving-walking motions, which are able
to overcome discontinuities in the terrain profile. The optimization is formu-
lated as a Nonlinear Programming Problem (NLP) and the reference motions
are tracked by a hierarchical whole-body controller that computes the torque
actuation commands for the robot. The trajectories are verified on the qua-
drupedal robot ANYmal equipped with non-steerable torque-controlled wheels
in simulations and experimental tests. The proposed trajectory optimization
framework enables wheeled-legged robots to navigate over challenging terrain,
e.g., steps, slopes, stairs, while negotiating these obstacles with dynamic mo-
tions.

Keywords
Wheeled-legged robots; Challenging terrain; Motion planning; Optimal

control; Trajectory optimization; Hybrid locomotion.
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Resumo

Medeiros, Vivian Suzano; Meggiolaro, Marco Antonio.Otimização
de Trajetórias para Robôs Híbridos com Pernas e Rodas
em Terrenos Acidentados. Rio de Janeiro, 2020. 135p. Tese
de Doutorado – Departamento de Engenharia Mecânica, Pontifícia
Universidade Católica do Rio de Janeiro.

Robôs híbridos equipados com pernas e rodas são uma solução promissora
para uma locomoção versátil em terrenos acidentados. Eles combinam a
velocidade e a eficiência das rodas com a capacidade das pernas de atravessar
terrenos com obstáculos. Em geral, os desafios em locomoção para robôs
híbridos envolvem planejamento de trajetória e sistemas de controle para o
rastreamento da trajetória planejada. Esta tese se concentra, em particular, na
tarefa de otimização de trajetória para robôs híbridos que navegam em terrenos
acidentados. Para isso, propõe-se um algoritmo de planejamento que otimiza
a posição e a orientação da base do robô e as posições e forças de contato
nas rodas em uma formulação única, levando em consideração as informações
do terreno e a dinâmica do robô. O robô é modelado como um único corpo
rígido com massa e inércia concentrada no centro de massa, o que permite
planejar movimentos complexos por longos horizontes de tempo e ainda
manter uma baixa complexidade computacional para resolver a otimização
de forma mais eficiente. O conhecimento do mapa do terreno permite que a
otimização gere trajetórias para negociação de obstáculos de maneira dinâmica,
em velocidades mais altas. Tais movimentos não podem ser gerados sem levar
em consideração as informações do terreno. Duas formulações diferentes são
apresentadas, uma que permite movimentos somente com as rodas, onde
a negociação de obstáculos é permitida pelas pernas, e outra focada em
movimentos híbridos dando passos e movendo as rodas, capazes de lidar com
descontinuidades no perfil do terreno. A otimização é formulada como um
NLP e as trajetórias obtidas são rastreadas por um controlador hierárquico
que computa os comandos de atuação de torque para as juntas e as rodas do
robô. As trajetórias são verificadas no robô quadrúpede ANYmal equipado
com rodas não esterçáveis controladas por torque, em simulações e testes
experimentais. O algoritmo proposto de otimização de trajetória permite que
robôs com pernas e rodas naveguem por terrenos complexos, contendo, por
exemplo, degraus, declives e escadas, enquanto negociam esses obstáculos com
movimentos dinâmicos.

Palavras-chave
Robôs híbridos; Terreno acidentado; Planejamento de movimento;

Controle ótimo; Otimização de trajetória; Locomoção híbrida.
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1
Introduction

The number of applications for autonomous ground robots has substan-
tially increased in the last 20 years and extensive research has been carried
out with the main objective to enable autonomous mobile robots to be safely
deployed for different applications, such as planetary exploration, industrial
inspection, precision farming, search and rescue tasks and payload delivery.
Mobile robots can withstand harsh conditions, such as extreme temperatures
or high levels of radiation, and they can be sent to perform tasks in places
either inaccessible or too dangerous for humans. In industrial sites, mobile
robots can lower the amount of human intervention required in monitoring
and maintenance, improving safety and saving considerable operating costs.

Several prototype robots have been developed and tested for these appli-
cations in the last few years with promising results. Mobile robots have been
investigated for planetary exploration since the 1997’s NASA Mars Pathfinder
mission, in which the Sojourner rover (Mishkin et al., 1998), depicted in Fig-
ure 1.1(a), was deployed to explore the surface of Mars (Bajracharya et al.,
2008). Now, the new rover Perseverance (NASA Science, 2020), depicted in
Figure 1.1(b), is schedule to be launched to Mars in July 2020.

The Autonomous Robot for Gas and Oil Sites (ARGOS) challenge (Total,
2014) was launched in 2014 to foster the development of autonomous inspection
robots for oil and gas production sites, encouraging the deployment of mobile
robots for monitoring and maintaining of industrial installations. Figure 1.2
shows the robots developed for the challenge. Some of these prototypes
are already being commercialized for this application. Similarly, the U.S.
Defense Advanced Research Projects Agency (DARPA) has launched several
challenges (DARPA, 2015) to advance and accelerate the safe deployment of
robots for diverse scenarios, such as disaster response, search and rescue tasks
and subterranean exploration. Figure 1.3 shows some of the ground robots
developed for the DARPA challenges from 2015 until today.

This large ongoing investment and research in mobile robotics indicates
that the development of ground robots will continue to advance until it reaches
a point where they have sufficient robustness to be autonomously deployed
for most of these scenarios and many other industrial and non-industrial
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applications.

(a) Sojourner rover. (b) Perseverance rover.

Figure 1.1: Rovers for exploration at the surface of Mars.

Figure 1.2: The main robot prototypes that competed in the ARGOS challenge.

Figure 1.3: Different robot designs for the current and past DARPA Challenges.
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Currently, research in mobile robotics presents a number of challenges
in different fields, such as locomotion, perception, localization and navigation.
Most of the applications for mobile robots requires safe navigation in rough and
unstructured terrain, often with obstacles, which represents a great mobility
challenge for the robot. For that reason, this thesis focuses mainly on the
challenges of locomotion in unstructured terrain.

Mobile robots for rough terrain are usually divided in two categories:
legged robots and wheeled robots. Legged robots have excellent mobility
to cope with challenging terrain and are able to overcome large obstacles.
Wheeled robots, on the other hand, exhibit high maneuverability on continuous
terrain, moving faster and more efficiently than legged systems. One attractive
solution is to combine the advantages of both locomotion systems into a
wheeled-legged system, that can cope with challenging environments at higher
speeds (Bruzzone and Quaglia, 2012). Tasks where the execution time is
important would greatly benefit from such systems, such as payload delivery
or search and rescue.

In general, the challenges with wheeled-legged locomotion involve trajec-
tory generation and controlling the robot for efficiently tracking the desired
trajectories, i.e., motion planning and motion control. The motion planning
task involves the formulation and solving of a TO problem, taking into consid-
eration several physical constraints such as stability, dynamics, torque and
speed limitations of the actuators, and slippage constraints. On the other
hand, the motion control framework is responsible for determining the ap-
propriate torques for the legs’ joints and the wheels in order to track the
reference motions. This has been the focus of several previous studies and it
is commonly done with Inverse Dynamics, that computes the joint torques by
solving the Rigid Body Dynamics (RBD) model of the robot for the desired
motion (Righetti et al., 2011).

Several approaches can be considered for developing a motion framework
for wheeled-legged robots depending on certain locomotion conditions, such as
static or dynamic motion, terrain mapping or blind locomotion, proprioceptive
or exteroceptive1 sensing. Considering a static or quasi-static condition, i.e.,
the robot speed is sufficiently low to neglect inertial effects, a purely reactive
controller can be employed for adapting to terrain variations by maintaining
a constant desired CoM pose (position and orientation) or by continuously
adjusting the CoM to achieve a stable configuration according to some stability

1Proprioceptive sensors measure values internal to the robot, such joint positions, motor
speed, wheel load, battery voltage and base orientation (via inertial sensors). Exteroceptive
sensors acquire information from the robot’s environment, such as distance measurements,
light intensity and sound amplitude (Siegwart et al., 2011).
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criteria. In this case, the environment is perceived through proprioceptive
sensing and obstacle negotiation is performed on a static step-by-step basis.
When performing dynamic motions at higher speeds, reactive approaches can
be employed for flat or benign terrain, while obstacle negotiation is enabled
through knowledge of the terrain map, taking into account dynamic effects on
the robot’s center of mass.

In this context, this thesis addresses the trajectory generation problem
for wheeled-legged robots with actuated wheels performing dynamic motions
in challenging terrain, either through purely driving or hybrid driving-stepping
motions. Moreover, we extend the existing control frameworks for such systems
by including the terrain map information into the motion controller.

1.1
Objectives

The main objective of this work is to develop a motion optimization
framework for wheeled-legged robots with actuated wheels that allows the
robot to navigate in challenging and unstructured terrain, e.g., steps, slopes,
stairs, gaps, while negotiating these obstacles with dynamic motions. The
trajectory optimization framework is responsible for generating the 6 degrees
of freedom (DoF) of the robot’s base motion (position and orientation) as well
as the wheels’ positions and contact forces along the trajectory, accounting for
the terrain map and the dynamics of the robot. The robot’s dynamic model is
employed for both motion planning and tracking and no static or quasi-static
condition is assumed which, together with the terrain map, allows for planning
agile motions. This way, given a target position and a desired average velocity,
the motion planner will generate a feasible motion to overcome the mapped
terrain. To take full advantage of the hybrid nature of wheeled-legged robots,
pure driving and hybrid walking-driving motions are considered in different
steps of the research.

While walking locomotion has several advantages in unstructured terrain,
the planning task is harder to solve in comparison to pure wheeled locomotion.
Driving motions are faster, less energy consuming, more stable and there
is no need for a foothold placement strategy or other difficulties associated
with legged locomotion. For this reason, a trajectory optimization framework
is proposed for generating purely driving motions that allows the robot to
overcome challenging obstacles by using the terrain map. This shows that a
lot of challenging scenarios can be surmounted with driving motions since
the presence of the legs allow for negotiating obstacles that would not be
possible with a conventional wheeled robot. The framework is validated
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through simulations and experimental tests using customized obstacles in
several configurations.

Even though driving motions are suitable for several scenarios, they have
some limitations. For discontinuous terrain types, such as small gaps or floating
steps, stepping motions are necessary. Thus, the formulation for purely driving
motions is extended to allow the generation of hybrid walking-driving motions
employing a variety of gaits for discontinuous terrain types. In our work, hybrid
locomotion denotes simultaneous walking and driving, not switching between
them. The formulation is based on a phase-based parametrization proposed
by (Winkler et al., 2018) for legged robots with point feet. The trajectory
optimization framework for hybrid motions is demonstrated in simulations
with discontinuous obstacles, floating steps and gaps. A discussion on its
applicability to the real robot is presented based on the simulation results.

To improve efficiency and integration with real robot, the motion plan-
ning frameworks are all coded in C++ and implemented using Robot Operat-
ing System (ROS).

The verification of the physical feasibility of the motion plans is carried
out in different ways. An initial assessment is made through pure visualization
using MATLAB or RViz2, which is useful to verify whether the motions
are at least visually consistent and there were no major modeling mistakes.
However, there is no actual physical simulation and inconsistent accelerations
or contact forces would not be identified through visual inspection. A more
reliable verification is carried out using a physics-based simulator of the robot
model, such as Gazebo (Koenig and Howard, 2004), accounting for the full rigid
body dynamics of the robot, the torque limits of the actuators and the friction
cone constraints. This ensures that the motion plans are physically correct
and indicate their feasibility for application on the real platform. Finally, the
ultimate validation comes from experimental tests with the actual robot, which
proves that the tracking controller can track the motion plans on a physical
system, regardless of eventual modeling errors from physical approximations
in the simulator and noise from real-world sensor data.

The robotic platform used for the tests is the robot ANYmal (Hutter
et al., 2016), a quadrupedal robot developed by the Robotic Systems Lab,
at ETH Zürich, Switzerland, that it was equipped with actuated torque-
controllable non-steerable wheels (Bjelonic et al., 2019). Figure 1.4 depicts each
of the aforementioned verification tools for the motion plans using ANYmal
with wheels. Even though this work focuses on quadrupedal robots, all of the

2RViz is a 3D visualization tool for ROS that allows creating visualizations of the
simulated robot model.
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approaches presented should be adaptable to robots with more or fewer legs.

Figure 1.4: Different verification methods for the feasibility of the motion plans.
(a) Pure visualization with RViz; (b) Physical simulation with Gazebo; (c)
Experiments on real robot.

1.2
Related Work

Motion planning for quadrupedal robots is an established field and
previous authors have achieved impressive results (Bellicoso et al., 2018;
Winkler et al., 2018; Dai et al., 2014; Kudruss et al., 2015; Wermelinger et
al., 2016). These planners are designed to generate dynamic motions for legged
robots with point feet. However, a similar set of constraints needs to be enforced
for wheeled-legged locomotion, such as friction and kinematic constraints. This
is why some of these previous implementations can be used as reference for
this thesis. In particular, the trajectory optimization framework proposed by
(Winkler et al., 2018) for legged robots, in which the CoM position, orientation,
feet position, contact forces and gait timings are concurrently optimized, based
on a Single Rigid Body Dynamics (SRBD) model of the robot.

On the other hand, in the field of planning for wheeled-legged robots,
most of the previous work focuses on robots performing motions in a purely
reactive fashion, rather than generating optimized trajectories for dynamic
motion. A number of authors have proposed reactive controller frameworks for
wheeled-legged locomotion over uneven terrain. The most common examples
are extra-planetary rovers (Lauria et al., 2002; Iagnemma and Dubowsky, 2004;
Grand et al., 2010; Cordes et al., 2018; Reid et al., 2016), which employ a
purely reactive controller that can adapt to terrain variations by maintaining
a desired base pose. These controllers are typically able to execute statically-
stable3 driving motions at low speeds, where the legs act as a sophisticated
active suspension system.

3Statically stable locomotion requires the moving body to be stable at all times, which
means that motion is not needed for maintaining balance. More specifically, the vertical
projection of the center of gravity of the moving body will be contained within the convex
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In (Iagnemma et al., 2000), a kinematic reconfigurability method for
extra-planetary rovers is developed to enhance their mobility in rough terrains.
It consists of reconfiguring an articulated robot by minimizing a performance
index that takes into account the robot’s stability (Papadopoulos and Rey,
2000) and the displacement of the actuated joints. The results are demon-
strated on the Sample Return Rover (SRR), presented in Figure 1.5(a). A
motion control framework for wheeled robots in rough terrain that optimizes
the torque in each wheel is presented in (Iagnemma and Dubowsky, 2004).
The objective is either to maximize traction or minimize energy consumption,
depending on the level of difficulty of the terrain. For more uneven terrain the
traction is optimized, and for more benign terrain, the control minimizes the
energy consumption. In both cases, a quasi-static condition is assumed and
the wheel-terrain contact angles are estimated using simple on-board sensors.

The PAW robot (Smith et al., 2006), shown in Figure 1.5(b), is a
quadruped robot equipped with four passive springy legs and four actuated
wheels at the end of its legs. The robot is unable to support itself on three
legs, which means that it can only perform jumping or bounding maneuvers,
while step climbing is possible only in a quasi-static manner. In (Turker et
al., 2012), a tailored step-climbing strategy is presented for the PAW robot
using wheel traction optimization and posture reconfiguration, limited to a
quasi-static condition. The step is detected through measurements obtained
from motor encoders and an inertial measurement unit (IMU) on the base.
Experimental results show the robot climbing steps with different heights.

The robot Octopus, introduced in (Lauria et al., 2002), is a wheeled
mobile robot with 8 motorized wheels and a total of 14 joint actuators
(see Figure 1.5(c)). The robot is equipped with tactile wheels that detects
obstacles and allows the robot to adapt its behavior to the terrain. A two-
dimensional static model and a controller are proposed for the robot. The
motion controller optimizes over the wheels and joint’s torques by maximizing
the ratio between friction and normal contact force on each wheel. A static
step-climbing sequence is demonstrated on the real robot.

In (Grand et al., 2004; Grand et al., 2010), a reactive controller for active
posture adaptation to terrain variations is proposed for the hybrid wheeled-
legged robot Hylos (Figure 1.6(a)). The authors present a general kinetostatic
formulation for quasi-static motions of articulated wheeled rovers, and a
decoupled posture and trajectory control strategy based on the differential
kinematic model of the robot. The desired posture of the robot (composed

hull of the body’s points of contact with the ground at all times. It is mainly applicable for
analyzing low-speed motions because it does not consider inertial forces or external impacts.
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Figure 1.5: Articulated wheeled robots: (a) The Sample Return Rover (SRR),
developed by the Jet Propulsion Lab for extra-planetary exploration; (b) The
PAW (Platform for Ambulating Wheels) robot; and (c) The Octopus robot,
developed at EPFL, Lausanne, Switzerland.

of the base height, roll and yaw angles, and the wheels’ positions) is either
pre-defined as a constant pose or optimized to obtain an equal-distribution
of loads between the wheels and maintain stability (Grand et al., 2002). The
approach is validated in experiments with the real robot, moving at a average
speed of 0.08 m/s on a terrain constituted of slopes with various inclines, as
shown in Figure 1.6(b).

Similarly, the motion control system developed in (Wong et al., 2015)
for the MHT robot (Figure 1.6(c)) is also based on a velocity-level closed
loop inverse kinematics controller and presented good experimental results for
stationary posture reconfiguration, but it was not able to cope with uneven
terrain.

Figure 1.6: Articulated wheeled robots: (a) The Hylos robot, developed by
the Institut des Systèmes Intelligents et de Robotique (ISIR) of the Université
Pierre et Marie CURIE, Paris, France; (b) The Hylos robot navigating on
asymmetric inclines; and (c) The MHT (Micro-Hydraulic Toolkit) robot,
developed by the Defense Research and Development Canada Suffield Research
Centre.

In (Jarrault et al., 2011), the authors present an algorithm for obstacle
crossing for the robot Hylos2 that optimizes over the ground reaction forces
and the CoM posture to maximize a friction stability measure. The method was
validated in simulations with the robot. Experimental validation is presented
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further in (Jarrault et al., 2014), that shows the robot crossing a step with
a 60◦ slope, as shown in Figure 1.7. The robot took roughly 70 seconds to
complete the maneuver.

Figure 1.7: On the left, the Hylos2 robot. On the right, the robot crossing a
step with 60◦ slope employing a quasi-static obstacle crossing approach.

In (Reid et al., 2016), an active terrain adaptation algorithm is presented
for the MAMMOTH rover, presented in Figure 1.8(a). A kinematic model of
the robot is used to control its active articulations to maintain a constant
body pose while traversing different terrain obstacles. Instead of using only
proprioceptive data, as the previous papers, the robot uses terrain mapping
data from an RGB-D sensor to enforce contact between the wheel and the
ground. Experimental tests are shown with the rover moving over a bed of
rocks at low speeds, between 0.05 m/s and 0.075 m/s. Another rover with an
active suspension system is introduced in (Cordes et al., 2018), the SherpaTT,
depicted in Figure 1.8(b). It is equipped with a purely reactive control system
for active terrain adaptation. The controller uses force measurements at each
wheel and the base roll-pitch data to compute the positions of the legs and
the center of gravity to maintain permanent wheel-ground contact and optimal
force balancing. Experimental results show the rover negotiating slopes from
9.5◦ to 28◦ at a speed of 0.04 m/s. For both rovers, a quasi-static condition is
assumed.

Other active articulated wheeled robots that employ kinematic reconfig-
urability methods for traversing uneven terrain can be found in (Wettergreen
et al., 2010; Freitas et al., 2010; Inotsume et al., 2013; Jiang et al., 2019). On
the other hand, the wheeled-legged robots presented in (Suzumura and Fuji-
moto, 2012; Giftthaler et al.,2017; Giordano et al., 2009) use a kinematic-based
control algorithm to generate velocity commands for the wheels, but they only
present results for flat terrain navigation and do not consider the terrain in
the planning algorithm.

The work in (Bouton et al., 2016; Bouton et al., 2020) introduces the
robot Complios, that stands on four wheels each linked to the chassis via
a compliant leg, composed of two pivoting segments and antagonistic springs,
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Figure 1.8: Rovers with active suspension: (a) The MAMMOTH rover, de-
veloped by the Australian Centre for Field Robotics (ACFR), University of
Sydney, Australia; (b) The SherpaTT rover, from the University of Bremen,
Germany; (c) The Complios robot, developed by the Université Pierre et Marie
CURIE, Paris, France.

and a series elastic actuation system. The robot is able to spontaneously adapt
its configuration to uneven terrain, while keeping a reactive control on the
load distribution and the platform posture. Experimental results show the
robot driving over different asymmetric terrain shapes at a average speed of
0.1 m/s. In addition, some interesting results have been presented by using
a reinforcement learning technique for obstacle negotiation for same robot
(Bouton et al., 2017). The approach uses external forces measurements on the
wheels to detect an obstacle and the controller is trained to choose from a set
of pre-defined behaviors to escape from the obstruction. However, the learning
framework has only been tested in simulations.

So far, all of the discussed applications focus on driving motions and do
not show any instance of wheel lift-offs. Another approach that has been used
for computing motion plans for wheeled-legged robots is to switch between
walking and driving based on heuristics that rely on the terrain complexity or
on commands received from a human operator.

The wheeled humanoid robot DRC-HUBO+ presented in (Bae et al.,
2016) switches between walking and driving mode by changing its configura-
tion, as shown in Figure 1.9(a). The robot is teleoperated by three different
operators which control the robot by sequencing predefined poses (Zucker et
al., 2015). While in driving mode, the robot is in a crouched position and the
legs are not used for locomotion or stability, which makes the robot unable to
overcome obstacles while driving.

Unlike DRC-HUBO+, the wheeled quadrupedal robot Momaro (Fig-
ure 1.9(b)) is equipped with actuated wheels and doesn’t require a change in
configuration to perform driving motions. (Klamt and Behnke, 2017) presents
a motion planning framework for the Momaro robot which uses a perception
system to map the environment and, based on a path cost, it chooses between
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walking over an obstacle or driving around it. Driving is performed only in
flat terrain, while obstacles are overcome by walking motions. The robot uses
a kinematic controller architecture (Schwarz et al., 2016) and the robot is
shown to overcome stairs and steps at low speed, neglecting dynamic effects
and considering only static stability.

An evolution of Momaro, the robot CENTAURO (Klamt et al., 2018)
presents a similar approach employing a locomotion framework that switches
between stepping or driving. The wheeled-legged robot has four legs ending
in steerable wheels and an anthropomorphic upper body, as shown in Fig-
ure 1.9(c). The driving task is accomplished using joystick teleoperation, while
walking motions are executed by a semi-autonomous controller that provides
a set of pre-defined motions that can be triggered by the operator. Experi-
mental results show the robot overcoming obstacles like stones, steps, gaps
and attempts to overcome stairs with slow static maneuvers. A further re-
search (Laurenzi et al., 2018) presents a motion planner that generates purely
walking motions for the same robot, through the joint optimization of both
the CoM trajectory and the footsteps using a linear Model Predictive Con-
trol (MPC) framework. However, the experiments are limited to walking mo-
tions in flat terrain and the wheels are not used during the motions.

Figure 1.9: Hybrid robots where driving and stepping phase are treated as
separate behaviors: (a) The wheeled humanoid robot DRC-HUBO+ in its two
configurations: walking mode (left) and driving mode (right); (b) The Momaro
robot, developed by the University of Bonn, Germany; (c) The CENTAURO
robot, developed by the Istituto Italiano di Tecnologia (ITT).

Such approaches do not consider solutions where the robot uses its wheels
and legs simultaneously, which limits their ability to overcome obstacles com-
pared to considering the whole-body in a single planning problem. Moreover,
a continuous motion without constant switching between driving and walking
mode would be more efficient.
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On the other hand, the motion planner presented by (Jelavic and Hutter,
2019) solves the whole-body planning problem combining driving and stepping
motions, also allowing for gait optimization. The framework, however, focuses
on generating kinematically feasible motions for wheeled-legged vehicles per-
forming slow maneuvers, which is the case for heavy machines such as walking
excavators. The results are demonstrated with the Menzi Muck M545, shown
in Figure 1.10, but no physical validation is presented.

Figure 1.10: The Menzi Muck excavator, on the left. On the right, simulations
with the excavator overcoming a step-like obstacle using the wheeled legs and
the shovel simultaneously.

As can be seen, most of the previous work focuses on statically stable
locomotion for wheeled-legged robots, where a kinematic approach is often
employed for the motion planning and control. However, several advances have
been recently presented for dynamic motion generation as well.

Dynamic motions in challenging terrain has been demonstrated by the
two-wheeled legged robot Handle from Boston Dynamics (Boston Dynamics,
2019), where the wheels are used for driving over flat terrain and the legs
are used to jump over high obstacles. However, there are no publications
regarding its locomotion framework. The robot Ascento (Klemm et al., 2019)
presents a similar behavior focused on navigation in indoor spaces. However,
a pre-defined jump motion is triggered by the operator and no trajectory
optimization is employed. Both robots are presented in Figure 1.11. Despite
the similar architecture, they have very different dimensions, Handle can stand
up to 198 cm, while Ascento’s height varies from 31 cm to 66 cm.

The work presented in (Geilinger et al., 2018; Geilinger et al., 2020)
shows a new tool, called Skaterbots, that optimizes the mechanical design of
wheeled-legged robots with arbitrary number of legs. Some of the robot designs
are presented in Figure 1.12, both with passive and actuated wheels. The
framework uses a general trajectory optimization framework that optimizes
over several types of motions, such as skating, walking and driving, by solving
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(a) The Handle robot, from
Boston Dynamics.

(b) The Ascento robot, from ETH
Zürich, Switzerland.

Figure 1.11: Two wheeled-legged robots capable of driving and jumping over
obstacles.

an NLP problem. However, it assumes the robot is moving on flat ground and
it does not include any terrain information. Experimental tests are carried out
with different robots moving over flat terrain and in teleoperation mode.

Figure 1.12: Some of the wheeled-legged robots created by the Skaterbots
framework, which are capable to perform different types of motions in flat
terrain.

The quadrupedal robot Robosimian (Satzinger et al., 2014; Hebert et al.,
2015; Satzinger et al., 2015) was developed by JPL (Jet Propulsion Lab, Palo
Alto, California) for the 2015 DARPA Challenge (DARPA, 2015) and it is
presented in Figure 1.13 (on the left). The robot has four identical limbs, each
with seven degrees of freedom. The inverse kinematics for a robot with that
many degrees of freedom proved quite challenging (Satzinger et al., 2015), but
the robot has been shown to perform statically stable walking locomotion over
a set of steps. Recently, a single, passive (unactuated) wheel with no sensing
was mounted at each of the Robosimian’s forearm to transform the robot into
a wheel-legged system, as shown in Figure 1.13 (on the right). A trajectory
optimization framework for the wheeled-legged version of the robot is presented
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in (Bellegarda and Byl, 2019), which generates dynamic hybrid driving-walking
motions taking into account the slippage on the wheels. However, the motions
are specific for systems with passive wheels and are only shown in simulation.
Moreover, the motions are only performed in flat terrain.

Figure 1.13: The legged Robosimian robot in its default position (on the left)
and the robot equipped with passive wheels for skating locomotion (on the
right).

All of these approaches, even though can generate dynamic motions, do
not take into account terrain information and the flat terrain assumption makes
them not very well suited for cases where the terrain contains steps or steep
slopes.

In contrast, a very recent work presented in (Sun et al., 2020) introduces
the quadrupedal wheeled robot Pholus, developed by the National University
of Singapore in cooperation with the IIT, shown in Figure 1.14. It employs a
hierarchical control framework designed to perform hybrid locomotion in un-
even terrain. The motion planning task is divided into two stages: the foot
placement planning and the CoM trajectory optimization, implemented using
an MPC approach and considering terrain height information. A numerical in-
verse kinematics controller is developed for tracking the motions. Experimental
results shows the robot overcoming thin obstacles and steps with statically sta-
ble hybrid motions at low speeds. Dynamic motions, such as bounding, have
only been presented in simulations. In this case, the terrain information is
included, but obstacles are traversed in a non-dynamic manner. In addition,
several aspects of the motions, such as the base height and the foot positions
and velocities, are pre-defined using heuristics based on the terrain map, rather
than being optimized for general situations.

Planning for the foot placement position and the base motion in separate
steps has been employed for both legged (Kajita et al., 2003; Kalakrishnan
et al., 2010; Bellicoso et al., 2018) and wheeled-legged (Bjelonic et al., 2019;
Bjelonic et al., 2020; Sun et al., 2020) robots. In such cases, the feet trajectories
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Figure 1.14: The wheeled-legged robot Pholus, a centaur-like robot capable of
hybrid locomotion.

are computed firstly based on the desired gait, the desired average speed,
and the terrain map, if available. Given the planned foot positions, the
robot’s CoM motion is then optimized to satisfy some dynamic stability
criterion4. For that, the most common approach is based on the Zero-Moment
Point (ZMP)5 (Vukobratović and Borovac, 2004) stability criterion, subject
to kinematic and dynamic constraints. However, the gain in computational
cost with a divided approach can represent limitations in generality and
performance. For instance, the ZMP has a well-known validity limitation: it
can only be applied when all contacts are at a constant height. If the robot
has to place the feet at different heights to cross uneven terrain, the ZMP no
longer has a connection with dynamic stability (Caron et al., 2017). Moreover,
handling uneven terrain and force constraints is more complicated. For such
cases, it might be more appropriate to use an approach that optimizes over the
feet and base motions simultaneously, taking into account the dynamics of the
system and how the contact forces affect the base. A unified approach without
pre-defined restrictions allows the solver to plan for more complex motions.
Moreover, constraints related to friction or unstructured terrains can be easily
included in the formulation.

4The motion of the robot, at a certain state, is considered to be stable if the torque caused
by the ground-reaction forces can prevent the robot from tumbling around any support
boundary (Jia et al., 2018).

5For a flat ground plane, the ZMP is defined as the point on the ground where the
moment induced by the gravito-inertial forces has only a component in the direction of the
plane normal. For dynamic stability, the planned ZMP must always lie within the support
polygon formed by the planned foot placements.
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1.2.1
ANYmal on Wheels

ANYmal (Hutter et al., 2016) is a quadrupedal robot developed by
the Robotic System Lab, at ETH Zürich, Switzerland. Its legs feature three
actuated joints arranged as a successive hip abduction/adduction (HAA), hip
flexion/extension (HFE), and knee flexion/extension (KFE). The joints are
mounted in a way that permits full rotation, which enables a broad range of
motions and allows the robot to climb large obstacles. All the joints are torque
controllable and actuated by series-elastic actuators. In (Bjelonic et al., 2019),
non-steerable torque-controlled wheels were installed at the end of ANYmal’s
legs to allow for hybrid driving and walking locomotion. Figure 1.15 depicts
the configuration of the joints on the robot and the workspace of the legs for
the wheeled version of ANYmal.

Figure 1.15: On the left, the position of the actuated joints on ANYmal’s legs
and, on the right, the blue sphere depicts the reachable workspace of one wheel.

ANYmal with wheels is equipped with several sensors for autonomous
navigation: an IMU, a LIDAR (Light Detection and Ranging) sensor, a depth
camera and a RTK GPS. The locomotion control system of the robot is com-
posed of several modules, including perception, mapping, localization, motion
planning and whole-body control. In addition, a comprehensive simulation en-
vironment based on Gazebo is available for testing new locomotion controllers
for the robot.

Reactive blind locomotion has been implemented for ANYmal with
wheels with successful experimental tests in (Bjelonic et al., 2019) and (Bjelonic
et al., 2020). In (Bjelonic et al., 2019), a motion planning and control frame-
work is developed for dynamic locomotion. Given the gait pattern and the ref-
erence linear and angular velocities for the robot’s base, the reference footholds
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for each leg are locally computed as a function of the measured and desired
velocity of the torso (Bellicoso et al., 2017). Then, the reference trajectories
for the CoM are continuously computed by a ZMP optimization. Experimen-
tal tests were carried out demonstrating slope negotiation and rough terrain
navigation. The robot is shown to execute walking and driving motions, but
not simultaneously, the robot needs to stop and switch to a pure walking mode
to overcome small steps.

Figure 1.16: The ANYmal with wheels negotiating slopes and small steps with
a reactive controller. Reprinted from (Bjelonic et al., 2019).

In contrast, the TO presented in (de Viragh et al., 2019) generates hybrid
walking-driving motions for wheeled-legged robots using a linear formulation of
the ZMP balance criterion. The approach is tested in simulations with ANYmal
equipped with actuated wheels executing several hybrid motions at high speed,
but limited to flat terrain.

The trajectory optimization presented in (Bjelonic et al., 2020) also
allows for hybrid driving-walking motions. The optimization problem is divided
into wheels and base trajectory planning, which allows for online computation
in a MPC fashion. Given the gait pattern and the reference velocities for the
base, the wheels trajectories are computed first, followed by the base TO which
satisfies the ZMP stability criterion. The main difference compared to (Bjelonic
et al., 2019) is the inclusion of a optimizer that generates hybrid trajectories for
the wheels. Experimental tests are carried out with rough terrain navigation
in conditions of bumpy and muddy soil during the DARPA Subterranean
Challenge (see Figure 1.17).

In all simulations and experimental tests with ANYmal on wheels, the
motion plans are tracked by the WBC developed in (Bjelonic et al., 2019)
which is based on a hierarchical optimization framework (Bellicoso et al., 2018).
The WBC is formulated as a set of Quadratic Programming (QP) problems
composed of linear equality and inequality tasks solved in a prioritized order,
presented in Figure 1.18 (priority 1 is the highest). This way, the WBC
computes the torque commands for each actuator while taking into account
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Figure 1.17: The ANYmal with wheels navigating in an underground environ-
ment at the DARPA Subterranean Challenge. Reprinted from (Bjelonic et al.,
2020).

the full rigid body dynamics of the robot and several physical constraints, such
as the nonholonomic rolling constraint introduced by the wheels, the friction
cone, and the actuation torque limits. For details on the implementation of
each task, please refer to (Bjelonic et al., 2019).

Figure 1.18: List of prioritized tasks used in the WBC. Tasks in bold are specific
for wheeled-legged robots. Reprinted from (Bjelonic et al., 2019).

The WBC tracks the reference trajectories, along with the robot state
estimator, at a 400 Hz frequency. ANYmal with wheels features a purely
proprioceptive state estimation system based on fusion of IMU and kinematic
measurements of the actuators, including the wheels.

Although these current approaches presented good experimental results,
the motion planning framework does not take the terrain into account and
uses a flat terrain assumption, which violates the validity of the ZMP model
when moving over non-flat terrain and renders the approach not amenable for
overcoming more challenging terrains, such as steep steps. Indeed, attempts
to overcome steep slopes using blind locomotion were not successful, even in
simulations, as shown in Figure 1.19.

For planning approaches that require a map of the terrain, a robot-
centric elevation map (Fankhauser et al., 2018) can be generated by combining
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Figure 1.19: Attempts to overcome a step-like obstacle with a 65◦ slope and
0.2 m height in simulations with purely reactive controller, performing driving
motions (right) and hybrid motions (left).

the robot’s pose estimation (from Odometry and IMU data) with depth
measurements. The elevation map is handled as a grid map, a 2.5-dimensional
representation of the environment, where each cell in the grid holds a height
value. An example is shown in Figure 1.20 for a step with a linear transition
of 65◦. From the acquired map, a traversability analysis can be performed
based on different terrain characteristics, such as slope, roughness, and step
height (Wermelinger et al., 2016).

Figure 1.20: The 2.5D height map of the terrain generated from stereo camera
data using the ROS package elevation_mapping (Fankhauser et al., 2014).

1.3
Contributions

The main contribution of this thesis with respect to the previous work
is introducing a motion planning framework for wheeled-legged robots capable
of negotiating rough terrain with dynamic motions. On one hand, earlier work
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has presented navigation in challenging terrain, but only at low speeds (quasi-
static conditions), less than 0.15 m/s. On the other hand, other planning
and control algorithms have produced dynamic motions, but employing a
flat terrain assumption. This thesis aims to bridge the gap between dynamic
motions and motions in rough terrain.

The motion planning and control setup presented in this work breaks
the navigation in rough terrain problem into two sub-problems: terrain aware
motion planning and perceptive whole-body control. By adding the offline
planning component, the robot is able to execute faster motions over steep
steps compared to previous approaches. The terrain information is added to the
motion control framework to ensure accurate tracking of the planned motions.

The proposed TO framework for wheeled-legged robots optimizes over
the 6–DoF base motion (position and orientation) as well as the wheels’
positions and contact forces in a single planning problem, accounting for the
terrain map and the robot’s dynamics. This allows the robot to traverse a
variety of challenging terrain, including large steps and drops, with dynamic
motions that could not be generated without taking into account the terrain
information. Since the contact forces are also decision variables, it is possible to
enforce friction constraints and torque limits directly inside the motion planner.
A simplified SRBD model is used in the TO, which allows for computing
trajectories quickly and for a larger time horizon compared to computing plans
with full rigid body dynamics.

Moreover, the approach is general for all terrain types and the robot’s
base is not restricted to a desired height or orientation, which expands the
range of achievable motions, especially for more complex terrains.

This thesis is based on three formulations for wheeled-legged locomotion,
each with their dedicated chapter (3, 4, 5). Firstly, a planar trajectory
optimization approach is presented for driving motions in conditions where
the terrain is symmetric with respect to the traversal direction of motion. The
use of a 2D model considerably reduces the computation cost for the approach
and allows for the study of suitable cost functions. From that, a general 3D
formulation for driving motions is presented with experimental tests on the
real robot, showing dynamic driving motions in unstructured terrain. Lastly, a
formulation that allows for hybrid locomotion on uneven terrain is developed
and discussed. Such approach takes full advantage of the hybrid nature of the
system, allowing for dynamic changes in the direction of motion and navigation
in discontinuous terrains.

The proposed approaches are evaluated on the robot ANYmal equipped
with actuated non-steerable wheels in both simulations and real-world experi-
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ments. The results show that ANYmal is able to traverse a variety of terrains
with different motions. For driving motions, the testing scenarios include steep
inclinations 0.2 m high with 45◦ and 65◦ slopes at an average speed of 0.5 m/s
and a maximum speed of 0.9 m/s, which is over three times faster than previ-
ous approaches for similar obstacles. The hybrid planning framework is verified
in several physical simulations that show ANYmal performing hybrid dynamic
motions to overcome discontinuous obstacles, such as floating steps and gaps,
where instances of wheel’s liftoff are necessary. To the best of our knowledge,
such a fast negotiation of challenging obstacles by wheeled-legged robots using
dynamic motions has not been shown before.

1.4
Thesis Organization

Chapter 2 presents a review on dynamic models for wheeled-legged robots
with different levels of simplifications, and a review on the general formulation
for TO problems, along with the advantages and disadvantages of the existing
solving techniques.

In Chapter 3, an initial formulation of the TO problem is presented to
generate dynamic driving motions in challenging terrain using a simplified two-
dimensional model of the robot. Chapter 4 extends the formulation for general
3D driving motions in symmetric and asymmetric terrain types.

Chapter 5 presents a TO formulation for hybrid dynamic motions that
generates the foot and base trajectories for the robot simultaneously. This
way, the planner can generate trajectories with purely driving and purely
stepping motions or it can perform both motions at the same time, enabling
the negotiation of discontinuous obstacles.

Lastly, Chapter 6 brings suggestions for future work and the conclusions
of this thesis.
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2
Modeling of Wheeled-Legged Robots

In general, the dynamics of most physical systems is mathematically
modeled by a set of Ordinary Differential Equations (ODEs):

ẋ(t) = f(x(t),u(t)), (2-1)

where x(t) represents the state x of the system at a given time t and u(t) is
the control input of the system.

Dynamic models have a important role in control, simulation and motion
planning for robotic systems. A motion plan is considered physically accurate
if the modeled dynamic equations are satisfied at all times. For that reason,
this chapter presents a review on dynamic models for wheeled-legged systems
along with the constraints and assumptions required to make them physically
correct. Furthermore, a review on the general formulation for TO problems
and existent solving techniques is presented.

2.1
Full Rigid Body Dynamics

Similar to legged robots, wheeled-legged robots can be modeled as
floating-base systems, i.e., the motion of the base cannot be directly controlled
through actuators but through external forces resulting from contacts (Hutter
et al., 2017). To model such systems, a fictitious fixed base is introduced, and
then connected to the floating base via a fictitious joint having six degrees of
freedom, as illustrated in Figure 2.1. The six additional joint variables are used
to define the position and orientation of the floating base. With the virtual un-
actuated base joints, the Equations of Motion (EoM) can be computed via the
well known Newton-Euler method, which applies the principles of conservation
of linear and angular momentum for all links of the robot (Siciliano et al., 2010).

2.1.1
Equations of Motion

Floating base robots can be fully described by the nb un-actuated base
coordinates qb and nj actuated joint coordinates qj:
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Figure 2.1: Representation of the actuation joints of a wheeled quadrupedal
robot, modeled as a floating base B to which the legs and wheels are attached.
The coordinate frames are the fixed inertial frame I and the frame B, attached
to un-actuated base. Figure adapted from (Hutter et al., 2017).

q =
qb

qj

 (2-2)

The floating base is free in translation and rotation:

qb =
IrIB

ΦIB

 ∈ R3 × SO(3)1, (2-3)

where IrB ∈ R3 is the position of the base from frame I to frame B with respect
to the inertial frame I, and the base orientation ΦIB can be parametrized in
different ways, such as Euler angles or unit quaternions (Siciliano et al., 2010).
The number of generalized coordinates of the floating base system is given by
nb + nj and it depends on the parametrization chosen for the base’s rotation,
where the minimal number of generalized coordinates for the base is 6.

The generalized velocity vector v of the system is given by

v =


IvB

BωIB

q̇j

 ∈ Rnv , (2-4)

where IvB ∈ R3 is the linear velocity of the base B with respect to inertial
frame I, and BωIB ∈ R3 is the angular velocity from frame I to frame B
with respect to the frame B. The number of generalized velocity coordinates

1The special orthogonal Euclidian group that represents rotations in three dimensions.
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is nv = 6 + nj.
Once defined the generalized position and velocity vectors of the system,

the dynamics of a floating base rigid-body robot is given by

M (q)v̇ + b(q,v) + g(q) = STτ + JT
c Fc, (2-5)

where M(q) ∈ Rnv×nv is the generalized mass matrix, b(q,v) ∈ Rnv is the
vector of Coriolis and centrifugal terms and g(q) is the vector of gravitational
terms. τ ∈ Rnj is the vector of generalized torques acting in the direction
of the generalized coordinates and the selection matrix S =

[
0nj×6 1nj×nj

]
selects which joints are actuated. Considering nc the number of end-effectors
in contact, the Jacobian Jc =

[
JT

C1 ... JT
Cnc

]T
∈ R3nc×nv maps the contact

forces Fc =
[
fT

1 ... fT
nc

]T
∈ R3nc from the Cartesian space onto the

subspace of the generalized coordinates. The Jacobians are derived from the
kinematics of the robot, that can be computed using the algorithms presented
in (Featherstone, 2007).

Equation (2-5) can be re-written to separate the 6 floating base acceler-
ations and the nj joint accelerations, as follows:

Mbb Mbj

Mjb Mjj

v̇b

v̇j

+
bb

bj

+
gb

gj

 =
0
τ

+
JT

c,b

JT
c,j

Fc, (2-6)

The first matricial row corresponds to the equations for the un-actuated
base motion and the second describes the joint motions, whereby Jc,b indicates
the relation between the base motion and the contact forces. Note that the
torques from the actuated joints τ cannot directly influence the base motion
and the forces Fc originated from ground contact are responsible for moving
the base.

In this model, the state of the robot is given by the generalized coordi-
nates and velocities for the un-actuated base and joints x =

[
qT vT

]T
, while

the inputs are all the joint torques and the contact forces u =
[
τ T F T

c

]T
.

2.1.2
Contact Model

Two different methods can be used to model the contact forces. The soft
contact method models the force as a function of the location and velocity of
the contact point, e.g., a spring-damper contact force. This method requires
the tuning of the contact parameters for stiffness and damping, which is very
difficult to be done accurately.
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The alternative is to use the hard contact method, in which the contacts
are modeled as kinematic constraints (Hutter et al., 2017). For a legged robot
with point feet, for instance, if a point C with position rc is in contact, it is not
allowed to move anymore, which implies in the following kinematic constraints:

ṙc = Jcv = 0 (2-7)
r̈c = Jcv̇ + J̇cv = 0 (2-8)

Substituting v̇ in (2-8) with the equations of motion in (2-5), the
constraint can be written as

r̈c = JcM
−1
(
STτ + JT

c Fc − (b+ g)
)

+ J̇cv = 0 (2-9)

Then, solving (2-9) for Fc, the contact force is given by:

Fc =
(
JcM

−1JT
c

)−1 (
JcM

−1
(
STτ − (b+ g)

)
+ J̇cv

)
(2-10)

As an advantage, this contact model allows for the estimation of the
contact forces based on the system dynamics alone, without a further contact
force sensor.

Unlike legged robots with point feet, wheeled-legged robots have addi-
tional degrees of freedom due to the wheels as end-effectors and the acceleration
of the contact point is not zero, which introduces a nonholonomic rolling con-
straint on the system dynamics, modeled in (Bjelonic et al., 2019) and reviewed
next.

2.1.3
Nonholonomic Rolling Constraint

The wheel model used to derive the rolling constraint is illustrated in
Figure 2.2. In addition to the inertial frame I and the base frame B, leg-fixed
and wheel-fixed coordinate frames are added to the wheel’s center and the
wheel’s contact point. The leg-fixed wheel frame W ′

i is located at the wheel’s
center and does not depend on the joint angle θw of the wheel, while the
wheel-fixed frame Wi rotates with the wheel and depends on θw.

Similarly, the leg-fixed contact frame C ′i is defined with respect to the
frame W ′

i and does not depend on θw. Also, it does not need to have zero
velocity, reflecting the motion of the wheel’s contact point. In contrast, the
wheel-fixed contact frame Ci is defined with respect to the frame Wi and it
depends on the joint angle θw of the wheel. For both contact frames, the z-
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direction is aligned with the terrain normal n and the x-direction is aligned
with the rolling direction of the wheel.

Figure 2.2: The coordinate frames of the robot’s wheel.

In contrast to fixed contact points from legged locomotion, the acceler-
ation of the ith wheel contact point with respect to the inertial frame is not
constraint to be zero, i.e., I r̈ICi

= JCi
v̇ + J̇Ci

v 6= 0. From (Bjelonic et al.,
2019), the resulting contact acceleration is given by

I r̈ICi
= JCi

v̇ + J̇Ci
v =

RIWi


0

−rwψ̇IW ′
i
cos (φIW ′

i
)(χ̇IW ′

i
+ θ̇w)

rw(χ̇IW ′
i

+ θ̇w)(χ̇IW ′
i

+ θ̇w + ψ̇IW ′
i
sin (φIW ′

i
))

 , (2-11)

where RIWi
∈ SO(3) is the rotation matrix that projects a vector from the

wheel frame Wi to the inertial frame I and rw is the wheel radius. Using an
Euler parametrization, the yaw, roll and pitch angle of the leg-fixed frame
W ′

i with respect to the initial frame I are given by ψIW ′
i
, φIW ′

i
, and χIW ′

i
,

respectively.
Note that by setting φIW ′

i
and ψIW ′

i
to zero, the contact point accel-

eration is reduced to RIWi

[
0 0 rw(χ̇IW ′

i
+ θ̇w)2

]T
, which is the centripetal

acceleration of the wheel. Moreover, the acceleration in the x-direction is zero
since there is no slippage in the wheels.

As an additional comment, the nonholonomic rolling constraint included
in the dynamics model implies that a respective rolling constraint must be
considered in the motion planning framework to ensure the desired wheel
motion is executable.
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The full RBD model of wheeled-legged robots, including the contact
constraints, is important for a realistic simulation of their locomotion and
for computing the actuation torques for the motion control system. However,
the RBD is highly complex due to its many degrees of freedom. In particular
for motion planning algorithms, the use of a simplified dynamic model makes
the formulation simpler and allows for faster convergence of the optimizer
compared to using the full RBD.

2.2
Single Rigid Body Dynamics

Wheeled-legged robots can be faithfully represented as a single rigid
body with fixed mass and inertia located at the robot’s CoM, as depicted
in Figure 2.3 for a quadrupedal wheeled robot.

Figure 2.3: Single rigid body representation of a quadrupedal robot. The gray
overlayed model of the ANYmal robot with wheels is only for visualization
and it is not included in the dynamics, all the system’s mass is located at the
robot’s CoM.

This model assumes that the mass and inertia of the legs are negligible
compared to the robot’s base and do not contribute significantly to the
momentum of the system. In fact, this assumption is reasonable for most
quadrupedal robots since a large portion of the mass is in the base of the
robot. Each leg is up to an order of magnitude lighter than the base.

With this assumption, the EoM of the system are defined by the Newton-
Euler Equations of a single rigid body, in which the robot’s CoM linear
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acceleration r̈(t) ∈ R3 is determined by the sum of all the contact forces
on the wheels and the gravitational force; and the CoM angular acceleration
ω̇(t) ∈ R3 is given by the Euler’s rotation equation (Siciliano et al., 2010),
described as

mr̈(t) =
ni∑

i=1
fi(t)−mg

Iω̇(t) + ω(t)× Iω(t) =
ni∑

i=1
fi(t)× (r(t)− pi(t))

(2-12)

where ω(t) ∈ R3 represents the angular velocity of the robot’s base, m denotes
the robot’s mass, g ∈ R3 the gravity vector and I ∈ R3×3 the inertia matrix of
the robot, computed around the nominal stance position and assumed fixed.
The number of end-effectors is given ny ni, and the contact force and contact
position for the ith wheel are given by fi and pi, respectively.

The SRBD model makes the dynamics of the robot independent of the
joint configuration of the legs, reducing the number of variables in the robot’s
state, while keeping the dynamic effects important to locomotion. The state
of the robot is given by the CoM’s position r and orientation θ, its linear
and angular velocities, in addition to the wheels’ positions and velocities
x =

[
rT θT ṙT ωT

[
pT

1 ... pT
ni

]T [
ṗT

1 ... ṗT
ni

]T ]T

, while the control

inputs are the wheels’ contact forces u =
[
fT

1 ... fT
ni

]T
. This simplified model

is particularly useful for trajectory optimization problems, where reduced
computational cost is desirable.

2.3
Trajectory Optimization

The goal of a TO problem is to find a trajectory for some dynamic
system that satisfies a set of constraints while minimizing some cost functional.
In general, this is achieved by solving the Optimal Control Problem (OCP)
described as:

minimize
x, u ∈ S

J(x(t),u(t))

subject to x(0) = x0, x(tf ) = xf ,

c(x(t), ẋ(t),u(t)) ≤ 0,

h(x(t), ẋ(t),u(t)) = 0,

(2-13)

where h and c are respectively the set of equality and inequality constraints
for the problem, x0 and xf are initial and final conditions for the state x,
and tf is the final time for the trajectory. The main equality constraint is the
system dynamics, i.e., ẋ(t) = f(x(t),u(t)).
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Three different techniques can be considered for solving this OCP:
Dynamic Programming, Indirect Methods and Direct Methods (Diehl et
al., 2006). The first approach, Dynamic Programming, uses the Bellman
principle of optimality (Bertsekas, 2005) to compute recursively a global
control policy for all times t and all initial states. It is most commonly applied
to unconstrained low-dimensional systems since it requires a discretization of
the full state space.

Indirect Methods attempt to solve the OCP by using the “optimize then
discretize” philosophy. It requires explicit derivation of the necessary conditions
of optimality (Betts, 2009) into a Boundary Value Problem (BVP) which is
then solved using a numerical solver. The main strength of such approaches
is that they provide solutions that are optimal with respect to the original
optimization problem. However, there are several drawbacks. Inequality con-
straints are particularly difficult to handle using indirect methods, and finding
a reasonable initial guess for the problem is quite challenging (Betts, 2009).
In addition, such methods tend to be numerically unstable and difficult to
implement.

On the other hand, the Direct Method employs the “discretize then
optimize” approach by converting the continuous time problem into a finite
dimensional NLP, which definition is

minimize
ξ∈Rn

J̄(ξ)

subject to c̄(ξ) ≤ 0

h̄(ξ) = 0

ξL ≤ ξ ≤ ξU

(2-14)

where ξ ∈ Rn is the set of optimization variables, and ξU and ξL are
respectively the upper and lower bounds for the variables.

The resulting NLP is then solved by state-of-the-art numerical opti-
mization methods. Algorithms for solving NLP problems include Interior
Point (Mehrotra, 1992), Sequential Quadratic Programming (SQP) and Trust-
Region (Nocedal and Wright, 2006).

The advantages of the Direct Method are several: the formulation and
treatment of the inequality constraints is easier; the initialization is more
intuitive since the decision variables are physical quantities; and there is a
broad options of NLP numerical solvers available for efficiently solving large
scale problems, which is specially important for long prediction horizons in
complex terrains. The drawback is that such methods are commonly prone to
local minima and they only guarantee a locally optimal solution.
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Having considered the advantages and disadvantages of the aforemen-
tioned solving techniques, this work will focus on the application of Direct
Methods to solve the TO problem.

2.3.1
Transcription Methods

There are several methods for transcribing the TO problem into a NLP.
In general, they can be divided into two broad categories: sequential methods
and simultaneous methods. In sequential approaches, only the control input
u(t) is parametrized through a set of discrete variables. The input is then
applied to dynamic system and the state trajectory x(t) is computed by a
forward simulation with the help of an ODE solver. The NLP optimizes over
the discretized control input and verifies if the resulting states fulfill all the
constraints. Thus, simulation and optimization iterations proceed sequentially,
one after the other, until the control input is found for which the state
trajectory minimizes the cost and respects the constraints. In this approach,
the NLP is relatively smaller since only the control input is optimized, reducing
the computational cost. However, ill-conditioned problems can be difficult to
handle, since small changes in the control input can cause large variations in
the state trajectory (Kelly, 2017a).

In simultaneous methods, both the input control u(t) and the states
x(t) are parameterized over time and the NLP optimizes over u(t) and x(t)
simultaneously. The system dynamics is no longer simulated, but enforced
through nonlinear equality constraints in the optimization, evaluated only at
special points along the trajectory. Such methods can be initialized with a
guess for the state trajectory x(t), which may be easier to determine than an
initial u(t). The problem is relatively larger, but changes in the input only
affects the state at that time instance, which reflects in the sparse structure of
the problem and allows for faster solutions (Posa et al., 2014).

A commonly used simultaneous method is the Direct Collocation (Har-
graves and Paris, 1987). The state trajectory and the control input are repre-
sented as piecewise cubic polynomials and the system dynamics and constraints
are enforced at the knots (discretization points) between the polynomials. The
decision variables in the optimization are the values for the control and state
at each knot point. Once the state values and derivatives are determined for
all knots, the cubic polynomials between them are fully defined. The resulting
trajectory is guaranteed to be continuous and to have continuous first deriva-
tive. This is the transcription method used in this thesis to formulate the 3D
trajectory optimization problem.
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3
2D Trajectory Optimization

Wheeled-legged robots offer a solution for versatile locomotion in un-
structured terrain. For such systems, driving motions are particularly inter-
esting, since they allow for faster and more stable locomotion, and obstacle
negotiation is enabled through the presence of the legs.

When planning for driving motions for quadrupedal wheeled robots, com-
mon scenarios often include straight trajectories in terrains with variations only
in the longitudinal direction. Such scenarios can benefit from a simplification of
the planning problem and can be handled with a two-dimensional approach. To
this end, an initial formulation of the TO problem is presented for a simplified
2D model of the robot.

Such formulation presents several advantages:

• Considerably lower computational cost, which allows for fast solutions
even for trajectories with a long time horizon;

• Easier tuning and assessment of the optimization parameters;

• Simple visualization of the motions with MATLAB®;

• Reduced implementation effort, which helps with the study of suitable
stability metrics and cost functions.

In addition, a simplified planar trajectory optimization framework for
wheeled-legged robots can be useful for teaching purposes.

3.1
2D Robot Model

For wheeled-legged robots to move safely on challenging terrain, it
is important that the motion planner produces only trajectories that are
physically feasible and dynamically stable. To ensure that, the trajectory
optimization must take into account how the wheels’ positions and forces
affect the robot’s state. In this approach, the robot is approximated by a single
rigid-body with mass and inertia located at the robot’s CoM, as illustrated in
Figure 3.1.

In the 2D formulation, the wheels are assumed to be skid-steered, so only
forces in the XZ plane are considered. The displacement in the y–direction,
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Figure 3.1: Planar model of the ANYmal robot traversing rough terrain.

and the roll and yaw angles of the robot’s base are assumed to be zero for the
entire motion. Moreover, we assume that the contact between the wheel and
the ground can be reduced to a single virtual contact point and the friction
coefficient of the soil is known or can be estimated.

Using this simplified model, the dynamics of the robot is given by:

mr̈
Iyθ̈

 =
 12x2 12x2[

(rz − pz
1) −(rx − px

1)
] [

(rz − pz
2) −(rx − px

2)
] f1

f2

−
mg

0


(3-1)

where the CoM position and orientation are given by r and θ, respectively.
The contact points on the wheels are given by p1 and p2, m denotes the
robot’s mass, g the gravity vector and Iy the inertia of the robot around the
Y axis. The contact forces on each wheel are given by f1 and f2. All the forces
and positions vectors are defined with respect to the inertial frame, in IR2.
The orientation is simply the pitch angle of the base, defined in IR. The right
superscript denotes a component of the vector, e.g., px

i represents the the x
component of the contact position of the ith wheel.

For the trajectory optimization, the terrain profile must be provided to
the planner. With the terrain information, the contact force on each wheel fi

can be accurately decomposed into a normal force Ni and a tangential force FT i

(traction), considering a local frame Ci located in the point of contact between
the wheel and the ground, as shown in Figure 3.2. Assuming no slippage in the
wheels, which is enforced during the optimization, the torque τ in each wheel
can be obtained by multiplying the traction force for the wheel radius rw.
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Figure 3.2: Contact forces on each wheel, considering a frame Ci located at the
wheel’s contact point with the terrain. The axis cz is aligned with the terrain
normal and cx is aligned with the rolling direction of the wheel.

Given the terrain normal at the ith wheel contact point ni =
[
nx

i nz
i

]T
∈

IR2, the 2D rotation matrixRCiI from the inertial frame I to the contact frame
Ci is given by:

Cif i = RCiI
If i

Cif i =
FT i

Ni

 =
nz

i −nx
i

nx
i nz

i

 If i

(3-2)

3.2
Problem Formulation

The trajectory optimization is formulated as an OCP of the form:

minimize
x(t),u(t)

J(x(t),u(t))

subject to c(x(t),u(t)) ≤ 0,

h(x(t),u(t)) = 0,

x(0) = x0, x(T ) = xf ,

(3-3)

where x(t) is the set of variables that defines the motion of the robot’s CoM
and the wheel’s contact positions

x(t) =
[
r(t) ṙ(t) θ(t) θ̇(t) p1,2(t) ṗ1,2(t)

]T
,

u(t) are the contact forces on the wheels f1,2(t), x0 and xf are respectively
the initial and final state of the robot, and T is the total time duration of the
trajectory.
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Firstly, this continuous-time optimization problem needs to be formu-
lated as an NLP, with a finite number of decision variables, as follows

minimize
ξ∈Rn

J̄(ξ)

subject to c̄(ξ) ≤ 0

h̄(ξ) = 0

ξL ≤ ξ ≤ ξU

(3-4)

For that, the time horizon is discretized in fixed time intervals ∆T ,
including the initial state, generating n = floor(T/∆T )+1 nodes, as illustrated
in Figure 3.3. Each node k is defined by the optimization variables at the time
tk = k∆T of the trajectory. Thus, the NLP decision variables are the values
for the robot’s state and contact forces on all nodes:

ξ =
[
u0 x0 u1 x1 ... un−1 xn−1

]T
(3-5)

where uk = u(tk) and xk = x(tk).

Figure 3.3: Illustration of the discretization points (nodes) for the robot’s
trajectory.

In order to ensure the consistency of the derivatives, the following
constraints are imposed between the nodes:

q̇k = qk+1 − qk

∆T , k = 0, . . . , n− 2, (3-6)

where qk =
[
r θ p1 p2

]T
k
, the set of position variables at node k.

Having defined the decision variables for the discretized problem, the
most straightforward approach is to enforce the equality and inequality con-
straint at all nodes:
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c̄(ξk) ≤ 0, k = 0, ..., n− 1, (3-7)
h̄(ξk) = 0, k = 0, ..., n− 1, (3-8)

where ξk =
[
uk xk

]T
.

Note that such an approach does not guarantee that the constraints are
satisfied on the entire interval between the nodes [tk, tk+1], but only at the
discretization points. Once the problem is solved, the continuous solution for
each variable is obtained by a simple linear interpolation between the nodes,
which gives a feasible continuous trajectory, assuming ∆T sufficiently small.

The complete TO formulation for the 2D motion optimization problem
with all the constraints is presented in Figure 3.4. For all the variables, the
right superscript denotes a component of the vector and the right subscript
indicates which wheel is being considered. The optimization constraints are
discussed in details in the next section.

find r(t), ṙ(t) ∈ R2 (CoM linear position)
θ(t), θ̇(t) ∈ R (CoM angular position)
p1,2(t), ṗ1,2(t) ∈ R2 (wheels’ contact positions)
f1,2(t) ∈ R2 (wheels’ contact forces)

s.t. [r, θ](0) = [r0, θ0] (initial state)
[r, θ](T ) = [rg, θg] (goal state)
[r̈, θ̈]T = Fd(r,θ,p1,2,f1,2), (dynamic model)
α(r, θ,p1,2,f1,2) > αmin, (stability measure)
pi(t) ∈ Ri(r(t), θ(t)), i = 1, 2 (kinematic constraints)
pz

i (t) = hterrain(px
i (t)), i = 1, 2 (terrain height)

Ni(t) ≥ 0, i = 1, 2 (normal force)
FT i(t) ≤ τmax/rw, i = 1, 2 (maximum torque)
− µNi(t) ≤ FT i(t) ≤ µNi(t), i = 1, 2 (no slippage)

Figure 3.4: Decision variables and constraints of the two-dimensional TO
formulation.

As an additional note, a similar formulation can also be employed for
torque optimization in hazardous conditions, in which the robot is close
to losing stability and tipping over, as demonstrated for wheeled robots
in (Medeiros et al., 2019). In this case, the contact positions and the position
of the CoM are provided by the user and the solver computes the optimal
wheels’ torques for improving stability.
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3.2.1
Constraints

The 2D formulation is only applicable for generating driving motions,
which implies that the wheels are in contact with the terrain during the entire
trajectory. This can be translated in the problem formulation as constraints
on the wheel’s contact positions and on the normal contact forces, as:

pz
i = hterrain(px

i ), i = 1, 2 (3-9)
Ni ≥ 0, i = 1, 2 (3-10)

where hterrain is the continuous 2D height map of the terrain. The normal
component Ni is extracted from the contact force fi by applying the transform
presented in (3-2). For that, the terrain normal at the contact position n(px

i )
is obtained through the derivative of the continuous terrain map at that point.

In order to ensure no slippage in the wheels, the traction force is
constrained to be less or equal than the normal force times the friction
coefficient µ of the terrain:

−µNi ≤ FT i ≤ µNi, i = 1, 2 (3-11)

where FT i is obtained from (3-2) as well.
Additionally, the traction forces are limited to a saturation value corre-

spondent to the maximum torque of the wheel’s motor:

−τmax

rw

≤ FT i ≤
τmax

rw

, i = 1, 2 (3-12)

The dynamic consistency of the trajectory is ensured by imposing the
equations (3-1) to all nodes. For that, the base accelerations are computed via
numerical differentiation of the base velocities.

r̈k = ṙk+1 − ṙk

∆T , k = 0, . . . , n− 2, (3-13)

θ̈k = θ̇k+1 − θ̇k

∆T , k = 0, . . . , n− 2, (3-14)

The base accelerations are also constrained to a maximum value for
avoiding abrupt motions. In most cases, the velocities for the initial and final
nodes are constrained to be zero to prevent any feedforward torque at the
beginning or end of the motion.

An additional requirement for motion consistency is to ensure the wheels’
positions remain within the reachable workspace of the legs. The exact way to
do this is to enforce the joint limits and compute the end-effector position
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through forward kinematics. However, forward kinematics introduces more
non-linear constraints on the formulation, which could affect the solver’s
performance and should be avoided. Instead, the feasible workspace for each
wheel is represented by a rectangle of fixed size centered in the nominal position
of the wheels relative to the robot’s base, similar to (Winkler et al., 2018;
Bjelonic et al., 2020). The size of the rectangle is defined based on the robot’s
joints limits, as depicted by the cyan-marked region in Figure 3.5. Thus, the
constraint is computed as:

−b/2 < [R(θ)(pi − r)− p̄i] < b/2, i = 1, 2, (3-15)

where R(θ) is the 2D rotation matrix with respect to θ, p̄i ∈ R2 is the nominal
position of the ith wheel relative to the robot’s base, and b =

[
bx bz

]T
is the

vector of the rectangle dimensions.
Lastly, this planner takes into account the stability of the robot along the

trajectory, enabling motion in complex and highly uneven terrain. The stability
criterion used for the optimization is based on the Force-Angle Stability
Measure presented in (Papadopoulos and Rey, 2000), adapted for a planar
case. Considering the illustration shown in Figure 3.5, the stability measure α
is given by the minimum of the two angles β1 and β2.

Figure 3.5: Illustration of the stability measure for the planar case.

The two tipover axis normals are represented by the vectors l1 and l2,
defined as

li = r − pi, i = 1, 2 (3-16)
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Letting v̂ = v/||v|| for any vector v, the tipover angles β1 and β2 and
the tipover stability measure α are computed by:

βi = cos−1(F̂ · l̂i), i = 1, 2 (3-17)
α = min(β1, β2), (3-18)

where F is the sum of all forces acting on the robot’s CoM that contribute to
a tipover motion instability, including gravitational loads, inertial forces1 and
external disturbances.

If the total force F is coincident with either one of the vectors l1,2, α
becomes zero and the robot is on the eminence of tipping over. When α < 0,
the robot is already in a tipover condition. Thus, it is desirable that the value of
α remains large and positive, to maintain the robot in the stability region. The
stability measure can be used either in the objective function for maximization
or limited to a minimum value as a constraint of the optimization problem.

3.2.2
Objective Function

Since our problem formulation includes all the forces and positions of the
wheels, the objective function for the trajectory optimization can be numerous:
maximize the stability measure, to avoid tipping and loss of wheel contact
with the ground; minimize the traction difference between the wheels, which
can be very helpful in conditions where the friction coefficient of the terrain
changes abruptly; or minimize the difference between the wheels normal forces
to improve stability in uneven terrains. However, the use of a cost function
can be highly costly and increase the amount of tuning parameters for the
optimization, especially in this formulation, where the value of the objective
function must be computed as a sum of the costs of all nodes. For that reason,
it is also considered the option to formulate the optimization as a feasibility
problem, similar to (Winkler et al., 2018). In this case, there is no cost function
to minimize. The objective is simply to find the decision variables that fulfill
all the constraints, which should speed up the optimization considerably. The
influence of the cost functions on the generated motions is evaluated in details
in the next section.

1The fictitious force that appears to act on an object due to its inertia when the frame of
reference used to describe the object’s motion is accelerating compared to a non-accelerating
frame.
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3.3
Results

This section discusses the implementation and testing of several motions
generated by the 2D motion planning framework. The presented 2D TO
formulation was tested in different terrain types including a half-pipe, a terrain
with a sine profile, a step 0.2 m high, among others. An initial assessment of the
2D trajectories is performed via visualization in MATLAB®, with a script that
illustrates the robot motion together with the contact forces on the wheels,
the base acceleration and the stability margin. Further, the trajectories are
validated in physical simulations using a real model of the ANYmal robot
equipped with non-steerable torque-controlled wheels.

3.3.1
Implementation

The 2D trajectory optimization was implemented in C++2 using the
Ifopt (Winkler, 2018) interface for the interior-point solver Ipopt (Wächter et
al., 2006). Ifopt provides an intuitive interface for constructing the optimization
problem that allows the user to define independent sets of variables and
constraints, and the overall problem is automatically built from these sets
using an automatic index management feature. This way, each node of the
trajectory is defined as a variable-set that all the constraints are imposed
on, rather then defining one huge set with all the variables. The derivatives
(Jacobians) for all the constraints and costs are provided analytically, which
significantly reduces the computational cost of the solver. The Hessian matrix
of second derivatives, on the other hand, is iteratively approximated by Ipopt
through a limited-memory quasi-Newton algorithm (L-BFGS) (Wächter et al.,
2006).

The time interval between the nodes ∆T was chosen as 0.1 s, which
is refined enough to ensure physically feasible and dynamically consistent
motions. This means that a problem with a 4.0 s time horizon has 720
optimization variables, 485 equality constraints and 813 inequality constraints.
The robot parameters used for the optimization were adapted from the
quadrupedal robot ANYmal with wheels and are presented in Table 3.1.

For all terrains, the position of the base is initialized by a linear interpo-
lation between the initial and desired final position of the robot. The positions
of the wheels are initialized assuming the default stance position of the robot’s

2The same formulation was implemented and tested on MATLAB® using the free opti-
mization toolbox OPTI (Currie and Wilson, 2012). However, its use was proved impracti-
cable since the computational time for solving the optimization problem was around dozens
of seconds per trajectory.
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Table 3.1: Robot’s parameters used for the 2D trajectory optimization.

Parameter Symbol Value Unit
Mass m 18.2747 kg
Inertia Iy 0.8842 kg m2

Motor’s saturation torque τmax 32.0 Nm
Wheel’s radius rw 0.05 m

Kinematic limit in x bx 0.15 m
Kinematic limit in y by 0.10 m

Terrain friction coefficient µ 0.5 -

legs with respect to the base along the entire trajectory. The velocities on each
node are initialized with the average speed of the robot, given by the total
displacement of the trajectory divided by the total time duration. The contact
forces are initialized with the same value at all nodes: the maximum allowed
traction force in the x–direction and half the weight of the robot’s CoM in the
z–direction.

3.3.2
Suitable Cost Functions

Several tests are conducted in flat terrain to evaluate how the use of
a cost function would affect the trajectories and the computational cost of
the framework. Four objectives were considered for the analysis: minimize the
difference between the traction forces on the wheels, minimize the difference
between the normal forces on the wheels, maximize stability, and no objective
function. The respective cost functions to be minimized for each case are
presented in the following equations:

J̄ =
n−1∑
k=0

(FT1 − FT2)2
k, (3-19)

J̄ =
n−1∑
k=0

(N1 −N2)2
k, (3-20)

J̄ = −
n−1∑
k=0

αk, (3-21)

J̄ = 0, (3-22)

Except for the case where it is explicitly maximized, the stability measure
is added as an inequality constraint in the optimization problem, being
constrained to remain above a minimum threshold on all nodes:

αk > 6.3◦, k = 0, ..., n− 1 (3-23)
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At this point, the threshold limit is chosen arbitrarily based on empirical
testing. Further evaluation on an ideal threshold is carried out in Chapter 4.

In flat terrain, tipover instability can occur at high acceleration condi-
tions, which is why the acceleration limits for the base and the wheels are set
to ±10 m/s2 for the following tests. Figure 3.6 shows the 2D optimized trajec-
tories for the robot moving on a flat terrain from x = 0.0 m to x = 4.0 m in
2.0 s, starting and finishing at zero velocity.

(a) Maximize stability measure.

(b) Minimize difference between normal forces.

(c) No cost function.

Figure 3.6: 2D optimization results for the robot driving on flat terrain with
different cost functions. The red lines are the contact forces, the green lines
are the decomposed normal and traction forces, the back full lines are the
gravity force and the black dotted lines indicate the direction of the CoM’s
acceleration. The pink line is the total force acting on the robot’s CoM and
the yellow lines represent the tipover axis normals, the limits for stability.

The effect of each cost function on the robot’s motion can be visually
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identified from the figure. When maximizing stability (Figure 3.6(a)), the CoM
is maintained at a lower height and the wheels are positioned farther from each
other to increase the area of the polygon defined by the contact points. When
accelerating (t = 0.6 s), the base is moved forward and the torque is higher on
the front wheel. Similarly, the base is moved backwards when de-accelerating
(t = 1.2 s), and the torque is higher on the hind wheel.

In contrast, there was no significant difference between the results for
minimizing the traction forces or the normal forces on the wheels, costs
presented in (3-19) and (3-20). The motion was similar for both cases and
it is depicted in Figure 3.6(b). As it can be seen, the wheels’ positions and the
base orientation are constantly adjusted to keep a more evenly distribution
of forces between the wheels. As a consequence, the stability measure also
remains positively large along the trajectory.

Lastly, Figure 3.6(c) shows the trajectory generated for the feasibility
problem. In this case, since there is no cost function, the solver converges to
the closest feasible solution that fulfills all the constraints.

For a quantitative analysis, Figure 3.7 shows the plots of the traction
forces, normal forces and stability measure for each of the motions presented
in Figure 3.6. Figure 3.7(a) shows that the stability margin never reaches a
value lower than 27◦ when maximizing the stability measure. In Figure 3.7(b),
the difference between the normal forces on the front wheel and the hind wheels
is so small that is imperceptible on the plot. In addition, the traction forces on
both wheels are also almost the same. The solution for the optimization with no
cost function (Figure 3.7(c)) presents a lower average stability margin during
the motion. The traction force is higher on the hind wheel when accelerating
and higher in the front wheel when braking, which contributes to the lower
stability margin, but it is still within the limits.

The computational time that it takes to compute the trajectory in each
case is also an important factor to be evaluated, especially considering that the
flat terrain is the simplest case and the computational cost will most likely be
higher for more complex terrains. All computational times stated in this thesis
were obtained on a processor Intel® CoreTM i7-7500U, 2.7GHz, dual-core, 64-
bit. The trajectory optimization for flat terrain took 0.075 s without a cost
function, 0.114 s when minimizing the difference between the normal forces,
and 0.622 s for maximizing stability. Optimizing the stability measure (3-18)
adds a non-linear non-convex cost function to the problem, which causes the
computational cost of the framework to increase in over 8 times compared to
not using an objective function.

The general goal of a motion planning framework is to generate a
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(a) Plots for the motion that maximizes the stability measure.

(b) Plots for the motion that minimizes the difference between normal forces.

(c) Plots for the feasibility problem solution, i.e., no cost function.

Figure 3.7: Plots for the contact forces on the wheels and the stability measure
α for each motion.

physically feasible trajectory for the system, which is well accomplished by
solving the feasibility problem (3-22) and it is much faster. For that reason,
this is the approach used for the trajectory optimization problem in this thesis.
The inclusion of the stability measure is maintained as an inequality constraint
to ensure safety in all conditions.

3.3.3
Trajectories

Once the best approach for the cost function was investigated, further
testing was carried out in different terrain types. The solver computation time
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for the planner depends on the complexity of the terrain and the optimization
parameters, but it remained in average 34.7 ms per second of trajectory. This
represents a Real-Time Factor (RTF) of 30.2, which means the computational
time for the solver is in average 30.2 times shorter than the planning horizon.
Table 3.2 presents an illustration of the terrains used for the tests and the
respective computation time for planning the trajectory, given a time horizon
and the desired final position for the robot.

Figure 3.8 shows the motions for the half-pipe terrain and the slope
terrain. In both cases, the terrain profile has positive and negative slopes that
require the robot to adjust its behavior accordingly for traversing it. For the
half-pipe terrain, there is an abrupt descend at the beginning of the motion and
the robot starts adjusting the positions of the CoM and the front wheel prior
to the terrain decline, which ensures a stable transition. This is only possible
because the motion planner takes into account the terrain information and the
dynamics of the robot, which allows for the robot to be already in a proper
configuration when faced with the obstacle. In such cases, a purely reactive
controller could fail in adjusting the robot’s configuration in time to prevent a
tipover condition, which is why most reactive approaches employ quasi-static
assumptions and low speed limits for the motions.

The same predictive behavior is easily perceived when the robot has to
drive up steep obstacles, such as the 65◦ step. Figure 3.9 shows the motion
generated by the 2D TO framework for driving up the steep step. Initially, the
robot maintain its base slightly backwards and move the front wheels towards
the step. Next, it moves the hind legs closer to the center of mass so it has
more traction to pull the front wheels up. Lastly, it moves the base closer to
the ground and pulls the hind legs up, completing the maneuver. Such motions
cannot be generated without knowledge of the terrain.

The analysis of the motions in MATLAB® demonstrated the dynamic
consistency of the motion plans in different conditions. However, further
validation is performed by verifying if the trajectories can be reliably tracked
by a low-level motion controller that generates the inputs to a real wheeled-
legged robot to execute the planned driving motions.

3.4
Simulations

The simulations are carried out in the robot simulation environment
Gazebo (Koenig and Howard, 2004) with ODE (Russell, 2008) as the physics
engine, using the full rigid body dynamics of the real quadrupedal robot ANY-
mal, equipped with actuated non-steerable wheels. The reader is encouraged
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Table 3.2: Different terrains used to test the 2D TO framework.

Terrain Description Time
horizon

Distance
(in x)

Comp.
time

Flat terrain

2.0 s 4.0 m 0.056 s

Step with a 0.2 m height with a linear
transition of 65◦

4.0 s 2.0 m 0.154 s

Step with a 0.2 m height with a linear
transition of 45◦

3.0 s 2.0 m 0.079 s

Sine function with 5.0 rad/s frequency and
0.1 m amplitude combined with a 12◦ slope

4.0 s 4.0 m 0.116 s

Sine function with 9.0 rad/s frequency and
0.06 m amplitude

3.2 s 3.2 m 0.152 s

Sine function with 2.0 rad/s frequency and
0.2 m amplitude

3.7 s 7.4 m 0.137 s

Increasing and then decreasing ramp with
30◦ slope and 2.0 m length

5.0 s 5.0 m 0.220 s

Parabola-modeled gap with 0.5 m height
and 2.0 width

3.2 s 3.2 m 0.139 s
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(a) 2D motion for the parabola-modeled half-pipe terrain.

(b) 2D motion for the increasing/decreasing slope.

Figure 3.8: 2D motions for terrains with ascending and descending trajectories.

Figure 3.9: 2D motion for the robot driving up a step 0.2 m high and a 65◦
slope.

to watch the video available in https://youtu.be/lELr4stekhQ, that shows
all the motions in different terrains.

The simulation framework for ANYmal is fully ROS-compatible and it

https://youtu.be/lELr4stekhQ
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can be used to reflect the physical behavior of a robot with high fidelity. A
graphical user interface is available for monitoring and visualization of the
simulated motion, with a logging module that records all data for further
plotting in MATLAB®. In addition, it runs the whole-body controller, the
state estimator and the mapping modules in the same way it runs on the real
robot, but with inputs from simulated data.

3.4.1
From 2D to 3D motions

For simulations with the actual robot, the 2D motions are transcribed
into 3D by fixing the y-coordinate of the robot’s CoM, as well as the roll and
yaw angles of the base, as shown in Figure 3.10. For the wheels’ positions, the
default stance y-position is maintained for the entire motion. The trajectory of
the wheels is assumed to be mirrored between the left and right wheels, which
means the optimized contact forces are divided by two between them, keeping
no contact force in the lateral direction.

Figure 3.10: Trajectories for the planar case transcribed into 3D trajectories
for simulations with the actual robot. For the wheels, the first letter indicates
the left (L) or right (R) and the second, indicates front (F) or hind (H).

Thus, the 6–DoF base motion, composed by its position IrB(t) ∈ R3 and
orientation ΦIB(t) ∈ R3 (represented in Euler angles), is given by:

IrB(t) = [rx(t) ry
0 rz(t)]T ,

ΦIB(t) = [0 θ(t) 0]T ,
(3-24)

where Ir0 ∈ R3 is the initial position for the base, usually given by Ir0 =
[0 0 z0]T .

The wheels’ motions are defined as
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IpLF (t) = [px
1(t) ry

0 − ynom/2 pz
1(t)]T

IpLH(t) = [px
2(t) ry

0 − ynom/2 pz
2(t)]T

IpRF (t) = [px
1(t) ry

0 + ynom/2 pz
1(t)]T

IpRH(t) = [px
2(t) ry

0 + ynom/2 pz
2(t)]T

(3-25)

where ynom is the nominal distance between the left and right wheels.
Lastly, since the robot’s CoM does not move in the y-direction, the

wheels’ contact forces are equally divided between left and right wheels:
IfLF (t) = [fx

1 (t)/2 0 f z
1 (t)/2]T

IfLH(t) = [fx
2 (t)/2 0 f z

2 (t)/2]T
IfRF (t) = [fx

1 (t)/2 0 f z
1 (t)/2]T

IfRH(t) = [fx
2 (t)/2 0 f z

2 (t)/2]T

(3-26)

3.4.2
Extended Whole-Body Controller

The 3D trajectories (base and feet motion) are provided as input to
the hierarchical WBC described in (Bjelonic et al., 2019), that generates the
actuation torques for the joints and the wheels while accounting for the full
rigid-body dynamics of the robot, and several constraints, such as actuator
limits, rolling and friction cone constraints. To allow the negotiation of steep
obstacles with driving motions, we extend the existing controller with the
capability to leverage terrain normals.

For tracking the desired motion for the wheels, the WBC locally models
the terrain as a three-dimensional plane, which is estimated by fitting a plane
through the most recent wheels’ center locations, computed from forward
kinematics. Then, the estimated plane is moved along its normal by the
radius of the wheel to estimate the contact points. Figure 3.11 illustrates the
procedure. This approach, although efficient for flat or inclined terrain, doesn’t
work very well with terrains that have an abrupt change in height, since the
contact angle between the wheel and the terrain is misrepresented.

We extend that approach to use the knowledge of the terrain map to
compute the terrain normal and contact point for each wheel separately. Since
the friction cone axis is defined from the terrain normal, this mitigates incorrect
estimation of the friction cones when traversing steep obstacles, as shown in
Figure 3.12. In this case, the lack of a terrain-aware motion controller or a
contact force optimization prevents the robot from driving up the step, which
is enabled by our framework.
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Figure 3.11: The estimation of the terrain shape by the reactive controller
currently implemented on ANYmal with wheels. The terrain estimate is
obtained by fitting a plane through the most recent wheel’s positions and
moving it by the wheel radius along the plane normal.

Figure 3.12: Our extended WBC uses the terrain information to estimate the
wheels contact points. (a) The approach described in (Bjelonic et al., 2019)
estimates the shape of the terrain by fitting a plane through the most recent
wheels’ positions. Note that the frictions cones are oriented with the normal
plane, which is not accurate in this case. (b) Using the knowledge of the terrain
normals, we are able to predict the contact points and the friction cones along
the terrain map.

3.4.3
Simulation Results

Figure 3.13 shows snapshots for the robot crossing the 0.5 m deep half-
pipe at an average speed of 1.0 m/s. For this terrain, the TO takes 165 ms to
optimize the motion for a 3.2 s time horizon. Note that the robot maintains
a kinematic feasible leg configuration by pitching the torso, which is only
possible because we consider the base and wheels’ motions in a single planning
problem. Figure 3.14 depicts the desired motions compared with the measured
positions obtained from the simulations, confirming the successful tracking of
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the extended WBC. The actual accuracy of the tracking can be measured using
the Root-Mean-Square-Error (RMSE), computed by

RMSE =
√√√√ n∑

k=1

(qdk − qmk)2

n
(3-27)

where qd are the desired positions and qm are the measured positions from the
simulations.

The extended WBC is able to track the desired motions for the gap
terrain with a RMSE of 5 mm for the base and 14 mm for the wheels.

Figure 3.13: The ANYmal robot driving over a 0.5 m half-pipe at an average
speed of 1.0 m/s. The light blue arrows on the wheels are the contact forces
and the dark blue arrows are the wheels’ linear velocity. The yellow sphere is
the robot’s CoM and the red arrow is base’s linear acceleration.

Attempts to overcome the same terrain with a reactive controller and a
desired speed of 1.0 m/s for the base nearly fails both going down and up the
half-pipe, as shown in Figure 3.15, but the robot is able to reach the other side
of the gap. This is because the reactive WBC runs at a high frequency and
the state-of-the-art joint actuators have very fast actuation. A robot with low
bandwidth actuators could not be able to perform the adjustment to the terrain
in time to prevent tipover. However, the reactive controller fails completely to
overcome the terrain at a average speed of 2.0 m/s or higher.

Figure 3.16 shows the robot driving over the two consecutive ramps with
30◦ slope at an average speed of 1.0 m/s. As expected, the robot reduces its
speed when reaching the peak of the slopes so it can safely adapt to the abrupt
change in the inclination. This can be clearly seen in the plots for the base’s
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Figure 3.14: The desired positions provided as input to the extended WBC
(dashed line) and the simulated measured positions of the robot’s base and
wheels (full line) while traversing the half-pipe terrain.

Figure 3.15: ANYmal with wheels attempting to traverse the half-pipe terrain
with blind locomotion at 1.0 m/s. As soon as the controller perceives the
drop in the terrain (1), it drastically lowers its CoM for stabilization (2).
Immediately after the descend, there is a rising on the terrain (3), but the
robot is not able to adjust the pitch angle of the base in time, causing the hind
legs to reach their kinematic limits and bending in the other direction (4). The
robot reaches the other side of the gap in that configuration.

desired velocity on Figure 3.17. The base speed starts to decrease seconds
before reaching the top of the terrain, which happens at around t = 7.1 s,
according to the graph for the base linear position.

The previous knowledge of the impending decreasing slope is essential
for crossing such terrain at this speed. In simulations with a purely reactive
controller and a desired base speed of 1.0 m/s, the robot barely reaches the top
of the terrain and it is unable to overcome it because the hind legs collide with
the ramp. With a speed of 2.0 m/s, the robot reaches the top of the terrain a
little easier, but it is not able to adapt to the change in inclination fast enough
to prevent a fall, as seen Figure 3.18.
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Figure 3.16: Simulation of the robot driving over two increasing and then
decreasing ramps with a 30◦ slope.

Figure 3.17: The planned trajectory for the terrain with opposite slopes and
the measured data from the simulation.

Figure 3.18: Failed attempts to overcome the slopes with blind locomotion at
1.0 m/s speed (on the left), and at 2.0 m/s speed (on the right).
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Figure 3.19 shows the simulation of the robot driving over the 65◦ step,
tracking the motion presented in Figure 3.9. A similar result has been shown in
our previous work in (Medeiros et al., 2019). The height of the step is 0.2 m,
which represents 40% of the legs’ length. As it can be seen in Figure 3.20,
the whole-body controller was able to track the desired motions for the base
and the feet with high accuracy. The RMSE for the base’s motion is 3 mm
and for the wheels’ trajectories is less than 12 mm. Moreover, the maneuver
is performed in an average 0.5 m/s speed and reaches a maximum of 1.0 m/s,
which is as fast as walking up motions. Attempts on crossing the 65◦ step with
blind locomotion failed in all simulation tests with different reference velocities
for the base, from 0.3 m/s to 2.0 m/s.

Figure 3.19: Simulation of the robot driving up a step 0.2 m high with a 65◦
slope.

Even for terrains that the robot is able to traverse driving blindly
with the current motion control framework, the simulations show that the
motions generated by the presented TO are more stable. Figure 3.21 shows
the simulation results for the terrain which profile is a composition of a sine
function with 5.0 rad/s frequency and a 12◦ slope. Note that, when moving
blindly, the robot gets dangerously close to a tipping over condition, since the
normal forces on the front wheels are considerable smaller than the ones on the
hind wheels. The optimized trajectory, however, shows a better distribution of
the normal forces, contributing for a more stable motion.
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Figure 3.20: The desired and measured linear velocity for the robot’s base and
left wheels while driving up the 65◦ step.

Figure 3.21: On the left is the robot moving on a wavy slope with a purely
reactive controller, while on the right is the robot traversing the same terrain
using the TO framework.

3.5
Conclusions

The presented 2D TO framework is able to generate optimized motions
and interaction forces for wheeled-legged robots driving over challenging
terrain by taking into account the robot’s dynamics, the terrain profile and
the stability of the robot along the trajectory. The feasibility of the motion
plans is demonstrated in simulations with ANYmal in different terrain types
and further comparison with a purely reactive controller.

In all the motions, the robot is moving with a speed of 0.5 m/s or higher,
even in terrains with abrupt variations in height, which is enabled by the
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knowledge of the terrain map.
The simulation results indicate that our approach should present good

results in experimental tests, since the simulator is quite realistic. The initial
assumption of mass-less legs is strong and could affect the dynamic consistency
of the motions, specially considering the actuators placed on the knee joints;
however, other motions using the same assumption have been successfully
deployed on ANYmal (Medeiros et al., 2020; Bellicoso et al., 2018).

The simplified 2D model allows for a fast computation time, less than
35 ms/s of trajectory in average, which is suitable for an online receding-horizon
implementation. This would make the approach more robust to uncertainties
in the model and the terrain map.

For increasing the amount of scenarios in which the robot can navigate
with the TO, a 3D trajectory optimization approach is developed in the next
section with experimental tests using steps with different slopes in several
configurations.
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4
3D Trajectory Optimization for Driving Motions

The simulation for the planar wheeled-legged locomotion showed promis-
ing results that indicates that driving motions are a viable solution for nego-
tiating challenging terrain. However, there are several limitations inherent to
a 2D formulation. The mirrored trajectories between left and right wheels re-
stricts its application to terrains with the same height in the y-axis and imposes
restrictions on the orientation of the robot’s base. Moreover, such a simplified
model could not handle the generation of hybrid motions in which each leg has
a different state depending on the desired gait. For real world applications, a
complete 3D formulation may be a more suitable approach.

In addition to the increased number of variables, one of the main differ-
ences compared to the 2D formulation is the addition of a rolling constraint
on the wheel’s motions to ensure consistence with driving locomotion, which
is not necessary for the planar case. Moreover, some motions can only be dis-
covered with a 3D model of the robot, such as driving up a step one wheel at
a time, which is also discussed here.

This chapter formalizes the TO problem for generating 3D dynamic
driving motions for wheeled-legged robots and discusses its formulation as
an NLP. Further, it presents the results for the simulations and experiments
carried out with a real wheeled-legged robot in different terrain types to
validate the motion plans.

4.1
TO Formulation for Driving Motions

This section describes in details the TO problem solved to compute
the 3D driving motions, which formulation is summarized in Figure 4.1. The
decision variables are robot’s base linear position r(t) ∈ R3 and orientation
θ(t) ∈ R3 (roll-pitch-yaw Euler angles), the wheels’ contact positions pi(t) ∈
R3 and contact forces fi(t) ∈ R3. The high-level user inputs are the initial and
final state of the robot, and the total time duration T of the trajectory which
is defined based on the desired average speed for the robot’s base.

Figure 4.2 depicts the coordinate frames of the robot used in the
formulation: I denotes the inertial frame, B denotes the base frame, and Ci
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denotes the ith wheel contact frame, located on the wheels contact point on
the ground. For all the variables, the right superscript denotes a component of
the vector and the left superscript indicates the coordinate frame, e.g. Cif z

i (t)
represents the the z component of the contact force on the ith wheel expressed
in the ith wheel contact frame.

find Ir(t) ∈ R3 (base linear position)
Iθ(t) ∈ R3 (base Euler angles)
for every wheel i :

Ipi(t) ∈ R3 (wheels’ contact positions)
If i(t) ∈ R3 (wheels’ contact forces)

s.t. [Ir, Iθ](0) = [Ir0,
Iθ0] (initial state)

[Ir, Iθ](T ) = [Irg,
Iθg] (goal state)

Fd(Ir, Iθ, Ipi,
If i) = 0, i = 1 : 4 (dynamic model)

s(Ir, Iθ, Ipi,
If i) > βmin, i = 1 : 4 (stability measure)

for every wheel i :
Ipi(t) ∈ Ri(Ir(t), Iθ(t)) (kinematic model)
Ipz

i (t) = hterrain(Ipx,y
i (t)) (terrain height)

Cif z
i (t) > 0 (normal force)

|| Cifx
i (t)|| ≤ fmax (maximum torque)

If i(t) ∈ F(µ,n, Ipx,y
i (t)) (friction cone)

Ci ṗy
i (t) = 0 (rolling constraint)

Figure 4.1: Decision variables and constraints of the TO formulation. The
constraints marked as blue are specific for optimizing driving motions over
rough terrain.

The formulation of the TO problem was based on the one proposed
in (Winkler et al., 2018) for legged robots with point feet. In comparison
with this formulation for wheeled robots performing driving motions, the
main differences are that the velocity of the end-effector’s contact point is
no longer forced to zero and a constraint on the rolling direction of the wheels
is included to ensure consistency with wheeled locomotion. Such constraint
was not necessary for the previous 2D formulation since it already optimizes
over planar motions. The presented formulation allows to generate dynamic
driving motions for all types of non-flat terrain, including gaps and steep
slopes. Additionally, since we focus on planning driving motions, the contact
between the wheels and the ground is enforced during the entire trajectory and
a stability constraint ensures that the robot can safely drive over obstacles.

Note that this formulation can be extended for robots with steerable
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Figure 4.2: Coordinate frames used for the motion planning. The frame B is
attached to the CoM of the robot and each wheel has a frame attached to
their contact point with the ground. On the right, there is a detailed view of
the wheel’s contact frame Ci. The axis cz is aligned with the terrain normal
n and the cx axis is aligned with the rolling direction of the wheel. In the
wheels’ frames, the first letter indicates the left (L) or right (R) and the second,
indicates front (F) or hind (H).

wheels by including the steering angle for each wheel in the set of optimization
variables. This variable will impose an additional rotation along the z axis of
the wheel’s contact frame when computing the rolling direction of each wheel.
This formulation is also generic enough to allow for motion planning for robots
with different number of wheels.

4.1.1
Optimization Variables Parametrization

The OCP is transcribed into an NLP problem by optimizing over the
decision variables in discrete times tk sampled at a fixed interval ∆T along
the trajectory, called nodes. All the optimization variables define each node
at the time tk = k∆T of the trajectory, including the initial state, generating
n = floor(T/∆T )+1 nodes. Once all the decision variables are optimized, each
dimension of the variables is represented in continuous time by connecting the
nodes with third order polynomials, that can be fully defined by the value x
and its derivative at the adjacent nodes and its time duration ∆T :

x(t) = a0 + a1t+ a2t
2 + a3t

3,

ai = f(xk, ẋk, xk+1, ẋk+1,∆T ) ∀ k ∈ [0, n− 1]
(4-1)

where xk is the state of the robot at the kth node.
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This is called the Hermite parametrization, illustrated by Figure 4.3, and
allows to optimize over the state of the robot directly instead of the polynomials
coefficients, which is far more intuitive for the problem formulation. This
simplifies the formulation and the implementation of the NLP.The procedure
to obtain the polynomial coefficients through the robot’s state can be found
in Appendix A.

Figure 4.3: Hermite spline parametrization. Decision variables inside the
optimization are the black dots (nodes) and the red lines (state derivatives
at each node). The blue curves are the polynomials defined by two consecutive
nodes and their derivatives.

Since both the contact forces (control input) and the base and wheels’
motions (robot’s state) are decision variables represented by piece-wise cubic
polynomials, this approach qualifies as a Direct Collocation (Hargraves and
Paris, 1987; Posa et al., 2014). The constraints are then enforced at a fixed
time interval along the trajectory. The frequency of which the constraints are
evaluated affects the computational cost of the solver.

4.1.2
Dynamic and Kinematic Constraints

The robot’s dynamic model used for the TO is a Single Rigid Body
model, in which the robot is approximated by a single rigid-body with mass
and inertia located at the robot’s CoM, as presented in Section 2.2.

Using this simplified model, the robot’s CoM linear acceleration r̈(t) ∈ R3

and angular acceleration ω̇(t) ∈ R3 are given by

m I r̈(t) =
4∑

i=1

If i(t)−m Ig,

I Iω̇(t) + Iω(t)× I Iω(t) =
4∑

i=1

If i(t)× (Ir(t)− Ipi(t)),
(4-2)

where Iω(t) ∈ R3 represents the angular velocity of the robot’s base in the
world frame, m denotes the robot’s mass, g ∈ R3 the gravity vector and
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I ∈ R3×3 the inertia matrix of the robot, computed around the nominal stance
position. The transformation (Gehring et al., 2016) from the Euler angles θ
that define the orientation of the base (yaw, pitch, roll) and derivatives θ̇ to
the angular velocities in the inertial frame is given by

Iω = C(θ)θ̇ =


cos(θy) cos(θz) − sin(θz) 0
cos(θy) sin(θz) cos(θz) 0
− sin(θy) 0 1



θ̇x

θ̇y

θ̇z


Iω̇ = Ċ(θ, θ̇)θ̇ +C(θ)θ̈

(4-3)

As for the kinematic constraints, the joint angles cannot be directly
constrained to prevent the legs from reaching its kinematic limits, since they
are not included explicitly in the formulation. Instead, we constrain the wheels
positions to remain within a feasible workspace that moves together with the
robot’s base, approximated by a parallelepiped with fixed size located on the
nominal position of the wheel relative to the robot’s base, as depicted in
Figure 4.4. Such an approximation is common for robots with knee joints and
fully articulated legs (at least 3 degrees-of-freedom per leg) (Bellicoso et al.,
2018; Bjelonic et al., 2019; Winkler et al., 2018). The size of the parallelepiped
must defined by the user by taking into account the position limits of the
joints. The constraint is given by

−b ≤ RBI(θ(t))(Ipi(t)− Ir(t))− Bpin ≤ b, (4-4)

where RBI ∈ R3×3 is the rotation matrix from the inertial frame to the base
frame, Bpin ∈ R3 is the nominal position of the ith wheel in the base frame
and b =

[
bx by bz

]T
is the vector of parallelepiped dimensions.

4.1.3
Wheels’ Contact Constraints

For the entire trajectory, the robot is assumed to be in driving phase, i.e.,
the robot is not stepping, which imposes physical constraints on the wheels’
motion and contact forces. Firstly, all the wheels must be in contact with the
ground, which is enforced by

Ipz
i (t) = hterrain(Ipx,y

i (t)) (4-5)

where hterrain is the continuous 2.5D height map of the terrain (Fankhauser et
al., 2018).

Assuming constant contact also implies that the normal force on the
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Figure 4.4: The robot model for the optimization. The joint limits of the
robot are assumed not violated if the wheel’s contact point pi is in inside
the parallelepiped Ri. The contact forces fi on the wheels are constraint to
remain inside the friction cone.

wheels must always be positive. Since the contact forces are explicit decision
variables, the forces can be directly constrained as

fni
(t) = Cif z

i (t) ≥ 0, (4-6)

where Cif z
i (t) is the z-component of the contact force on the ith wheel expressed

in the ith contact frame.
To ensure no slippage of the wheels’ contact points, we constrain the

tangential forces to remain inside the Coulomb friction cone defined by the
terrain friction coefficient µ. In our implementation, the friction cone is
approximated by a friction pyramid, depicted in Figure 4.5, which makes the
constraint linear and thus, speeds up the computation. The constraint is given
by

− µfni
(t) ≤ Cifx

i (t) ≤ µfni
(t)

− µfni
(t) ≤ Cif y

i (t) ≤ µfni
(t)

(4-7)

Additionally, the traction forces are limited to a saturation value corre-
spondent to the maximum torque of the wheel’s motor, which is equivalent to
limit the component of the contact force aligned with the rolling direction of
the wheels Cifx

i (t) as
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Figure 4.5: Friction pyramids (in red) used as an approximation for the friction
cones.

−τmax/rw ≤ Cifx
i (t) ≤ τmax/rw, (4-8)

Since we constrain the contact forces in a way that there is no slippage
on the wheels, the maximum traction force is defined by the maximum torque
on the wheel’s motor τmax ∈ R divided by the wheel’s radius rw.

Unlike for the legged robots with point feet, contact points for wheeled-
legged robots can have a non-zero speed or acceleration. This introduces a
rolling constraint, necessary to ensure the consistency of a driving motion. We
constrain the the wheels’ velocity to be aligned with the rolling direction of
the wheels, i.e., no lateral velocity is allowed on the wheels during the motion.
This is achieved by constraining the y-velocity of the wheels’ contact point in
the contact frame to be zero:

Ci ṗy
i (t) = 0 (4-9)

The rotation matrix RCiI ∈ R3×3 from the inertial frame to the contact
frame of the ith wheel is obtained by the following

ey = n(Ipx,y
i (t))× (RIB(θ(t)) Bbx)

ex = ey × n(Ipx,y
i (t))

ez = ex × ey

RCiI =
[
ex/|ex| ey/|ey| ez/|ez|

]
(4-10)

where {ex, ey, ez} are the respectively the {x, y, z} components of the contact
frame of the ith wheel, n(Ipx,y

i (t)) ∈ R3 is the normal vector of the terrain at
the position Ipx,y

i (t) ∈ R3, Bbx is the x component of the basis frame expressed
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in the base frame and RIB is the rotation matrix from the base frame to the
inertial frame.

The Hermite parametrization (4-1) ensures continuously differentiable
velocities and positions profiles for the base and the wheels, since the same node
used as start-point for one polynomial is used as end-point for the previous one
(see Figure 4.3). The accelerations, however, are not explicit decision variables
and are computed from the derivative of the velocity polynomials, which allows
for discontinuities in the acceleration profile. To avoid that, we constrain the
wheel’s accelerations to be equal between two polynomial junctions nodes, so
there are no jumps in the wheels’ acceleration that could cause jumps in the
wheels’ contact forces and consequently in the wheels’ torque, which is not
desired. For the same reason, the base’s linear and angular accelerations are
also constrained to be equal between the nodes (Winkler et al., 2018). To
illustrate, Figure 4.6 shows the optimization results for the LF wheel’s motion
in the x−direction, with and without the aforementioned constraint, when the
robot is asked to drive 1.0 m for 1.0 s in flat terrain.

(a) Wheel’s motion generated without
the acceleration continuity constraint.

(b) Wheel’s motion generated with the
acceleration continuity constraint.

Figure 4.6: Computed acceleration and velocity of the robot’s LF wheel while
driving 1.0 m in 1.0 s in flat terrain with and without the acceleration
continuity constraint. The red dots are the times in which the decision variables
are optimized over and the polynomial junctions, spaced 0.1 s apart in this case.
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This wheels’ acceleration continuity constraint needs to be included
specifically for driving motions, since the contact points motions are contin-
uous. In addition, to prevent abrupt motions, the acceleration in the world
frame on all wheels is limited to a maximum value.

4.1.4
Stability Constraint

Since the contact forces are decision variables of our TO, it is possible
to include a stability measure for the robot in the formulation. Similar to
the previous planar case, the stability is based on the so-called Force-Angle
Stability Measure (Papadopoulos and Rey, 2000), which 3D definition is briefly
reviewed here. Consider the illustration shown in Figure 4.7, that represents a
quadrupedal with the left wheels on a different level than the right.

Figure 4.7: Illustration of the Force-Angle Stability Measure for a quadrupedal
robot. f is the sum of all forces and angular loads acting on the CoM and f1
is the component of f that acts on the 1st tipover axis; φ1 is the stability angle
w.r.t. to the first tipover axis. Same procedure is carried out to determine the
correspondent fi and φi for all tipover axes. All the vectors are represented in
the inertial frame.

The wheels’ contact points are represented by pi and the vectors joining
the contact points are the tipover axes ai, given by

ai = pi+1 − pi, i = 1, . . . , 3
a4 = p1 − p4.

(4-11)

DBD
PUC-Rio - Certificação Digital Nº 1612796/CA



Chapter 4. 3D Trajectory Optimization for Driving Motions 84

The tipover axis normals are the vectors that intersect the tipover axes
and the robot’s CoM, denoted by li. They are obtained by the orthogonal
projection of the vector (pi+1 − r) in the direction perpendicular to ai, given
by

li = (1− âiâ
T
i )(pi+1 − r) (4-12)

where 1 is the 3×3 identity matrix and âi is the normalized vector âi = ai/|ai|.
The force f is the sum of all forces and angular loads acting on the CoM,

computed by the gravitational force and the forces and moments exerted at the
contact points. For each tipover axis ai, it is possible to obtain the component
of f the acts on the tipover axis, given by

fi = (1− âiâ
T
i )f , i = 1, . . . , 4 (4-13)

The stability angles φi are then defined as the angle between tipover axis
normal li and force fi, i.e.,

φi = σi cos−1 (f̂i · l̂i),

where σi =

+1, (f̂i × l̂i) · â > 0

−1, otherwhise

(4-14)

Lastly, the stability measure β is given by

β = min (φi), i = 1, . . . , 4 (4-15)

Critical tipover stability occurs when β approaches zero, which happens
when the force fi is aligned with one of the tipover axes li. If fi lies outside
the polygon defined by the contact points, φi becomes negative and tipover is
in progress. Thus, for the vehicle to remain in a stable condition, β must be
positive and as large as possible. Note that this definition of the stability
margin not only gives a measure of the tipover stability margin, but also
identifies the currently probable tipover axis. Additionally, this measure is
not limited to flat terrain and it can be applied to vehicles with any number
of end-effectors, including manipulators. The stability measure can be used
either in the objective function for maximization or limited to a minimum
value as a constraint of the optimization problem, which is the approach
used here. This way, the stability is ensured without significant increase in
the computation cost of the optimization. As demonstrated with the 2D
formulation in Section 3.3.2, the use of an objective function comes with
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higher computational effort and the amount of tuning parameters increases.
Therefore, we limit ourselves to solving feasibility problems.

4.2
Results

This section discusses the implementation and testing of several motions
generated by our 3D TO framework. We verify our planning and control
pipeline in physical simulation on a variety of different terrains such as
steep slopes and stairs. We also perform experiments using ANYmal robot
equipped with non-steerable torque-controlled wheels for steps with 45◦ and
65◦ slopes. All the motions are showed in details in the video available at
https://youtu.be/DlJGFhGS3HM.

4.2.1
Implementation

The TO framework is implemented in C++ using the Ifopt (Winkler,
2018) interface for the interior-point method solver Ipopt (Wächter et al.,
2006). The implementation is based on the software TOWR presented in
(Winkler et al., 2018) for legged robots. The simulations are carried out in
the robot simulation environment Gazebo (Koenig and Howard, 2004) with
ODE (Russell, 2008) as the physics engine, using the full rigid body dynamics
of the real quadrupedal robot ANYmal, equipped with actuated non-steerable
wheels. The base and wheel motions are provided as input to the an extended
version of the WBC described in (Bjelonic et al., 2019), updated to use a map
of the terrain normals to compute the exact contact points and terrain planes
at each wheel. For details, see Section 3.4.2.

The presented formulation requires a continuous 2.5D height map of the
terrain. The height map can be either manually specified if the objects in the
environment are known or generated from on-board sensors. Grid map repre-
sentations such as Octomap (Hornung et al., 2013) or a Gridmap (Fankhauser
et al., 2016) (shown in Figure 1.20) can be adapted to comply with the planner
interface. Since our tests were carried out in known scenarios, the terrain map
was analytically defined for each of the terrains.

For both simulations and experimental tests, the motion planner first
reads the current state of the robot and then computes the trajectories for
the desired time horizon. Figure 4.8 gives an overview of the motion planning
framework. The extendedWBC tracks the reference trajectories, along with the
robot state estimator, in a 400Hz loop. The state estimator module (Bloesch
et al., 2012) fuses kinematic measurements from each actuator with the data

https://youtu.be/DlJGFhGS3HM
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from an IMU to compute the state estimation of the robot. Similarly to
the extended WBC, the map of terrain normals was included in the state
estimation algorithm so the wheels’ contact points and velocities are computed
in the right direction, which improves the robot’s state estimation and limits
the effects of drifts in the estimation on the trajectory tracking.

Figure 4.8: Overview of the motion planning framework. The motion planner
computes the reference trajectories for a specified time horizon that is given
as input to the WBC, that computes the reference torques for the robot.

For the motion planning, the kinematic constraints are enforced at a
time interval of 0.08 s while all the other constraints are enforced every 0.1 s.
Consequently, a trajectory with a 4.0 s time horizon has 2269 optimization
variables, 1290 equality constraints and 2262 inequality constraints which
is roughly three times larger than the 2D formulation. All the derivatives
of the constraints are provided analytically to the solver, which drastically
improves the solver’s performance. The time interval in which the constraints
are enforced could be decreased to improve dynamic consistency along the
trajectory, but since we use a simplified dynamics model, this would result in
more computation time and not necessarily generate more efficient trajectories.

4.2.2
Initial Guess

Interior point methods for non-linear programming problems are prone
to local minima and can be sensitive to the initial choice of variables (Gertz et
al., 2004), which is why providing a reasonable initial guess causes a significant
reduction in the number of iterations necessary for convergence. For that
reason, the velocities on each node are initialized with the average speed of the
robot, given by the total displacement of the trajectory divided by the total
time duration. The position of the base is initialized by a linear interpolation
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between the initial and desired final position and the positions of the wheels
are initialized assuming the default stance position of the robot’s legs with
respect to the base along the entire trajectory.

4.2.3
Simulations

The simulations were carried out in the robot simulation environment
Gazebo with different terrain types. We verify the effect of the tipover stability
criterion introduced in Section 4.1.4 as well as the ability to traverse various
challenging terrain.

The effect of the stability constraint on the robot’s motion is shown
in Figure 4.9, where snapshots of the robot’s driving on a slope with 30◦

inclination at an average speed of 1.0 m/s with different stability thresholds.
As expected, as the stability angle threshold increases, the trajectory presents
a higher pitch angle for the base and the wheels position are adjusted to
minimize the difference between the normal forces on the front and hind wheels.
As the threshold increases, the size of the feasible solution set is reduced
and the computation cost for the optimization increases proportionally. As
a compromise, the minimum stability angle was constrained to 10◦ for all
trajectories.

Figure 4.9: ANYmal drives on a steep incline with a 30◦ inclination at average
speed of 1.0 m/s. The dark blue arrows on the wheels are the wheels’ speed,
the light blue arrows are the contact forces, the red arrow on the base is its
linear velocity and yellow line is the CoM position vertically projected on the
terrain. Results for: (1) β > 0◦; (2) β > 10◦; (3) β > 20◦

Figures 4.10 and 4.11 show snapshots for two challenging driving motions:
crossing a 0.5 m deep half-pipe at an average speed of 1.2 m/s and traversing
two consecutive increasing and decreasing slopes at an average speed of
1.5 m/s. For the gap, the motion is very similar to the one optimized by the
2D TO formulation, where the robot adjusts the pitch angle of the base and
the wheels’ positions to overcome the inclination of the terrain. For the slopes,
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since they are placed either on the right or left side of the path, the robot
tilts its base in the roll direction in order to drive over the obstacles, which
is only possible because we consider the whole body planning problem in our
approach. Due to the height difference in the y-direction, this motion would not
be possible to generate using the simplified 2D model presented in Chapter 3.
Figure 4.12 illustrates the desired motion (base and wheel) provided as input
to the extended WBC along with the measured positions obtained from the
simulation, and the stability angles (4-15) throughout the trajectory, which
are maintained always within the stability margin of 10◦. The average RMSE
for the motions’ tracking was 3.5 mm for the base and 9.2 mm for the wheels.

Figure 4.10: The ANYmal robot driving over a 0.5 m half-pipe at an average
speed of 1.2 m/s.

Figure 4.11: The ANYmal robot driving over two consecutive slopes with a
height of 0.2 m at an average speed of 1.5 m/s.

Another motion that could only be generated by a 3D approach is
presented in Figure 4.13. Two long obstacles with 0.1 m width and 0.15 m
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Figure 4.12: On the top, the linear position and velocity of the robot’s base
and, on the left, the right and left front wheel positions. The graphs show the
desired motions provided as input to the extended WBC and the measured
positions from the simulations of the two slopes maneuver. On the bottom
right, the variation of the stability angle along the trajectory. The robot reaches
a maximum speed of nearly 2.0 m/s.

height are placed on each side of the terrain. The slope on the obstacles is
65◦. For crossing this terrain, the robot must drive the first obstacle with the
left wheels and then drive over the second obstacle with the right wheels. The
obstacles are placed at a 1.0 m distance from each other, but there is a quick
instant (Frame 4 on Figure 4.13) where both the LH and the RF wheels are on
the obstacles, relying on the traction forces on the obstacle’s walls to maintain
stability.

One of the most important results of this work is the robot’s gained
ability to drive up steps. The proposed approach can handle multiple obstacles
in succession such as the stairs shown in Figure 4.14. The stairs are composed
by steps with 0.2 m in height, 0.4 m distance between them and transition with
a 65◦ slope. Note that, as soon as the front wheels reach the second step, the
hind wheels are pulled up the first step to stay within the kinematic limits of
the legs. A set of five steps is completed with an average speed of 0.5 m/s, which
is faster than a legged robot with point feet could do. We achieve such a speed
only because we compute plans for the robot before starting the maneuver
which gives the controller more information for tracking compared to just
reactive locomotion with flat terrain assumption. Trying to go up the steps
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Figure 4.13: The ANYmal robot driving over two consecutive obstacles on
different sides of the path at an average speed of 0.5 m/s.

with a reactive controller (Bjelonic et al., 2019) has shown no success, even in
simulation.

Figure 4.14: ANYmal drives over stairs composed by steps with 0.2 m in height
and a 0.4 m distance between them.

Table 4.1 presents the computation times for planning trajectories in
different challenging terrains. The solver computation time depends on the
terrain complexity, but remained in average 2.1 times shorter than the plan-
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ning horizon. All the derivatives of the constraints are provided analytically
to the solver, which improves the solver’s performance.

Table 4.1: Computation times for some of the terrains used to test the 3D TO
framework.

Terrain description Time
horizon

Distance
(in x)

Computation
time

Flat terrain 3.0 s 8.0 m 1.28 s

Step with a 0.2 m height with a
linear transition of 65◦ 4.0 s 1.8 m 1.76 s

Step with a 0.2 m height with a
linear transition of 45◦ 4.0 s 1.8 m 1.56 s

Sine function with 5.0rad/s
frequency and 0.1 m amplitude

combined with a 12◦ slope
3.5 s 4.0 m 1.41 s

Parabola-modeled gap with 0.5 m
height and 2.0 width 3.0 s 3.5 m 1.56 s

Two slopes with 0.2 m height and
17◦ slope on each side of the terrain 4.0 s 6.0 m 1.87 s

Two obstacles with 0.1 m width and
0.15 m height on each side of the

terrain
6.0 s 3.0 m 2.58 s

Five consecutive steps with 0.2 m in
height, 0.4 m width and a linear

transition of 65◦
7.2 s 3.6 m 8.61 s

An important contribution of the motion planner is that we consider the
whole-body planning problem (6–DoF base motion, wheels’ motion and contact
forces) in a single trajectory optimization framework, while accounting for the
terrain information and the dynamics of the robot. This combination allows
for generating trajectories that warrant a predictive behavior to the robot. For
instance, the robot starts adjusting the base position (height and orientation)
prior to the obstacle so it can overcome it in a dynamic manner at a higher
speed. Such motions cannot be generated with a purely reactive approach. In
addition, we include the terrain map information in the tracking controller,
allowing it to accurately track the desired driving motions.

DBD
PUC-Rio - Certificação Digital Nº 1612796/CA



Chapter 4. 3D Trajectory Optimization for Driving Motions 92

Generating 3D base and wheels motions in a single planning problem
using terrain information and without restrictions in speed or pose offer the
advantage of an increased range of achievable motions for more complex
terrains as a trade-off for the increased size of the optimization and its
computational cost. Relaxation of some constraints and a decrease in the
number of variables would reduce the cost for the optimization, but could
decrease its applicability.

4.2.4
Experimental Results

We conducted experimental tests in four different configurations: two
steps 0.2 m high (40% of the legs length) with a 45◦ and a 65◦ incline either in
the center of the path or only on the right side of the robot. The optimization
parameters were the same in all tests, with the exception of the robot’s goal
pose. All the obstacles are overcome with an average speed of 0.5 m/s.

Figure 4.15 shows the robot driving over the step with a 45◦ slope in two
different ways: both wheels at the same time and one wheel at a time. In the
first case, the base of the robot is kept in a lower position and with a higher
distance between the front and the hind wheels to improve stability. In the
second, the robot drives up the left wheel first and, once both front wheels
are on the platform, the hind wheels are driven up together to complete the
motion. In this case, the transition over the step is more stable and the robot’s
CoM is maintained in a higher position.

It is relevant to point out that the two different motions for the same
terrain can only be obtained with different initial solutions. This is due to
the absence of a cost function in our formulation and the fact that the initial
solution provided to the solver is a linear interpolation between the initial and
final position of the wheels, that is mirrored between the left and right wheels.
For that reason, a solution with the wheels going up separately is obtained in
this formulation by providing an initial solution with a small shift between the
left and right wheels’ trajectories. In this case, the initial solution provided for
the planner had the left wheels’ positions shifted forwards 0.1 m in relation
to the right wheels. The “one wheel at a time motion” represents a trajectory
that can only be discovered combining terrain knowledge with a 3D model
of the robot. As an advantage, such motions are less sensitive to the friction
coefficient on the step slope and require less joint torques.

In Figure 4.16(a), the platform with a 65◦ slope is positioned on the
right side of the robot, that drives up the obstacle in less than 0.4 s, showing
that terrains with different heights in the y−direction are also successfully
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(a) The robot goes up the step by driving both wheels up at the same time.

(b) The robot drives up one wheel at a time.

Figure 4.15: ANYmal drives over the step with a 45◦ slope in two different
ways. Both motions are performed in average speed of 0.5 m/s.

negotiated with our TO. To go up, the robot shifts and rolls its base to respect
the kinematic limits. In Figure 4.16(b) the robot successfully drives up the
the same platform now positioned in the center of its path, proving that our
approach can handle steep slopes.

Figure 4.17 depicts the desired motions compared with the measured
positions obtained from the experiments for two cases: ANYmal driving up the
45◦ and the 65◦ ramp in the center of its path. Our extended version of WBC
is able to track the desired motions on the real robot with an average RMSE of
6.5 mm for the base and 22.6 mm for the wheels, in both motions. The errors
are computed using the robot’s state computed by the state estimator module,
which can present some drift if compared to ground truth measurements. Note
that the base moves slower while the front wheels go up to maintain enough
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(a) The obstacle is positioned on the right side of the path.

(b) The step is aligned with the center of the robot’s base.

Figure 4.16: Snapshots of the robot driving up a step 0.2 m high (40% of the
legs length) and a 65◦ linear transition using the TO framework.

traction on the hind wheels; and moves faster when the hind wheels are going
up, achieving a maximum speed of 0.88 m/s.

Considering the successful experiments with the 65◦ slope crossing, it is
expected that the robot be able to traverse the stairs presented in Figure 4.14.
However, since the planning horizon is larger for such task, the lack of online
adaptation of the trajectories and accumulated errors in the tracking controller
could prevent the robot of climbing all the steps. One way to mitigate these
problems is an implementation of the planner in a receding horizon fashion.

4.3
Conclusions

This chapter presented a motion planning framework that generates
driving motions for wheeled quadrupedal robots, optimizing over the base
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(a) Results for the 45◦ step.

(b) Results for the 65◦ step.

Figure 4.17: The desired positions of the robot’s base and wheels provided as
input to the extended WBC (dashed line) and the measured positions (full
line) obtained during the experimental tests.

motion and the wheels’ positions, velocities and contact forces. The framework
consists of a terrain-aware planner and a terrain-aware controller that is an
extension of the WBC presented in (Bjelonic et al., 2019). Computing plans
with terrain information enables us to generate driving motions over steep
obstacles in a non-static manner, achieving an average speed of 0.5 m/s or
higher. The feasibility of the trajectories is demonstrated in experiments with
the ANYmal robot equipped with wheels driving over different terrains. The
results show that we are able to achieve perceptive motion planning over
multiple seconds horizons in challenging terrain. Despite model mismatches,
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sensor noise and torque tracking inaccuracies, the motion plans are robust
enough to be tracked on a real system. Moreover, blind locomotion could not
overcome the obstacles or would traverse them in a static step-by-step fashion
at a average speed much lower than 0.5 m/s. By using the map of the terrain
to plan the trajectory before start moving, we can plan for faster motions.

As for the limitations of the approach, the trajectories are planned for
a long time horizon in complex terrains which can be sensitive to drift and
tracking error. For that reason, it is recommended a further investigation on
the implementation of the motion planner in a receding horizon fashion by
using on-board state estimation of the robot. A major concern for making this
possible is reducing the cost of the NLP solving. This could be achieved by
employing smarter initialization strategies, similar to (Melon et al., 2020), that
showed a significantly lower computational cost for a similar NLP formulation.
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5
3D Trajectory Optimization for Hybrid Motions

Even though driving motions can be very efficient, the contact between
the wheels and the terrain must be enforced at all times, which precludes
its application for discontinuous terrain types, such as small gaps or floating
steps, where walking motions are necessary. One possible solution would
be to switch between walking and driving based on the characteristics of
the terrain. However, this approach does not consider a clear advantage of
hybrid wheeled-legged robots, which is the possibility of using wheels and
legs simultaneously for locomotion, increasing the robot’s speed and mobility.
Another improvement of hybrid locomotion is the possibility to perform
trajectories with lateral displacement and changes in the robot’s heading
direction. Such maneuvers are difficult to achieve with purely driving motions
for robots with non-steerable wheels due to the restriction on the wheels’
rolling direction. With hybrid motions, the wheels’ position and direction can
be changed while not in contact with the terrain.

Planning hybrid motions for wheeled-legged robots is an interesting and
challenging task that involves several constraints to be fulfilled by the planned
trajectories. The forces that move the robot can only be created when the wheel
is in contact with the terrain. As a consequence, the wheel that is being lifted
off does not produce any forces and, therefore, does not significantly contribute
to moving the base. Also, the contact forces are unilateral, i.e., the robot can
only push on the ground, not pull. These strong constraints on the contact
forces and on the interaction between them and the robot’s base are better
handled with an approach that considers how the interaction forces affect the
base motion during the planning task.

In this context, the previous NLP formulation for purely driving motions
is extended to generate dynamic hybrid driving-walking motions, still taking
into account the terrain information and the dynamics of the robot. This way,
driving and stepping motions are both considered in a single planning problem
that can generate trajectories with purely driving and purely stepping motions
or perform both motions simultaneously.
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5.1
TO formulation for Hybrid Motions

For optimizing hybrid walking-driving motions for wheeled-legged robots,
the decision variables remain the same as for the previous driving formulation,
i.e., the 6–DoF base motion (position and orientation), the wheels’ contact
positions and contact forces. The main difference is that, besides the robot’s
initial and final state and the total time duration T of the trajectory, the
user must provide a contact schedule to the optimizer. The contact schedule
indicates the sequences and durations of the contact phases, as shown in the
example in Figure 5.1 for a quadruped robot performing a static1 walking gait.

Figure 5.1: Example of a contact schedule for a quadrupedal robot performing
a static walking gait. Phases where the wheels are in contact are indicated
with colors and lift-off phases are the white spaces. Ti is the duration of each
phase.

Another major difference compared to driving motions is that the set
of constraints imposed on the wheels’ motion depends on the wheels’ contact
state. When in contact with the ground, the wheel is allowed to drive without
slipping and all the known terrain contact constraints are enforced (friction
cone, positive normal, terrain height), plus the rolling constraint for consistency
with wheeled locomotion. When not in contact, no force is produced on the
end-effector and the only constraint is that the wheels stay within the reachable
kinematic workspace. These abrupt changes in the set of constraints require a
specific multi-phase formulation, discussed in details in the Section 5.2.

Similar to the driving formulation, the robot’s dynamics is represented
with a Single Rigid Body Dynamics model. In contrast to modeling the robot as
a linear inverted pendulum (Siciliano and Khatib, 2007) and using the position
of the ZMP to control de robot’s motion, the use of a SRBD model includes
the contact forces as explicit variables of the optimization problem. This way,
they can be directly constrained during the motion planning, making it easier
to enforce constraints on slippage and torque limits. In addition, there is no

1Quadrupedal robots are able to perform statically stable walking gaits, i.e., at least
three points of ground contact. This is not the case for robots with fewer legs, which rely
exclusively on dynamically stable gaits.
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restriction on the base height or orientation, increasing the range of achievable
motions.

Figure 5.2 summarizes the TO formulation for hybrid walking-driving
motions, based on the formulation proposed by (Winkler et al., 2018) for legged
robots with point feet. All constraints are discussed in details in Section 5.3.

find Ir(t) ∈ R3 (CoM position)
Iθ(t) ∈ R3 (CoM Euler angles)
for every wheel i :

Ipi(t) ∈ R3 (wheels’ motion)
If i(t) ∈ R3 (wheels’ forces)

s.t. [Ir, Iθ](0) = [Ir0,
Iθ0] (initial state)

[Ir, Iθ](T ) = [Irg,
Iθg] (goal state)

Fd(Ir, Iθ, Ipi,
If i) = 0 (dynamic model)

for every wheel i :
Ipi(t) ∈ Ri(Ir(t), Iθ(t)) (kinematic constraint)
if wheel i is in contact:

Ipz
i (t) = hterrain(Ipx,y

i (t)) (terrain height)
Cif z

i (t) > 0 (normal force)
|| Cifx

i (t)|| ≤ fmax (maximum torque)
If i(t) ∈ F(µ,n, Ipx,y

i (t)) (friction cone)
Ci ṗy

i (t) = 0 (rolling constraint)
if wheel i is not in contact:

If i(t) = 0 (no force)
Ipz

i (t) > hterrain(Ipx,y
i (t)) (no contact)

Figure 5.2: Decision variables and constraints of the TO formulation for hybrid
motions. The set of constraints on the wheels’ variables depends on the contact
state of the wheels.

5.2
Optimization Variables Parametrization

Similarly to the transcription method used for generating purely driving
motions, each decision variable is optimized over in discrete times sampled
along the trajectory. The continuous motion is then obtained by sequences
of third-order polynomials using the Hermite parametrization, which ensures
continuous derivatives at the polynomial junctions. For the base 6–DoF motion,
the formulation remains the same, with the nodes sampled at a fixed time
interval ∆T . The difficulty resides in the formulation for the wheels variables
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(force and motion), since the set of constraints changes depending on the
contact state of the wheels and NLP formulations do not allow constraints
to be activated or deactivated arbitrarily during the iterations. To overcome
this problem, a phase-based parameterization based on (Winkler et al., 2018)
is employed.

Similarly to legged systems with point feet, the wheels can either be
in contact with the ground (contact phase) or not (flight phase). The main
difference is that the velocity of the wheel’s contact point is no longer forced
to zero. Figure 5.3 illustrates the difference between purely walking and a
hybrid motion when the wheels are in contact with the terrain. In purely
walking (Figure 5.3(a)), the wheels remain stationary while in contact with
the ground. In hybrid locomotion (Figure 5.3(b)), the wheels are allowed to
drive when in contact.

In phase-based parametrization, each wheel motion is treated individ-
ually, alternating between contact and swing phases. The sequence and du-
rations of each phase are specified in advance by the user and phase-specific
constraints can be enforced directly at the polynomial junctions, the same as
in a continuous problem. Figure 5.4 illustrates the wheels parametrization for
performing a hybrid driving-walking motion on flat terrain. Each phase is rep-
resented by a sequence of Hermite polynomials and the number of polynomials
changes depending on the contact state. Each phase has a fixed duration ∆Tj,
for j = 1 .. np, where np is the total number of phases.

The contact phases are treated as regular driving phases with nodes
sampled at a fixed interval ∆td, generating nj = floor(∆Tj/∆td) polynomials
for each contact phase j. Even though this is a parameter that can be easily
changed, it is important that ∆td is not very large, so that it is possible to
generate feasible trajectories even for gaits with long contact phases. A clear
example are driving motions, which are defined by a single contact phase with
a long duration. In contact phases, both the wheels’ positions and forces are
parametrized in the same way, with the same number of nodes.

On the other hand, the swing phase is mainly characterized by no contact
between the wheel and the ground, which implies zero contact forces. This is
ensured in the parametrization by fixing a constant zero value for the forces
in all swing phases, exactly as implemented in (Winkler et al., 2018). This
restriction is not defined as a constraint of the NLP, but the wheel’s contact
forces are simply initialized as zero and not optimized over in the nodes
adjacent to swing phases. For the wheels’ motion, at least two polynomials
are necessary, so the wheel can be lifted off and then lowered back down, as
depicted in the white areas of the pz graph in Figure 5.4. Since the terrain
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(a) Purely walking trajectory: the wheel has zero velocity while in contact
with the ground.

(b) Hybrid driving-walking trajectory: the wheel is allowed to move in
contact phase.

Figure 5.3: Gazebo simulation of the ANYmal robot equipped with torque
controllable wheels executing different trajectories generated by the motion
planner. The purple line is the base trajectory, the green lines and the yellow
lines are respectively the front wheels and hind wheels’ trajectories.

constraints are enforced on the polynomial junctions, more polynomials might
be necessary depending on the complexity of the terrain to ensure no collision
with the obstacles during the lift-off or touch down movements of the wheels.

5.2.1
Contact Schedule

With the present formulation, there is no restriction on the gait patterns
that can be used for defining the sequences and durations of the contact phases.
Figure 5.5 shows examples of gaits used for the trajectories generation in this
work. Tests were performed with both statically and dynamically stable gaits,
including gaits with full flight phases, in which neither of the wheels is in
contact with the ground for a short period of time.
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Figure 5.4: Phase-based parametrization for the wheels’ contact points and
forces. Nodes (red dots) in the gray area are swing nodes while nodes in the
white area are contact nodes. Graphs px and pz are the x and z dimension of
the wheel contact point trajectory, while graphs fx and fz represent the x and
z dimension of the wheel contact force.

For unstructured terrain containing abrupt changes in height or gaps,
gaits such as a hybrid gallop or a hybrid bounding are usually appropriate
choices, while for terrains fairly regular and without large obstacles, a faster
gait is more efficient, such as a hybrid running trot or driving.

5.3
NLP Constraints

Most of the constraints for the hybrid motion planning task are similar
to those previously defined for the driving formulation, aside from the fact
that they are applied for specific times depending on the gait pattern for the
motion. This section briefly reviews the constraints of the NLP considering the
phase-based parametrization of the wheel’s variables.

Consider the Figure 5.6, that depicts the decision variables of the opti-
mization for a wheeled quadrupedal robot during a dynamic hybrid running
trot motion. In this case, the LF and RH wheels are in swing phase, have non-
zero velocity (ṗ1 and ṗ4) and zero contact force. In contrast, the wheels RF
and LF are in contact phase, they also have non-zero velocity (ṗ2 and ṗ3), but
constrained to the rolling direction of the wheel, and their respective contact
forces (f2 and f3) balance the inertial forces on the CoM for the duration of
the current phase.

For generating hybrid motions, the dynamic and kinematic constraints
are the same as defined in (4-2) and (4-4), respectively. Different from the
phase-depending constraints, they both are enforced at a fixed time interval
along the entire trajectory.
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Figure 5.5: Some examples of gaits used for hybrid trajectory generation:
(a) driving, (b) hybrid gallop, (c) hybrid walk, (d) hybrid running trot, (e)
hybrid trot, (f) hybrid bounding. Contact phases are indicated with colors and
swing phases with white spaces. An example of the wheels’ trajectories for the
hybrid running trot are indicated in the top figure, each with a different color,
matching the colors in the gait pattern graphs.

5.3.1
Force Constraints

During contact phases, the following constraints are enforced on the
wheels’ force profiles: unilateral constraint, friction cone and maximum wheel
torque. They are all defined in the following equations, for which Si indicates
the set of time intervals in which the ith wheel is in contact (stance) phase.

The unilateral constraint ensures the contact force always pushes into the
terrain, which is equivalent to constrain the component of the contact force
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Figure 5.6: Variables of the NLP for a quadrupedal robot performing a hybrid
running trot. The parallelepiped Ri indicates the feasible workspace for ith the
wheel.

orthogonal to the terrain to be positive. This translates as follows:

Cif z
i (t ∈ Si) > 0 (5-1)

where Cif z
i (t) is the z component of the contact force on the ith wheel expressed

in the contact frame. The contact frame Ci is defined in the same way as it was
for the purely driving formulation, exemplified in Figure 5.7 for a flat terrain.
The axis cz is aligned with the terrain normal at that position, and the axis
cx is perpendicular to cz and aligned with the rolling direction of the wheel.

For ensuring no slippage while driving, the contact forces are constrained
to remain inside the friction pyramid that approximates the friction cone on
each wheel, indicated in light red in Figure 5.7. The constraint is given by:

− µ Cif z
i (t ∈ Si) ≤ Cifx

i (t ∈ Si) ≤ µ Cif z
i (t ∈ Si) (5-2)

− µ Cif z
i (t ∈ Si) ≤ Cif y

i (t ∈ Si) ≤ µ Cif z
i (t ∈ Si) (5-3)

where µ is the friction coefficient of the terrain.
Lastly, the torque limits from the wheel’s actuators are imposed by

limiting the traction force Cifx
i to a maximum value, as such:

−τmax/rw ≤ Cifx
i (t ∈ Si) ≤ τmax/rw, (5-4)

where τmax is the maximum allowed torque by the wheels’ motors and rw is
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Figure 5.7: Coordinate frames used for the hybrid trajectory optimization. The
frame B is attached to the CoM of the robot and each wheel in contact phase
has a frame Ci attached to its contact point with the ground.

the wheel’s radius.
All of these constraints are enforced on the polynomial junctions belong-

ing to contact phases. For swing phases, the wheels’ forces are set as zero and
are not optimized over.

5.3.2
Motion Constraints

The motion constraints also differ depending on the contact state of the
wheel. When in contact, the wheel can have a non-zero speed or acceleration,
but limited to the rolling direction of the wheels for consistency with driving
locomotion. This is enforced by constraining the y-velocity of the wheels’
contact point to be zero:

Ci ṗy
i (t ∈ Si) = 0 (5-5)

where Cipy
i (t) is the y component of the ith wheel contact position expressed in

the contact frame. It is important that this constraint is only enforced during
contact phases, since the wheel is allowed to move in all directions when in
swing phase.

In addition, terrain contact is enforced using a 2.5D height map of the
terrain, either analytically defined or computed from vision data, as follows:

Ipz
i (t ∈ Si) = hterrain(Ipx,y

i (t)) (5-6)
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On the other hand, the following constraint ensures no contact with the
ground during swing phases:

Ipz
i (t /∈ Si) > hterrain(Ipx,y

i (t)) (5-7)

It is worth noting that this constraint is only enforced on the polynomial
junctions inside the swing phases. Depending on the terrain complexity and on
the obstacle size, more polynomials might be necessary to ensure no collisions
with the terrain. A ground clearance threshold can also be included in this
constraint for further safety, if necessary.

An important issue that must be addressed specifically for planning
hybrid motions is ensuring a continuous acceleration profile during the driving
phases. As discussed in Section 4.1.3, the Hermite parametrization allows for
discontinuities on the acceleration profile of the wheels, which causes jittering2

on the wheel’s motions and abrupt variations in the contact forces.
When generating purely driving motions, the trajectories are always

continuous and the constraint on the acceleration continuity is simply imposed
in all nodes. This is not the case for hybrid motions. The switching from contact
to swing phase implies a rapid transition from zero velocity to lift-off speed. For
that reason, the accelerations are only constrained to be continuous within the
contact phase, but free to vary on the swing nodes. However, the accelerations
in all directions are constrained to a maximum value to prevent unreasonable
contact forces.

The effect of not including the acceleration constraints can be seen in
Figure 5.8, that shows the LF wheel’s velocity and acceleration profile in the
x-direction for the robot performing a hybrid running trot motion at an average
speed of 1.0 m/s in a straight direction. For the same motion, Figure 5.9 shows
the position, velocity and acceleration for the same wheel in the z-direction.
The transition between the contact and swing phase generates a fast change
in the acceleration in that direction, which is expected.

5.4
Results

This section presents the implementation and testing of several motions
generated by the hybrid TO framework. The motion plans are validated in
physical simulations with the ANYmal robot equipped with non-steerable
wheels in different terrains, including floating steps and gaps. These scenarios

2The term jittering in this context refers to abrupt oscillations back and forth on the
wheel’s motions in its rolling direction.
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(a) Wheel’s motion generated without the acceleration continuity constraint.

(b) Wheel’s motion generated with the acceleration continuity constraint.

Figure 5.8: Influence of the acceleration continuity constraint on the generated
motions. The red dots are the polynomial junctions and the gray areas are the
contact phases.

Figure 5.9: Position, velocity and acceleration profiles of the robot’s LF wheel
in the z-direction, with the acceleration constraint.
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are examples of situations where stepping is required and for which hybrid
motions are particularly well suited.

5.4.1
Implementation

The TO framework for hybrid motions is implemented in C++ using
the Ifopt (Winkler, 2018) interface for the interior-point method solver Ipopt
(Wächter et al., 2006). All derivatives are provided to the solver analytically,
which significantly improves its performance. The framework is tested in
simulations with the real quadrupedal robot ANYmal equipped with actuated
non-steerable wheels. The simulations are carried out in the robot simulation
environment Gazebo (Koenig and Howard, 2004) with ODE (Russell, 2008)
as the physics engine. To ensure realistic results, we use the full rigid body
dynamics of the robot, accounting for the torque limits of the actuators.

Given the contact schedule, the height map and the goal state, the TO
framework computes the reference trajectories for the base and the wheels,
as well as the wheels’ contact forces. The planned trajectories are provided as
input to the WBC, which computes the actuation torques for the joints and the
wheels at a 400 Hz frequency while accounting for several constraints, such as
actuator limitations, friction cone and the nonholonomic rolling constraints.
Figure 5.10 gives an overview of the motion planning framework for hybrid
motions.

Figure 5.10: Overview of the motion planning framework for hybrid motions.
The motion planner computes the reference trajectories for the base and the
wheels that are given as input to the WBC, that computes the actuation
torques for the robot.

For the trajectory optimization, the kinematic constraints are enforced
at a time interval of 0.08 s and the dynamic constraints are enforced every
0.1 s, which is enough to ensure the feasibility of the motion plans. On driving
phases, the force and motion constraints are enforced every 0.1 s. For swing
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phases, two polynomials were used for describing the motion in most cases, but
three polynomials were also used to improve the convergence for more difficult
cases, such as going up a step. Overall, the hybrid TO problem consists of a
non-linear non-convex optimization, which is a challenging task to solve. The
computational cost for different scenarios is presented in the following sections
along with the test results.

For the optimization, the base and the wheel’s trajectories are initialized
with a linear interpolation between the initial and final position of the robot,
assuming the average speed during the entire motion. As discussed in detail
in Chapter 3, we avoid using a cost function in the formulation to keep a low
computational cost, so the objective is simply to find a feasible solution. The
continuous 2.5D height map of the terrain required for the motion planning
was analytically defined for each of the terrains.

5.4.2
Simulations

The simulations are carried out in the robot simulation environment
Gazebo with different terrain types. Firstly, several dynamic hybrid motions
are demonstrated in flat terrain with different gaits and different final positions
for the base, requiring lateral displacement of the wheels during the swing
phase. Then, further testing shows the robot performing dynamic hybrid
motions to overcome a 0.25 m gap and a floating step with a 0.2 m height
in different positions. Scenarios with discontinuous obstacles require a motion
planner that takes into account the terrain information, which is the case for
our framework.

5.4.2.1
Flat Terrain

We demonstrate the robot performing dynamic hybrid motions in flat
terrain with several different gaits. Figure 5.11 shows some of the motions plans
generated by the hybrid TO framework. The wheels’ trajectories are indicated
with different colors (LF – red, RF – green, LH – blue, RH – yellow) and the
base trajectory is indicated in purple. The first motion, in Figure 5.11(a), is
a simple driving maneuver at an average speed of 1.0 m/s, where the wheels
must stay in contact with the terrain during the entire trajectory. The second
(Figure 5.11(b)) is a hybrid gallop motion at an average speed of 0.67 m/s,
and the third (Figure 5.11(c)) is a hybrid running trot, with full flight phases,
at an average speed of 1.0 m/s.
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Figure 5.12 shows the desired motion computed by the TO along with
the measured positions obtained from the simulation of the hybrid running
trot motion. For all the hybrid motions tested in flat terrain, the WBC was
able to track the motion plans successfully, with an average RMSE of 9.5 mm
for the base and 13.1 mm for the wheels. Note that the errors are slightly
larger during the swing motions, which are harder to track when compared to
rolling motions in terms of required actuation effort. In an attempt to improve
the tracking of the swing motions, the task “swing leg motion tracking” was
given a higher priority in the hierarchical WBC (Bjelonic et al., 2019), but
that change did not translated into significant improvement in the simulation
results.

(a) Driving gait.

(b) Hybrid gallop gait.

(c) Hybrid running trot.

Figure 5.11: The motion plans for the base and the wheels generated for
different gaits in flat terrain.

The main advantage of hybrid motions for flat terrains is the ability
to perform trajectories with lateral displacement or changes in the base’s
orientation. The interspersed swing phases in the wheels’ trajectories allow for
the lateral displacement of the wheels while in movement, which is not possible
with a purely driving motion. For the motion presented in Figure 5.13, the final
position of the base was diagonally shifted of 1.0 m from the initial position
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Figure 5.12: The desired positions provided as input to the WBC and the
measured positions from the simulation of the robot performing a hybrid
running trot motion at an average speed of 1.0 m/s.

in the y−direction and 2.0 m in the x−direction. The robot reaches the goal
by performing a lateral hybrid trot motion. When in contact, the wheels only
move in their rolling direction, as constrained in the formulation.

Figure 5.13: On the top left, a top view of the lateral hybrid trot motion, where
the robot has to go from position (x, y) = (0.0, 0.0) to (x, y) = (2.0, 1.0). On
the top right, an overview of the motion, in which it is possible to see the swing
phases. At the bottom, two snapshots of the motion’s simulation showing the
lateral displacement of the wheels.

Figure 5.14 shows the behavior obtained for the same goal position and
same gait pattern, but the final orientation of the base is rotated 90◦ with
respect to the z−axis. In this case, the robot starts with a hybrid lateral trot
and when is near the target position, it rotates the base using steps. The total
time duration for the motion is set for 4.0 s. Figure 5.15 depicts the motion
plans provided as input to the WBC and the measured data obtained from
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the simulation. The tracking RMSE for this case was 6.8 mm for the base and
15.7 mm for the wheels. During the motion, the base moves at a higher speed
during the lateral locomotion, reaching almost 1.5 m/s in the longitudinal
direction, and changes to a nearly stationary rotation in the second half of the
motion.

Figure 5.14: The robot moving laterally and then turning 90◦ with a dynamic
hybrid trot gait.

Figure 5.15: Plot results for the combined lateral motion and base turning. The
dashed lines are de desired motions, with the full lines are the data obtained
from the whole-body simulation.

The solver’s computational times for the presented maneuvers depend
on the optimization parameters and the motion complexity, but remained
on average 0.51 s per second of the trajectory. Table 5.1 shows an overview
of the computation cost for several hybrid motions tested in flat terrain.
Gaits with fewer instances of lift-off motions are computed at least two times
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faster, and motions with large changes in the base’s orientation require more
computational effort.

Table 5.1: Computation times for some of the maneuvers used to test the
hybrid TO framework in flat terrain.

Maneuver Time
horizon

Goal Position
(x,y)

Final Yaw
angle

Comp.
time

Driving 2.0 s (2.0, 0.0) m 0◦ 0.56 s
Hybrid running

trot 2.0 s (2.0, 0.0) m 0◦ 1.17 s

Hybrid gallop 3.0 s (2.0, 0.0) m 0◦ 1.73 s
Hybrid trot 2.0 s (2.0, 0.0) m 0◦ 0.64 s

Lateral hybrid trot 2.0 s (2.0, 1.0) m 0◦ 0.76 s
Lateral hybrid
running trot 2.0 s (2.0, 1.0) m 0◦ 1.87 s

Lateral hybrid trot 4.0 s (2.0, 1.0) m 60◦ 1.23 s
Lateral hybrid trot 4.0 s (2.0, 1.0) m 90◦ 2.70 s

Similar agile hybrid motions have been shown for flat terrain using
linearized ZMP constraints for the ANYmal robot with non-steerable wheels
in (de Viragh et al., 2019). However, one of the main advantages of hybrid
motions is that it enables dynamic obstacle crossing when combined with
terrain knowledge, which is verified in the following sections.

5.4.2.2
Gap

The robot’s gained ability to traverse discontinuous obstacles with dy-
namic hybrid motions is demonstrated in Figure 5.16 and Figure 5.18, in which
the robot is required to cross a gap with a 0.25 m width at an average speed
of 0.75 m/s. Two gaits were used for this maneuver: the hybrid bounding gait,
shown in Figure 5.5(f), where the robot hops with both front wheels followed
by a full stance phase and then a hop with the hind wheels; and a custom gait
based on the hybrid gallop (Figure 5.5(b)), adjusted to include a full stance
phase after the swing of the RF wheel. Such a contact sequence allows the
solver to generate trajectories that have the front wheels on one side of the
gap and the hind wheels on the other side, even if for a brief period of time.

The bounding gait maneuver is shown in Figure 5.16. The robot starts
lifting the front legs prior to the obstacle while the hind legs continue to
drive forward. When hopping with the front wheels, the robot moves the base
backwards to increase the support forces on the hind wheels and maintain
stability. This behavior is only possible because we take into account the
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dynamics of the robot during the motion planning. Once the front wheels
are on the ground, the hind wheels are moved to the other side of the gap,
completing the maneuver. The solver took 0.82 s to generate this motion. The
data plots for the simulation results, presented in Figure 5.17, show that the
WBC was able to track the desired motions with an average RMSE of 20.1 mm.
It is interesting to notice that the robot needs to reduce its speed right after
the touchdown of the front wheels to adjust itself after the impact on the front
wheels, which is not considered in the model. Even though the average speed
for the motion is 0.75 m/s, the robot reaches a maximum speed of 1.75 m/s
during the hops.

Figure 5.16: The ANYmal robot performing a dynamic hybrid bounding gait
to cross a 0.25 m gap at an average speed of 0.75 m/s.

Figure 5.17: Simulation results the hybrid bounding maneuver over the gap.
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Figure 5.18 shows the robot crossing the same gap using a different
contact schedule, similar to a hybrid gallop gait, but with an intermediate
stance phase. In this case, the LF wheel starts the movement over the gap and
before it reaches the other side of the breach, the RF wheel enters the swing
phase. Then, a similar sequence is executed by the hind wheels. The measured
data from the motion simulation is presented in Figure 5.19. The solver took
1.58 s to optimize this trajectory. In comparison to the hybrid bounding gait,
this maneuver presents a smaller RMSE tracking error, of less than 14 mm
on average, but it required almost twice the computational effort. Regardless,
the robot was able to overcome the gap with both strategies and they can be
successfully employed for such terrains.

Figure 5.18: The ANYmal robot performing a dynamic hybrid gallop gait to
cross the same gap.

Figure 5.19: Simulation results for the hybrid gallop maneuver over the gap.
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As an additional comment, the NLP formulation includes constraints
that depend on the terrain height-map, which means that discontinuities in
the terrain profile will affect the gradients and may hinder the convergence of
the solver. To overcome this problem, the abrupt changes in the terrain are
smoothed to ensure convergence. For the optimization, the gap was modeled
as a 1.5 m deep parabola, as exemplified in (Jelavic and Hutter, 2019). The
same procedure is done for floating steps by inserting a linear transition of a
very steep slope (∼ 10) between the ground and the step.

5.4.2.3
Floating Step

Another challenging obstacle that requires hybrid driving-walking mo-
tions are floating steps, that are disconnected from the ground. The same
motions could be applied to regular steps as well. Figure 5.20 shows the robot
traversing a floating step with a 0.2 m height (40% of the leg’s length) at an
average speed of 0.75 m/s, with the same hybrid gallop gait previously de-
signed for the gap terrain. Note how the robot lifts the front left wheel prior to
the obstacle and it is already in the highest position when it reaches the step,
which speeds up the maneuver. Even before the LF wheel reaches the step,
the RF wheel starts to lift-off the ground. The same procedure is then carried
out for the hind wheels to climb up the step. This maneuver was generated in
1.13 s by the solver. Figure 5.21 confirms the successful tracking of the mo-
tions by the WBC, with an RMSE less than 12 mm in average. The largest
errors happened during the RH wheel lift-off maneuver. The desired trajectory
for the RH wheel has the peak of the swing phase in a higher position and
the robot was not able to lift the wheel so far up. However, the climbing ma-
neuver was completed without any collisions. A more restrictive limit on the
z-acceleration of the wheels could prevent that, but it would also decrease the
number of possible motions that can be discovered by the planner. Moreover,
the maneuver was completed in 2.0 s. To the best of the author’s knowledge,
such a fast negotiation of a step with a height of four times the wheel’s radius
(0.05 m) with a dynamic hybrid motion has never been shown before.

The next test consists of placing the same step on the right side of the
robot’s path, with the target position at a straight distance from the robot.
This way, it is not possible to deviate from the step, the robot has to go over
it. A specific contact schedule was designed for such asymmetric obstacles,
where the left wheels are allowed to remain in contact with the ground for
the entire trajectory. The planned motion is presented in Figure 5.22, which
shows the left wheels always in driving phase, while the right wheels go up the
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Figure 5.20: The ANYmal robot performing a dynamic hybrid gallop gait to
cross a step with a 0.2 m height.

Figure 5.21: Comparison between the reference trajectories provided to the
WBC and the obtained measurements from simulations.

step. Moreover, the base finishes with a 10◦ roll angle to stay clear from the
kinematic limits of the wheels. Similar to all the other tests, the maneuver is
executed at an average speed of 0.75 m/s, but the robot reaches a maximum
speed of 1.2 m/s. In general, this is an easier motion to execute, since only one
wheel is lifted up at a time. This is translated to a RMSE tracking error of less
the 3.0 mm for both the base and the wheels, as it can be seen in Figure 5.23.
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Figure 5.22: The ANYmal robot crossing a 0.2 m high step on the right side
of its path.

Figure 5.23: Simulation results show barely any error on the trajectory tracking
for the lateral step. The executed trajectories are almost identical to the desired
motions.

5.5
Conclusions

This chapter presents a TO framework for wheeled-legged robots that
is able to generate purely driving motions, purely walking motions and si-
multaneous walking and driving motions. Such approach takes full advantage
of the hybrid nature of robots with legs and wheels and their high mobil-
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ity in rough terrain. The proposed formulation takes into account the terrain
information and the robot dynamics, which allows wheeled-legged robots to
overcome challenging and discontinuous obstacles with dynamic hybrid mo-
tions. The optimized trajectories are verified in physical simulations with the
ANYmal robot equipped with actuated wheels in different scenarios at speeds
equal or higher than 0.5 m/s. The robot is shown to perform dynamic turns
and lateral motions in flat terrain, and crossing discontinuous obstacles in a
dynamic manner. Moreover, the approach can handle both statically and dy-
namically stable gaits, including a hybrid running trot and a hybrid gallop
gait.

For the motion planning, the gait timings given as input to the solver
are considered fixed and the optimized hybrid trajectory has the same contact
schedule as the pre-defined gait sequence. The work in (Winkler et al., 2018)
proposes a formulation that allows the optimization of the gait sequence in
which the durations of each phase are also decision variables of the NLP. Future
work includes adapting this approach for wheeled-legged robots performing
dynamic motions. The implementation of a gait optimization feature in our
formulation would enable the automatic switch between driving and hybrid
motions. The optimizer would be able to increase the duration of constant
phases so the robot would drive for most of the time in flat terrain, for example.
The downside would be the significant increased computational cost associated
with contact schedule optimization.

Another point of improvement is to consider the distance from the ob-
stacles in the planning problem, preventing collisions and avoiding trajectories
that place the wheels dangerously close to the edges of the terrain, which would
improve the reliability of the motion plans. The authors in (Bratta et al., 2020)
address a similar problem for the original formulation proposed in (Winkler
et al., 2018) for legged robots with point feet. They propose the inclusion of
an additional constraint that forces the planner to place the foot in a position
where the terrain height is constant at a certain radius before and behind the
considered foothold along the robot’s direction of motion. A similar constraint
could be adapted for hybrid driving-walking locomotion as well.

Lastly, the simulation results indicate that the proposed TO is a promis-
ing candidate for application on the real ANYmal robot, that has been shown
to perform hybrid motions successfully in (Bjelonic et al., 2020). In addition,
the extended WBC discussed in Section 3.4.2 has shown success in tracking
dynamic trajectories on the real robot, as presented in (Medeiros et al., 2020).
Further measures to ensure real-world applicability include the implementation
of a feedback policy that corrects for tracking errors in the motion controller.

DBD
PUC-Rio - Certificação Digital Nº 1612796/CA



6
Conclusions and Future Work

This thesis has presented different TO formulations that enable wheeled-
legged robots to navigate in challenging terrain with dynamic motions by tak-
ing into account the height map of the terrain. The proposed formulations
generate motion plans for increasingly complex scenarios, going from a simpli-
fied 2D approach to a more general hybrid motion planning framework.

Trajectory optimization for wheeled-legged robots is a challenging task,
in which the interaction between the wheels and the base is a key aspect
of the motion. For this reason, we employ a unified approach that optimizes
over the whole-body motion and the interaction forces in a single planning
problem. A decoupled strategy with an offline motion planner and an online
terrain-aware motion controller allows for planning fast complex motions with
minimal pre-defined restrictions on the base and the wheels’ trajectories. In
all formulations, a SRBD model is used to represent the robot dynamics and
no quasi-static condition is assumed. This means that inertial effects from
accelerated motions are not neglected and no assumption of low speed is made.
The motion plans are verified in simulations and experiments with the ANYmal
robot equipped with non-steerable torque-controllable wheels. For tracking the
reference trajectories, the WBC developed in (Bjelonic et al., 2019) is extended
to use the knowledge of the terrain normals for improving accuracy on the
estimation of the wheels’ contact points.

The first formulation focuses on planning driving motions for
quadrupedal wheeled robots. In this case, common scenarios often include
little variation in the lateral dimension. Such scenarios can benefit from a
simplification of the planning problem. To this end, a TO formulation is
presented for a simplified 2D model of the wheeled-legged robot that can
overcome challenging terrain with dynamic driving motions at high speeds.
The main advantage of this approach is its fast computation time, less than
35 ms/s of trajectory, which makes it suitable for an online implementation in
its current form. Moreover, a detailed study on possible cost functions for the
trajectory optimization confirmed that the solution for the feasibility problem
is just as effective for motion planning and much faster than the proposed
alternatives. In addition, we use the current reactive framework of ANYmal
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with wheels (Bjelonic et al., 2019) as a baseline for performance comparison
in the same testing scenarios, confirming the effectiveness of a terrain-aware
approach to overcome more challenging terrains.

Next, a 3D TO formulation is developed still focusing on dynamic
driving motions. This is a more general formulation that includes asymmetric
terrains and it is able to generate trajectories with different behaviors for
the left and right wheels. An additional rolling constraint was necessary to
ensure consistency with driving locomotion. The 3D approach was tested in
experimental tests with the real robot, proving to be robust enough to be
tracked on the real system. The ANYmal robot is shown to overcome step-like
obstacles up to 65◦ slope with an average speed of 0.5 m/s.

Lastly, a comprehensive hybrid motion planning framework is developed
to fully exploit the dynamic capabilities of a wheeled-legged robot, enabling
the combination of stepping and driving motions. This formulation extends
the previous ones with the ability to negotiate discontinuous terrain types
using dynamic hybrid motions. In this case, the TO formulation combines the
set of constraints developed for purely driving motions with a phase-based
parametrization for the wheels’ trajectories (Winkler et al., 2018) that allows
the solver to compute continuous motions with different contact states for the
wheels. The physical feasibility of the trajectories is assessed in simulations
with the ANYmal robot traversing gaps and steps. By using a physically
realistic simulator that runs the exact same controller embedded on the real
robot, the feasibility of the motions can be well assessed through simulations.
This has been verified with the experiments for the driving motions.

Overall, perceptive motion planning for wheeled-legged robots in rough
terrain was achieved by exploiting data from the environment to plan the
robots’ motion. Moreover, we show that blind locomotion could not overcome
most of the testing scenarios or would traverse them in a static step-by-
step fashion at an average speed much lower than 0.5 m/s. In contrast, our
framework generates faster motions by using the map of the terrain to plan
the trajectories before starting the motions.

In summary, the main contribution of this work is the development
of a motion planning framework for wheeled-legged robots that optimizes
over the base and wheels motions and the interaction forces in a single
formulation, taking into account the dynamic model of the robot and the
terrain information, which allows wheeled-legged robots to overcome a variety
of challenging terrains with dynamic motions.
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6.1
Future Work

The results of this thesis indicate several points for future improvement
of this work. Firstly, neither of the proposed approaches take into account
uncertainties in the robot model or the terrain map. There is no feedback
policy that corrects for these effects during execution and as such the robot
can end up not accurately tracking trajectories with longer time horizons. One
way to overcome this limitation is an implementation of the motion planner
in a receding horizon fashion, employing an MPC formulation. In this case,
the motion plans are continuously updated using online measurements of the
current state of the robot and the planned trajectories are tracked for as long
as it takes to compute a new one. This would allow the online adaptation of
the trajectories to unpredicted disturbances and model mismatches.

The main concern for enabling a future MPC implementation is reducing
the computational cost for solving the NLP. For that, more sophisticated
initialization strategies can be investigated based on learning methods (Melon
et al., 2020). Another possibility is to leverage information from offline planned
trajectories to use as an initial guess for the online planner, which would speed
up the computation. Moreover, an adaptive grid sampling for the problem
discretization can be developed for improving the efficiency of the algorithm
and focusing the evaluation of the constraints to more complex parts of the
terrain.

In addition, the trajectory optimization problem is formulated as an NLP
with discretized variables and constraints. This approach is easier to implement
and there are several efficient off-the-shelf numerical solvers available for
solving large-scale NLP problems. However, the NLP formulation suffer from
all typical issues of a gradient-based approach. They are very sensitive to
changes in the initial guess and highly prone to local minima, which can also
be improved by employing smarter initialization techniques for the motions.

The hybrid motion framework can be further improved to include the
optimization of the gait timings, which would allow the solver to automatically
discover the ideal gait for traversing the given terrain. With the current
implementation, the user must provide the gait pattern to be used depending
on the scenario. However, contact schedule optimization would considerably
increase the computation cost of the framework.

Lastly, the next step of this work would be to integrate an online
perception system with the motion planning framework, enabling complete
autonomous navigation in unknown environments.
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6.2
Publications

During the development of this work, the two following papers were
published in international conferences:

Medeiros, V. S., D. G. G. Rosa, and M. A. Meggiolaro (2019). Torque
Optimization for Stability Control of Wheeled Vehicles in Rough
Terrain. In: XVIII International Symposium on Dynamic Problems of Me-
chanics (DINAME 2019).

Medeiros, V. S., M. Bjelonic, E. Jelavic, R. Siegwart, M. A. Meggiolaro, and
M. Hutter (2019). Trajectory Optimization for Wheeled Quadrupedal
Robots Driving in Challenging Terrain. In: 9th International Symposium
on Adaptive Motion of Animals and Machines (AMAM 2019).

The following journal paper was published in the journal IEEE Robotics
and Automation Letters (Qualis A1), regarding the 3D driving formulation:

Medeiros, V. S., E. Jelavic, M. Bjelonic, R. Siegwart, M. A. Meggiolaro,
and M. Hutter (2020). Trajectory Optimization for Wheeled-Legged
Quadrupedal Robots Driving in Challenging Terrain. In: IEEE
Robotics and Automation Letters 5 (3), pp. 4172–4179.

Moreover, the following two papers are in the final stages of production
for future journal submission:

Medeiros, V. S., E. Jelavic, M. Bjelonic, R. Siegwart, M. A. Meggiolaro, and
M. Hutter. Dynamic Driving for Wheeled-Legged Robots in Rough
Terrain Using 2D Trajectory Optimization. Future submission to Jour-
nal of Intelligent & Robotics Systems (Qualis A2).

Medeiros, V. S., E. Jelavic, M. Bjelonic, R. Siegwart, M. A. Meggiolaro,
and M. Hutter. Motion Planning for Hybrid Dynamic Locomotion of
Wheeled-Legged Robots in Rough Terrain.. Future submission to IEEE
Robotics and Automation Letters (Qualis A1).
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A
Hermite Parametrization

The TO problem is transcribed into a NLP problem, in which the state
trajectory is represented using discrete variables and the constraints are enforced at
specific points along the trajectory. The continuous time motions are then obtained
by a interpolation with a cubic polynomial:

x(t) = a0 + a1t+ a2t
2 + a3t

3 (A-1)

For which the velocity profile is given by:

ẋ(t) = a1 + 2a2t+ 3a3t
2 (A-2)

Since four coefficients are available, the cubic polynomial can be parametrized
by the initial and final position values x0 and x1, the initial and final derivatives
ẋ0 and ẋ1, and its time duration ∆T , as illustrated in Figure A.1.

Figure A.1: Example of a cubic curve using Hermite parametrization.

Given these parameters, the determination of the trajectory is given by the
solution of the following system of equations:

a0 = x0

a1 = ẋ0

a0 + a1∆T + a2∆T 2 + a3∆T 3 = x1

a1 + 2a2∆T + 3a3∆T 2 = ẋ1

(A-3)

Solving the system in (A-3), the coefficients are given by:

a0 = x0

a1 = ẋ0

a2 = −∆T−2[3(x0 − x1) + ∆T (2ẋ0 + ẋ1)]
a3 = ∆T−3[2(x0 − x1) + ∆T (ẋ0 + ẋ1)]

(A-4)
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