CARLOS CARVALHO WITTE

DANIEL ZACARIAS FREITAS

PROJETO DE CONSTRUÇÃO E CONTROLE DE MOVIMENTO DE UM ROV

PROJETO FINAL DE GRADUAÇÃO

Rio de Janeiro, Julho de 2011

AGRADECIMENTOS:

Ao nosso orientador, Professor Marco Antônio Meggiolaro, pela confiança, estímulo, paciência, e parceria para a realização deste trabalho.

Ao Professor Mauro Shwanke, pela ajuda no momento da construção e projeto.

A PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Aos nosso amigos da Riobotz, que ajudaram sempre quando foi preciso.

Aos amigos ex-alunos da PUC-RIO que ajudaram com toda sua experiência.

Aos nossos amigos da PUC-Rio, que sempre me ajudaram e incentivaram nessa difícil tarefa.

SUMÁRIO:

LISTA DE ILUSTRAÇÕES:	4
LISTA DE TABELAS:	6
LISTA DE SIMBOLOS E ABREVIATURAS:	6
RESUMO:	7
1. INTRODUÇÃO	7
1.1. VEÍCULOS SUBMERSÍVEIS	8
1.1.1. OS VEÍCULOS SUBMERSÍVEIS NÃO TRIPULADOS	9
1.1.2. RESUMO DAS TECNOLOGIAS UTILIZADAS EM VEÍCULOS SUBMERSÍVEIS N TRIPULADOS	√ÃO - 12
1.1.3. SUBMERSÍVEIS NÃO TRIPULADOS CONSTRUIDOS NO BRASIL	- 12
1.2. ROV - VEÍCULOS OPERADOS REMOTAMENTE	- 13
1.2.1. CLASSIFICAÇÃO DOS ROV	- 13
2. FUNDAMENTOS TÉORICOS	- 19
2.1. Teoria de Controle:	- 19
2.1.1. Controle	- 19

2.1.2.	Malha de Controle	19
2.2. Co	nceito de Retroação	20
2.2.1.	Controle em Malha Aberta (MA)	20
2.2.2.	Controle em Malha Fechada (MF)	21
3. DESI	ENVOLVIMENTO	22
3.1. M	odelagem Dinâmica:	22
3.1.1.	Definindo Coordenadas:	22
3.1.2.	Definindo a Matriz de Rotação:	23
3.1.3.	Modelando o Fluído:	23
3.1.4.	Velocidade Linear:	24
3.1.5.	Velocidade Angular:	24
3.2. De	escrevendo o movimento do ROV considerando 6 graus de liberdade:	25
3.2.1.	O Movimento de um Corpo Rígido	26
3.3. Pr	opulsores e Posicionamento:	28
3.3.1.	Propulsores	28
3.3.2.	Posicionamento	30
3.4. Co	omponentes	34
3.4.1.	Propulsores	34
3.4.2.	Eletrônica de Controle	38
3.4.3.	Rádio Transmissor e Receptor RC	41
3.4.4.	Sensores	41
3.5. Es	trutura do ROV e Montagem:	42
3.5.1.	Validação de um Projeto	42
3.5.2.	Material da Estrutura:	44
3.5.3.	Versões dos protótipos:	45
3.5.4.	Montagem	47
4. RESI	JLTADOS	49
4.1. Sii	nulação da dinâmica	49

4.2	. Aq	uisição e Controle	- 53
Z	1.2.1.	Testes da comunicação com os sensores usando o Hyperterminal	- 53
De	scrição	geral do HyperTerminal:	- 53
Z	1.2.2.	Aquisição e Controle PID usando o LABVIEW	- 57
4.3	. Tes	stes do ROV com controle RC	- 62
5.	CON	CLUSÕES	- 64
6.	BIBLI	OGRAFIA	- 65
7.	APÊN	IDICES	- 66

LISTA DE ILUSTRAÇÕES:

FIGURA 1: Resumo dos veículos não-tripulados e seus níveis de autonomia	12
FIGURA 2: LCROV- Exemplos de ROV de baixo custo utilizados em inspeções e obs subaquáticas.	ervações 14
FIGURA 3: ROV Stealth 17 da HITEC.	16
FIGURA 4: ROV Tiburon do Monterey Bay Aquarium Research Institute (MBARI)	17
FIGURA 5: ROV KAIKO desenvolvido no Japão.	18
Figura 6: Exemplificação dos elementos de uma malha fechada de controle	20
Figura 7: diagrama do controle em malha aberta	21
Figura 8: diagrama do controle em malha fechada	21
FIGURA 9: Funcionamento da bomba	30
FIGURA 10: Vista isométrica das forças dos propulsores	31
FIGURA 11: Forças Exercidas na Direção Z	32
FIGURA 12: Saída da tubulação de descarga anguladas de 45 GRAUS	32
FIGURA 13: Bombas de Porão de Barco	34
FIGURA 14: Propulsores Convencionais	35
FIGURA 15: Detalhes da bomba Tsunami	
FIGURA 16: Poscionamento dos modelos distintos das bombas	

FIGURA 17: Attwood® Tsunami T800 Bilge Pump	37
FIGURA 18: Attwood [®] Tsunami T1200 Bilge Pump	38
FIGURA 19: Organização dos componentes em uma mala	41
Figura 20: Razor IMU e a dimensões	42
FIGURA 21: Avaliação do modelo 3d	43
FIGURA 22: Projeto renderizado no solidworks	44
FIGURA 23: Estrutura da primeira versão do ROV	45
FIGURA 24: Estrutura da segunda versão do ROV	46
FIGURA 25: Estrutura da versão final do ROV	47
FIGURA 26: Pré-Montagem da primeira versão do ROV	48
FIGURA 27: VISTA DO TOPO COM O POSICIONAMENTO DEFINIDO DAS BOMBAS	49
FIGURA 28: Sistema de Malha Aberta representado no Simulink	50
FIGURA 29: Simulação das velocidades X-Y em um intervalo de 0 a 400 segundos, a velocida em m/s	de 52
FIGURA 30: Simulação da posição X-Y em um intervalo de 0 a 400 segundos, deslocamento e metros.	em 53
Figura 31: Hiperterminal Identificação da porta de comunição	53
Figura 32: Configurações da porta com5	54
Figura 33: Firmware da central incercial 9dof IMU	55
Figura 34 : Valores de saída do acelerômetro	55
Figura 35: valores apresentados pelo Magnetômetro	56
Figura 36: Valores apresentados pelo giroscópio	57
Figura 37: Todos os valores dos sensores Representados no hyperterminal	57
Figura 38: Programa no Labview para aquisição e controle PID	58
Figura 39: Interface com o Usuário	59
Figura 40: Calibrando o PID pelos setponts	60
Figura 41: Resposta PID ao se aproximar do setpoint	61
Figura 42: Saída positiva para estabilização do Setpoint	62
Figura 43: Velocidade de resposta do controle PID	62

FIGURA 44: Protótipo Montado	. 63
FIGURA 45: Movimentação do protótipo	. 63
FIGURA 46: iniciando processo de submersão	. 64
FIGURA 47: Protótipo submerso	. 64
FIGURA 48: Rádio Spectrum DX6	. 67
FIGURA 49: Receptor Spectrum BR6000	. 68

LISTA DE TABELAS:

TABELA 1: Alguns submersíveis existentes	12
TABELA 2: Classificação dos Veículos Operados Remotamente	14
TABELA 3: especificações da bomba utilizada	29
TABELA 4: Especificação Attwood [®] Tsunami Bilge Pump	67
Tabela 5 : eSpecificações do ADXI345, Acelerometro Digital	69
Tabela 6: eSpecificações do Magnetometro Digital, HMC5843	70
Tabela 7 : eSpecificações do girometro, ITG-3200	71

LISTA DE SIMBOLOS E ABREVIATURAS:

- ROV = Remote Operated Vehicle
- UUV = Untethered Underwater Vehicle
- AUV = Autonomous Underwater Vehicle
- I = matriz identidade
- $\alpha = \hat{a}ngulo \ de \ rota$ ção
- v = vetor unidade
- $(\gamma)^{\circ} = \hat{a}ngulo \ do \ Yaw$

RESUMO:

Neste trabalho são apresentados o projeto conceitual, o desenvolvimento, e a construção de um veículo submersível remotamente operado (ROV), este possuindo controle de estabilidade por meio de uma central inercial com 9 graus de liberdade. Os principais aspectos que foram considerados no modelo são: Propulsão e vetorização do empuxo, assim como seu comportamento em um meio sem instabilidade. O objetivo foi desenvolver um protótipo de baixo custo, para que o controle seja implementado sem que houvesse aquisição de um veículo já existente no mercado. Os resultados e testes realizados foram em uma piscina onde é possível desprezar influencias externas de correntezas no sistema.

1. INTRODUÇÃO

O objetivo do projeto é guiar e controlar um ROV (Remote Operated Vehicle), ou seja, veiculo submarino de operação remota. Os ROVs geralmente são equipados de sensores e câmeras de vídeo de alta definição, o operador realiza o controle em um local seguro, onde consegue localizar o seu equipamento por algum sistema de posicionamento dinâmico, pelas imagens ou informações dos sensores geradas pelo ROV. É um equipamento muito utilizado em diversos setores da indústria, a sua versatilidade permite atuar em áreas de difícil acesso do inspetor ou operador humano. No Brasil, os ROVs podem ser aplicados no promissor mercado de petróleo e gás, com a exploração de recursos em águas profundas e ainda na área portuária, em inspeções de cascos de navios e do cais. O profissional, piloto de ROV, também pode atuar em operações de segurança, inspeção de obras de engenharia sob a água, e missões de resgate subaquático.

A orientação é a ação de determinar o curso, atitude e velocidade do veículo, em relação a algum sistema de referência (normalmente a terra), a ser seguida pelo veículo.

O controle é o desenvolvimento e a aplicação de forças e momentos adequados a um veículo para o acompanhamento do ponto de controle e estabilização. Trata-se de conceber as leis de controle *feedfoward* e *feedback*.

1.1. VEÍCULOS SUBMERSÍVEIS

Os veículos submersíveis existentes hoje podem ser classificados de uma forma geral, segundo Jimenez (2004), em:

Submersíveis Tripulados:

- Submersíveis Militares;
- Submersíveis de Pesquisa.

Submersíveis Não Tripulados:

- Veículos rebocados

- Veículos Operados Remotamente ROV (remotely operated vehicle);
- Veículos Submersíveis Semi-Autônomos UUV (untethered underwater vehicle).

- Veículos Submersíveis Autônomos - AUV (autonomous underwater vehicle);

1.1.1. OS VEÍCULOS SUBMERSÍVEIS NÃO TRIPULADOS

Segundo a Marine Technology Society of USA (1984), os méritos pelo desenvolvimento dos primeiros veículos submersíveis não tripulados podem ser atribuídos à empresa *Luppis-Whitehead Automobile* e à Dimitri Rebikoff. Esta empresa *Luppis-Whitehead Automobile*, desenvolveu em 1864, na Áustria, um veículo submersível que apresentava a forma de um torpedo que foi intitulado de PUV (veículo subaquático programado). Em 1953, o francês Dimitri Rebikoff (1921-1997) desenvolveu o "*Poodle*" para observação em águas profundas.

Desde então, inúmeros submersíveis foram construídos para as mais diversas atividades, entre as quais a inspeção e vistoria de estruturas submersas. A necessidade de realizar manutenção em equipamentos e estruturas localizadas a grandes profundidades e a exploração de áreas subaquáticas inacessíveis ao ser humano, principalmente para atividade petrolífera, levou ao desenvolvimento de equipamentos capazes de realizar com precisão e eficácia estes trabalhos sem oferecer risco ao ser humano. Estes equipamentos abrangem uma vasta gama de veículos, que vai dos mais simples submersíveis aos mais complexos (HOVER, 2002 e YUH, 1995).

Os ROV são veículos tele-operados equipados normalmente com vários propulsores e que utilizam um cabo, denominado umbilical, responsável pela troca de informações entre o veículo e a estação de terra (WASSERMAN et. al., 2003). Estes veículos são usados principalmente para tarefas de inspeção, observação e manutenção (JIMENEZ, 2004 e KIM et. al., 1999). Os ROV são basicamente equipamentos controlados por uma estação e que são capazes de se deslocarem de acordo com a necessidade do operador. Normalmente os sistemas embarcados nestes equipamentos são constituídos por conjuntos de transdutores, sistemas de vídeo, sistemas atuadores, sistema de iluminação, sistemas de potência, sistema de flutuação e sistemas de controle.

Os UUV representam os veículos submersíveis semi-autônomos, que são veículos não tripulados capazes de realizar uma missão subaquática pré-estabelecida, mas que dependem em parte de operadores externos para executarem a missão. Estes veículos não utilizam cabo na comunicação com os operadores externos e sim sinais enviados à estação de terra ou a antenas de retransmissão posicionadas ao longo da área de inspeção.

A etapa seguinte na evolução dos equipamentos submersíveis corresponde ao desenvolvimento dos veículos submersíveis autônomos (AUV). Os AUV mostraram-se tecnologicamente mais avançados e apresentaram uma grande vantagem sobre os ROV: o fato de não estarem limitados por um cabo preso à superfície. Além disso, dispõem de uma semiinteligência proporcionada pela integração da arquitetura de hardware e de softwares capazes de fornecerem uma semi-autonomia. Normalmente são utilizados em missões subaquáticas de longa duração, sem intervenção humana. Os AUV são dispositivos pré-programados, capazes de realizarem com certa precisão um re-planejamento de suas tarefas, caso necessário. Os sistemas embarcados em um AUV se equiparam aos sistemas embarcados nos UUV e nos ROV, diferenciando-se por apresentarem o subsistema de potência também embarcado. A limitação destes equipamentos reside na capacidade de carga extra que o AUV suporta. Esta limitação reflete na tendência atual de que os ROV evoluirão para um sistema híbrido, situação em que se pretende alcançar a capacidade de carga suportada pelos ROV aliada à autonomia dos AUV.

Alguns submersíveis existentes e seus dispositivos de propulsão e vetorização de empuxo.

Submersíveis	Desenvolvedor	Class.	Tipo de Tipo de		Velocidade	Peso
			Propulsor	Vetorização de Empuxo	(m/s)	(Kg)
Odsseya IIb 1995	Ddsseya IIb 1995 MIT Al		1 Hélice	Planos direcionais	1,00	-
Autosub-1 Southampton 1995 Oc. Center		AUV	1 Hélice	Planos Direcionais	1,80	-
Albac 1992	IIS, Univ.Tokyo	AUV	Deslizamento	Deslocamento C.G.	0,50 - 1,00	45
<u>Remus</u> 1997	W. H. O. I.	AUV	1 Hélice	Planos Direcionais	0,25 - 2,80	37
ARCS	ISE Research	AUV	1 Hélice	Planos Direcionais	1,50	1360,80
SAILARS	ISE GROUP	AUV	2 Hélice	Planos Direcionais	-	-
KORAL-AT	Fac.Ocean Tech.	ROV	5 Hélices	4 Horizontais e 1 Vertical	1,00	60
VORAM 1997	Korea Research	AUV	3 Hélices	2 Horizontais e 1 Vertical	1,25	375
VSI-02	CPH / UFMG	ROV	6 Hélices	2 Horizontais e 4 Verticais	-	245
NEKTOR	Nektor	AUV	Planos Flexíveis	4 Horizontais e 4 Verticais	-	-
<u>Mini Max 2000</u>	DeepSea System	ROV	4 Hélices	2 Horizontais Popa 2 Vert./Transv. 45°	Lat - 0,75 Vert - 0,75 Hor - 1,90	636
Power III		AUV	1 Hélice	Leme	-	-
Stingray	Benthos	ROV	4 hélices	2 horizontais	2,5 (horiz.)	86,8
				1 vertical e 1 lateral	0,40 - 0,50	,-
Phoenix 1992	N. P. S. Monterey – CA	AUV	6 Hélices	8 superfícies de controle (2 hélices longitudinais, 2 transversais e 2 verticais)	1,75	225
JHU	Johns Hopkins University	ROV	6 Hélices	2 horizontais / 2 transversais Opostas e 2 verticais	-	140
SubjuGator		ROV	4 propulsores de hélice	2 horizontais e 2 verticais	-	40,82
ANIMIDA (TUVAAQ)		AUV	3 hélices	2 horizontais e 1 vertical	1,00	90
TALON	THETIS	ROV	4 hélices	2 horizontais e 2 verticais	0,50	50
MARIDAN		AUV	2 propulsores de hélice	Aileron	0,25 - 2,00	1700
<u>MiniRover Mk-</u> <u>II</u>	Benthos	ROV	3 hélices	Controle de Empuxo das hélices	0,50	35
Phantom 300	UNCW	ROV	3 hélices	-	0,25	32
Phantom S2	UNCW	ROV	6 hélices	4horizontais / 2 verticais	1,00	145
Mk-I (2002)	NURC	ROV	6 hélices	4 horizontais e 2 verticais	1,00	820
C-Scout (2002)		UUV	1 hélice	4 superfícies de controle	3,00 - 4,00	-
MAGELLAN™ 725	Oceaneering	ROV	7 propulsores de hélices	2 axial / 3 vertical 2 lateral e (reversíveis)	-	2100
MAGELLAN 825	Oceaneering	ROV	7 propulsores de hélices	2 axial / 3 vertical 2 lateral e (reversiveis)	-	3000
PHOENIX	DOE	ROV	8 propulsores de hélices	2 axial / 4 vertical 2 lateral e (reversíveis)	1,50	670
QUEST	Alstom	ROV	7 propulsores de	3 Vertical	1,50	2000
Schilling			hélices	4 horizontais	Lat. 1,25	
	Robotics		(elétricos)	(reversíveis)	Vert. 1,00	
Xanthos Odyssey Ilx	MIT	AUV	1 hélice	Planos direcionais	0,50 - 1,50	200
Odyssey III	MIT	AIT AUV 1 propulsor de hélice -		-	1,50 - 2,00	400
ODIN (1995)	ODIN ASL AUV 8 propulsores de 4 horizontais		4 horizontais 4 verticais	1,00	-	
SHINKAI 6500	JAMSTEC	AUV	1 hélice princ. e 3 hélices aux.	1 hélice principal / 1 transversal ao eixo e 2 verticais	0,70	-
		7 (000)				

FONTE – Adaptada de YUH (2000)

1.1.2. RESUMO DAS TECNOLOGIAS UTILIZADAS EM VEÍCULOS SUBMERSÍVEIS NÃO TRIPULADOS

Segundo Jimenez (2004), todos os sistemas desenvolvidos e utilizados até hoje em processos de inspeção submersa apresentam vantagens e limitações. Por isso é necessário definir previamente as aplicações específicas que se pretende realizar a fim de que se possa estabelecer com clareza o tipo de sistema a adotar.

A FIGURA (1) permite uma visualização geral de todos os sistemas e seus níveis de automação.

FIGURA 1: RESUMO DOS VEÍCULOS NÃO-TRIPULADOS E SEUS NÍVEIS DE AUTONOMIA.

FONTE – JIMENEZ, 2004.

Este trabalho tratará especificamente dos ROV (veículos submersíveis não tripulados e remotamente operados).

1.1.3. SUBMERSÍVEIS NÃO TRIPULADOS CONSTRUIDOS NO BRASIL

No Brasil existem poucos trabalhos na área de robótica subaquática. Dentre os trabalhos encontrados, as principais temáticas abordadas foram sobre dinâmica e controle. Dominguez

(1989) apresenta um estudo sobre modelagem e desenvolvimento de um programa para simulação dinâmica de veículos submarinos. Cunha (1992) propõe um sistema de controle à estrutura variável de um ROV. Hsu et al.(2000) apresentam um procedimento para identificação do modelo dinâmico dos propulsores. Souza e Maruyama (2002) apresentam diferentes técnicas de controle para posicionamento dinâmico. Tavares (2003) desenvolveu um estudo sobre modelos cinemáticos e dinâmicos de veículos subaquáticos. Bastos (1998) apresentam o desenvolvimento e construção de veículo submersível de inspeção.

1.2. <u>ROV - VEÍCULOS OPERADOS REMOTAMENTE</u>

Segundo a Marine Technology Society of USA (1984) e o National Research Council of USA (1996), o veículo remotamente operado (ROV) é descrito como um robô subaquático que permite que o operador permaneça em um ambiente confortável enquanto o ROV executa o trabalho subaquático. O ROV é controlado por um cabo umbilical (tether) que interliga os sinais do comando e de controle do veículo, enviando as informações dos sensores aos operadores. Em sistemas mais complexos, uma garagem submersa composta pelo cabo umbilical e o sistema de gerência (Tether Management System - TMS) é freqüentemente incluída.

1.2.1. CLASSIFICAÇÃO DOS ROV

Os ROV podem ser classificados quanto ao tamanho, à capacidade de submersão, à potência embarcada, dentre outras características, tais como os sistemas de atuadores: elétricos, hidráulicos ou eletro-hidráulicos. Suas dimensões são diretamente relacionadas com o número de funções e conseqüentemente quantidade de sistemas embarcados. Existem pequenos ROV que são equipados apenas com uma câmera de vídeo, sendo geralmente utilizados em tarefas específicas de observação. E existem veículos maiores, equipados com sistemas mais complexos, como por exemplo: manipuladores, sistema de captação de imagem por diversas câmeras, ferramentas mecânicas e outros equipamentos embarcados.

A TABELA 2 apresenta uma classificação fornecida pela *Marine Technology Society of USA* (1984), que relaciona a capacidade de submersão, o tipo de trabalho, a potência demandada pelos sistemas embarcados e os sistemas de atuadores.

Classe (Atuadores)	Trabalho (Capacidade de Submersão)	Potência (kW)
LCROV (Elétrico)	Observação (<100 metros)	< 3,75
Pequenos (Elétrico)	Observação (< 300 metros)	< 7,5
<i>Grandes</i> (Elétrico)	Observação/Trabalho Leve (< 3.000 metros)	< 15
Ultra-Profundos (Elétrico)	Observação/Coleta de Dados (>3.000 metros)	< 18,75
<i>Médios</i> (Elétrico/Hidráulico)	Trabalho Mediano (+-Pesado) (<2.000 metros)	< 75
<i>Grandes</i> (Elétrico/Hidráulico)	Trabalho Pesado/Grande Carga Extra (<3.000 metros)	< 225
Ultra-Profundos (Elétrico/Hidráulico)	Trabalho Pesado/Grande Carga Extra (>3.000 metros)	< 90

Classificação dos Veículos Operados Remotamente (ROV)

FONTE - Comitê da Sociedade de Tecnologia Marinha dos EUA, 1984.

TABELA 2: CLASSIFICAÇÃO DOS VEÍCULOS OPERADOS REMOTAMENTE

Os veículos considerados pequenos incluem a maioria dos ROV de baixo custo ("*low-cost*"-LCROV). Estes veículos são usados primeiramente para tarefas de inspeção e de observação. Os ROV de baixo custo (LCROV) apareceram em 1981 com o RASCL da *International Submarine Engineering's* (ISE,2000). Em 1990, trinta e cinco novas versões de LCROV, FIG. 2 podiam ser encontradas, sendo construídas por vinte e sete fabricantes diferentes. Os

LCROV representam hoje aproximadamente 22% de todos os ROV desenvolvidos no mundo (NATIONAL RESEARCH COUNCIL, 1996).

FIGURA 2: LCROV- EXEMPLOS DE ROV DE BAIXO CUSTO UTILIZADOS EM INSPEÇÕES E OBSERVAÇÕES SUBAQUÁTICAS.

FONTE – http://www.rov.org/educational/pages/Small%20Vehicles.html acessado em 01/06/2011.

A classe dos ROV médios engloba veículos eletro-hidráulicos que variam de 15 a 75 kW de potência, e que podem carregar cargas extras moderadas. Esta escala de ROV pesam de 1.000a 2.200 quilogramas, com capacidade de carga extra (*payload*) entre 100 e 200 quilogramas.

Geralmente possuem um único manipulador, mas podem ser equipados com até dois. Estes veículos compreendem a classe mais extensamente usada de ROV e foi desenvolvida para executar trabalhos considerados moderados. As tarefas típicas desta classe de ROVS são: perfuração, inspeção de tubulações e manutenção.

Os ROV Super Scorpio, Cobra e Viper, que representam esta classe, foram desenvolvidos utilizando tecnologias mais antigas, consideradas ultrapassadas quando comparadas às utilizadas hoje em veículos com a mesma potência.

Os ROV classificados como grandes representam os que estão sendo usados para operações em até 3000 metros de profundidade com potências que variam de 15 a 225 kW. Os ROV desta classe, tais como o TRITON XLS da *Perry Tritech*, pesam aproximadamente (sem cargas de trabalho), de 2.000 a 6.500 quilogramas. São capazes de executar operações submersas em instalações profundas e de carregar e levantar grandes cargas.

Como exemplo de ROV utilizados especificamente para aplicações na exploração de óleo podese citar: o Stealth 17 da *HITEC*, FIG.3, o TRITON XL da *Perry Tritech*, o HiROV 3000 e o HiROV 3500, o SCV-3000 da *Stolt Comex Seaway*, o Olympian da *Slingsby* e o Magnum do *Oceaneering*.

FIGURA 3: ROV STEALTH 17 DA HITEC.

FONTE- <u>http://www.btinternet.com/~derek.mackay/offshore/images/rov/stealth17.jpg</u> acessado em 01/06/2011.

Uma outra classe de veículos é representada por aqueles ROV especiais (*Ultra-Deep*), construídos com a capacidade de trabalhar em profundidades acima de 3.000 metros. Estes veículos tendem a ter um menor consumo de potência o que permite manter um diâmetro pequeno do cabo umbilical sendo usados principalmente para pesquisa oceânica, busca e missões de salvamento.

FIGURA 4: ROV TIBURON DO MONTEREY BAY AQUARIUM RESEARCH INSTITUTE (MBARI).

FONTE: *http://www.soest.hawaii.edu/hannides/galleries/Calbasins/Tiburon.html* acessado em 01/06/2011.

Finalmente, com a tecnologia desenvolvida para os ROV, estes veículos quebraram em 1990 a barreira dos 6.000 metros de profundidade. O primeiro ROV capaz de alcançar esta profundidade foi o veículo CURV III, operado pela *Eastport International* (agora *Oceanering Technologies Inc.*), que alcançou uma profundidade de 6.128 metros. Uma semana mais tarde, o registro anterior foi quebrado pelo mergulho do *Advanced Tethered Vehicle* (ATV) a uma profundidade de 6.279 metros.

O ROV KAIKO (FIG.5), desenvolvido no Japão, alcançou um dos pontos mais profundo da terra a 10.911,4 metros em 1995.

FIGURA 5: ROV KAIKO DESENVOLVIDO NO JAPÃO.

FONTE- <u>http://www.whoi.edu/science/GG/people/adeschamps/cruises/cruisee.html</u> acessado em 01/06/2011.

2. FUNDAMENTOS TÉORICOS

2.1. <u>TEORIA DE CONTROLE:</u>

2.1.1. CONTROLE

Supervisionar e manter o processo em um determinado ponto de operação. Tomada de decisão, envia sinais de correção para os atuadores.

Medir o valor da variável controlada e aplicar o valor conveniente a variável manipulada (sinal de correção) de modo a limitar o erro ou desvio.

Benefícios do controle bem realizado: diminuição de funções repetitivas, melhora de produtividade, diminuição de erros e perdas no processo.

Variável Controlada é a grandeza que é medida e controlada.

Variável Manipulada é a grandeza variada pelo controle de modo a afetar a variável controlada.

Distúrbio é a perturbação que afeta de modo adverso a variável controlada. Ruído.

2.1.2. MALHA DE CONTROLE

Abaixo será mostrado os elementos de uma malha de controle.

FIGURA 6: EXEMPLIFICAÇÃO DOS ELEMENTOS DE UMA MALHA FECHADA DE CONTROLE

- X sinal de referência (set-point).
- Y variável controlada.
- C variável manipulada.
- E sinal de erro.
- R sinal medido (sinal de retroação).
- D distúrbio do sistema.

2.2. <u>CONCEITO DE RETROAÇÃO</u>

Trata-se de um sistema que mantém uma relação entre a grandeza sinal de saída e um valor de referência. A grandeza variável controlada é medida e é comparada com um valor de referência (set-point), a diferença obtida a partir desta comparação é informada ao controle que atua na planta de modo a diminuir ou anular tal desvio.

Sistemas em Malha Fechada são Sistemas com Retroação

Sistemas em Malha Aberta, o valor do sinal de saída não afeta o controle.

2.2.1. CONTROLE EM MALHA ABERTA (MA)

Nestes sistemas o sinal de saída não é medido, e não afeta a ação de controle. A exatidão do sistema depende de uma calibração. Portanto são usados quando não existe distúrbio atuando.

FIGURA 7: DIAGRAMA DO CONTROLE EM MALHA ABERTA

2.2.2. CONTROLE EM MALHA FECHADA (MF)

Nestes sistemas o sinal de retroação da variável controlada é comparado com o set-point. A diferença obtida desta comparação (o erro) é utilizada como parâmetro de entrada do controle, que então atua naplanta com o objetivo de diminuir o próprio erro.

FIGURA 8: DIAGRAMA DO CONTROLE EM MALHA FECHADA

Este tipo de controle torna o sistema insensível as perturbações externas. A partir da medição da variável controlada e da comparação do seu valor com o set-point atua para garantir a estabilidade. Contudo esta estabilidade nem sempre é fácil de garantir, e para isto torna-se necessário sintonizar o controle de tal modo que atue o suficiente para corrigir os erros, nem mais nem menos.

3. DESENVOLVIMENTO

3.1. MODELAGEM DINÂMICA:

3.1.1. DEFININDO COORDENADAS:

Na modelagem é considerado o empuxo igual ao peso então o ROV é considerado como um corpo rígido no espaço.

Inicialmente se determina os sistemas de coordenadas a serem utilizados na modelagem dinâmica.

Seguem os sistemas de coordenadas utilizados:

Coordenadas representando a Terra (T):

Coordenadas representando o corpo rígido (C):

Xc – Ré pra frente

Yc – Coordenada Transversal

Zc – Topo pro fundo

3.1.2. DEFININDO A MATRIZ DE ROTAÇÃO:

 $^{T}v = ^{T}R_{C}C_{v}$

$${}^{\mathsf{T}}\mathsf{R}_{\mathsf{C}} = e^{\alpha S(v)} = \cos(\alpha) I + (1 - \cos(\alpha))vv^{T} + sen(\alpha)S(v)$$

Onde:

- *I* = matriz identidade
- $\alpha =$ ângulo de rotação

v = vetor unidade

 $X_3Y_3Z_3=Yaw\,(\gamma)^\circ$

 $X_2 Y_2 Z_2 = Pitch (\theta)^{\circ}$

 $X_1Y_1Z_1=Roll\,(\varphi)^\circ$

$${}^{\mathsf{T}}\mathsf{R}_{\mathsf{C}} = e^{\gamma S(\begin{bmatrix} 0\\0\\1\end{bmatrix})} e^{\theta S(\begin{bmatrix} 1\\0\\0\end{bmatrix})} e^{\theta S(\begin{bmatrix} 1\\0\\0\end{bmatrix})} = \\ \begin{bmatrix} \cos(\theta)\cos(\gamma) & \cos(\theta)\sin(\Phi) & -\sin(\theta)\\ \sin(\gamma)\sin(\theta)\cos(\varphi) - \cos(\gamma)\sin(\Phi) & \sin(\gamma)\sin(\theta)\sin(\Phi) + \cos(\gamma)\sin(\Phi) & \sin(\gamma)\cos(\theta)\\ \cos(\gamma)\sin(\theta)\cos(\varphi) + \sin(\gamma)\sin(\Phi) & \cos(\gamma)\sin(\theta)\sin(\Phi) - \sin(\gamma)\cos(\Phi) & \cos(\gamma)\cos(\theta) \end{bmatrix}$$

3.1.3. MODELANDO O FLUÍDO:

Considerando a Matriz de Rotação do Fluído:

$${}^{\mathsf{c}}\mathsf{R}_{\mathsf{f}} = e^{-\alpha S\binom{\begin{bmatrix}0\\1\\0\end{bmatrix}}{e}\beta S\binom{\begin{bmatrix}0\\0\\1\end{bmatrix}}{e}} = \begin{bmatrix} \cos(\alpha)\cos(\beta) & -\cos(\alpha)sen(\beta) & -sen(\alpha) \\ sen(\beta) & \cos(\beta) & 0 \\ sen(\alpha)\cos(\beta) & -sen(\alpha)\cos(\beta) & \cos(\alpha) \end{bmatrix}$$

Vetor velocidade do fluido: $[V 0 0]^T$

3.1.4. VELOCIDADE LINEAR:

Derivando o vetor posição: $^{T}O_{C}$

$$^{T}V_{C/T} = ^{T}\dot{O}_{C}$$

Velocidade no sistema de coordenadas do corpo:

 ${}^{C}V_{C/T} = {}^{C}R_{T} {}^{T}V_{C/T} = {}^{C}R_{T} {}^{T}\dot{O}_{C}$

3.1.5. VELOCIDADE ANGULAR:

 $^{C}\omega_{C/T} = {}^{C}R_{T} {}^{T}\omega_{C/T}$

$${}^{c}\omega_{c/T} = {}^{T}k_{3} \dot{\gamma} + {}^{T}j_{3} (\gamma)\dot{\theta} + {}^{c}i_{3} (\theta, \gamma)\dot{\Phi}$$

$$[1 \qquad 0 \qquad -\text{sen}\theta \quad 1[\dot{\Phi}]$$

 $= \begin{bmatrix} 1 & 0 & -\operatorname{sen}\theta \\ 0 & \cos \Phi & 0 \\ 0 & -\operatorname{sen}\Phi & \cos\theta \operatorname{sen}\Phi \end{bmatrix} \begin{bmatrix} \Phi \\ \dot{\theta} \\ \dot{\gamma} \end{bmatrix}$

Então:

$$\begin{bmatrix} \dot{\Phi} \\ \dot{\theta} \\ \dot{\gamma} \end{bmatrix} = \begin{bmatrix} 1 & \operatorname{sen}\Phi \tan\theta & \cos\Phi \tan\theta \\ 0 & \cos\Phi & -\operatorname{sen}\Phi \\ 0 & \operatorname{sen}\Phi/\cos\theta & \cos\Phi/\cos\theta \end{bmatrix}^{\mathsf{c}} \omega_{\mathsf{C}/\mathsf{T}}$$

Vale lembrar que esta matriz não está definida para $\theta = \pm 90$, mas como o ROV dificilmente chegará a um a um ângulo tão grande, não teremos problemas com essa modelagem.

3.2. DESCREVENDO O MOVIMENTO DO ROV CONSIDERANDO 6 GRAUS DE LIBERDADE:

Representando o vetor posição do corpo em relação ao sistema de coordenadas T:

$$\eta = \begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix}$$

onde:

$$\eta_1 = {}^{\mathsf{T}}\mathsf{O}_\mathsf{C} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
$$\eta_2 = \begin{bmatrix} \varphi \\ \theta \\ \gamma \end{bmatrix}$$

Representando o vetor velocidade do corpo em relação ao sistema de coordenadas T:

$$\eta = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

onde:

$$v_{1} = {}^{\mathsf{T}}\mathsf{V}_{\mathsf{C}/\mathsf{T}} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
$$v_{2} = {}^{\mathsf{T}}\omega_{\mathsf{C}/\mathsf{T}} = \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

 $\dot{\eta} = J(\eta)v$ onde:

 $J(\eta) =$

	$\cos(\theta)\cos(\gamma)$			$\cos(\theta) sen(\Phi)$	$-sen(\theta)$		0	0	0
	$sen(\gamma)sen(\theta)\cos(\Phi) - \cos(\gamma)sen(\Phi)$	sen(}	')se	$en(\theta)sen(\Phi) + \cos(\gamma)sen(\Phi)$	$sen(\gamma)cos(\theta)$		0	0	0
	$\cos(\gamma) sen(\theta) \cos(\Phi) + sen(\gamma) sen(\Phi)$	cos(γ) se	$en(\theta) \operatorname{sen}(\Phi) - sen(\gamma) \cos(\Phi)$	$\cos(\gamma)\cos(\theta)$		0	0	0
		0	0	0		1	senΦtan	θ	cosΦtanθ
		0	0	0		0	cos Φ		−senΦ
		0	0	0		0	$sen\Phi/cos$	sθ	$\cos\Phi/\cos\theta$

Vetor de forças e momentos em relação ao sistema de coordenadas C:

$$\tau = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix}$$

onde:

$$\tau_1 = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
$$\tau_2 = \begin{bmatrix} K \\ M \\ N \end{bmatrix}$$

3.2.1. O MOVIMENTO DE UM CORPO RÍGIDO

O movimento de um corpo rígido no espaço pode ser descrito pela seguinte equação :

$$M_{RB}\dot{\nu} + C_{RB}(\nu)\nu = \tau_{RB}$$

Com v e τ previamente definidos:

$$M_{RB} = \begin{bmatrix} mI_3 & -mS(^cG) \\ mS(^cG) & ^cI_{O_c} \end{bmatrix}$$

Onde I₃ é a matriz identidade 3x3, m é a massa do corpo, ^cG é a posição do centro de massa em relação ao eixo de coordenadas C, e ^cI_{oc} é a inércia em relação ao eixo de coordenadas do corpo.

Teoricamente os parâmetros da matriz M_{RB} podem ser definidos pelas seguintes equações:

$$m = \int_{VOL} \rho(^{c}P) dP$$
$$^{c}G = \frac{1}{m} \int_{VOL} {}^{c}P \rho(^{c}P) dP$$
$$^{c}I = -\int_{VOL} S^{2}(^{c}P) \rho(^{c}P) dP$$

26

A matriz C_{RB} representa os termos que como a força de Corriolis e Centrífugas, isto é:

$$C_{RB} = \begin{bmatrix} 0 & -S([M_{RB11}M_{RB12}])v \\ -S([M_{RB11}M_{RB12}])v & -S([M_{RB21}M_{RB22}])v \end{bmatrix}$$

O vetor τ pode ser representado por uma soma de diferentes componentes, cada componente com sua influencia específica:

$$\tau = \tau_{REST} + \tau_{DAMP} + \tau_{ADD} + \tau_{FK} + \tau_{WAVE} + \tau_{WIND} + \tau_{EXT}$$

 τ_{REST} são as forças devido a flutuabilidade e ao peso do ROV, pode ser descrito pela seguinte equação:

$$\tau_{REST} = \begin{bmatrix} m^{c}g\\ S(^{c}G)m^{c}g \end{bmatrix} - \begin{bmatrix} \rho_{m}Vol^{c}g\\ S(^{c}F)\rho_{m}Vol^{c}g \end{bmatrix}$$

Onde F é o centro de flutuabilidade em relação ao eixo de coordenadas do corpo.

 τ_{DAMP} são as forças devido a diferentes tipos de amortecimentos, como as ondas geradas pelo próprio deslocamento do ROV. Este pode ser descrito pela seguinte equação:

$$\tau_{DAMP} = -D(Vr,\delta)v_r$$

 τ_{ADD} são as forças e momentos devida inércia gerada pelos entornos do fluido. Este pode ser descrito pela seguinte equação:

$$\tau_{ADD} = -M_A \dot{v}_r - C_A (v_r) v_r$$

 τ_{FK} as forças definidas por Froude-Kriloff, a inércia do fluido deslocado, descrito pela seguinte equação:

$$\tau_{FK} = M_{FK} \dot{\nu}_c$$

 τ_{wind} são as forças devidos a inércia gerada pelo vento, depende da velocidade do corpo e outros fatores.

Neste caso, como se trata de um ROV operando submerso pode se desprezar $\tau_{wind} \in \tau_{wave}$.

E finalmente, τ_{EXT} são forças externas genéricas, por exemplo, as forças geradas pelas bombas (propulsores) do nosso ROV.

Definindo a força de Corriolis:

$$\tau_{COR} = -C_{RB}(v)v - C_A(v_r)v_r$$

Assim tem-se a equação:

$$M_{RB}\dot{v} + M_A\dot{v}_r - M_{FK}\dot{v}_c = \tau_{REST} + \tau_{DAMP} + \tau_{COR} + \tau_{EXT}$$

Como o ROV está neutro, imerso na água (Empuxo=Peso) e as massas uniformemente distribuídas, pode-se considerar $M_{FK} = M_{RB}$, então:

$$[M_A + M_{RB}]\dot{v}_r = \tau_{REST} + \tau_{DAMP} + \tau_{COR} + \tau_{EXT}$$

Concluindo, as equações finais de dinâmica e movimento do ROV são:

$$\dot{\eta} = J(\eta)v$$

$$\dot{v} = \dot{v}_c [M_A + M_{RB}]^{-1} (\tau_{REST} + \tau_{DAMP} + \tau_{COR} + \tau_{EXT})$$

3.3. PROPULSORES E POSICIONAMENTO:

3.3.1. PROPULSORES

Os propulsores utilizados no projeto são bombas, geralmente utilizadas em porão de barco, da marca TSUNAMI de um total de 6 bombas, quatro T400 e duas T1200 com as seguintes especificações:

TSUNAMI T800:

Pump Capacity: 800 gal/hour (apoximadamente 2,50E-3 m³/hora)

Bag Fill Rate: 150 lbs/minute

Hose size: 1-1/8"

Hose Length: 9'

Power Source: cigarette lighter

Power Cord Length: 12ft.

TSUNAMI T1200:

Pump Capacity: 1200 gal/hour (apoximadamente 3,758E-3 m³/hora)

Bag Fill Rate: 150 lbs/minute

Hose size: 1-1/8"

Hose Length: 9'

Power Source: cigarette lighter

Power Cord Length: 12ft.

TABELA 3: ESPECIFICAÇÕES DA BOMBA UTILIZADA

A bomba centrífuga é constituída essencialmente de duas partes:

- a) Uma parte móvel: rotor solidário a um eixo (denominado conjunto girante)
- b) Uma parte estacionaria carcaça (com os elementos complementares)

O rotor é a peça fundamental de uma bomba centrífuga, a qual tem a função de receber o líquido e fornercer-lhe energia. O seu formato e dimensões são relativos as características de funcionamento da bomba.

A carcaça é o componente que envolver o rotor. Apresenta aberturas para a entrada do líquido até o centro do rotor e saída do mesmo para a tubulação de descarga.

A figura abaixo exemplifica o funcionamento:

FIGURA 9: FUNCIONAMENTO DA BOMBA

A propulsão é então realizada pela descarga da bomba.

A força T feita pela bomba pode ser descrita pela seguinte equação:

$$T = \mu Q \Delta u$$

Onde:

 μ é a densidade do fluído.

Q é a vazão da bomba.

u é a velocidade.

3.3.2. POSICIONAMENTO

Como são 6 graus de liberdade no ROV, a configuração seguinte foi adotada para conseguir realizar a movimentação:

FIGURA 10: VISTA ISOMÉTRICA DAS FORÇAS DOS PROPULSORES

FIGURA 11: FORÇAS EXERCIDAS NA DIREÇÃO Z

FIGURA 12: SAÍDA DA TUBULAÇÃO DE DESCARGA ANGULADAS DE 45 GRAUS

Chamando o ângulo de λ , pode-se então considerar as seguintes forças:

Na direção x:

$$F_{3,4} = -F3sen(\lambda) - F4sen(\lambda)$$
$$F_{5,6} = F5sen(\lambda) + F6sen(\lambda)$$

$$x = F_{x(3,4)} + F_{x(5,6)}$$

Na direção y:

$$F_{3,4} = -F3cos(\lambda) - F5cos(\lambda)$$
$$F_{5,6} = F4cos(\lambda) + F6sen(\lambda)$$
$$y = F_{y(5,6)} + F_{y(3,4)}$$

Na direção z:

$$z = F1 - F2$$

Rotação no eixo z (Yaw):

$$N = d(F5 + F4 - F3 - F6)$$

Rotação no eixo x (Roll):

$$K = d(F1 + F2)$$

Onde d é a distância da força pro CG do ROV.

Assim o vetor de atuação do modelo fica:

 $\tau = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix}$

onde:

$$\tau_{1} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} F_{x(3,4)} + F_{x(5,6)} \\ F_{y(5,6)} + F_{y(3,4)} \\ F1 - F2 \end{bmatrix}$$
$$\tau_{2} = \begin{bmatrix} K \\ M \\ N \end{bmatrix} = \begin{bmatrix} d(F1 + F2) \\ 0 \\ d(F5 + F4 - F3 - F6) \end{bmatrix}$$

3.4. <u>COMPONENTES</u>

3.4.1. PROPULSORES

Após vasta pesquisa, decidiu-se usar como propulsores, bombas de porão de barcos (Figura 10). Para o projeto as bombas foram mais viáveis economicamente que os propulsores convencionais (Figura 11), que são compostos de um motor DC e hélices.

FIGURA 13: BOMBAS DE PORÃO DE BARCO

FIGURA 14: PROPULSORES CONVENCIONAIS

Abaixo segue uma figura esquemática onde podemos visualizar todos os componentes que constituem o propulsor utilizado na construção do ROV.

DESIGN FEATURES

FIGURA 15: DETALHES DA BOMBA TSUNAMI

Para o projeto de construção do ROV dois modelos distintos de bombas foram utilizados, pois se precisou de vazões diferentes para desempenhar a função de propulsão. Na Figura 13 podemos ver este posicionamento.

FIGURA 16: POSCIONAMENTO DOS MODELOS DISTINTOS DAS BOMBAS

Modelo T-800, proporciona uma vazão de 800 galões por minuto, foram usadas quatro desse modelo, para conseguirmos os movimentos.

FIGURA 17: ATTWOOD® TSUNAMI T800 BILGE PUMP

Modelo T 1200, proporciona uma vazão de 1200 galões por minuto, e foram utilizados 2 unidade, para proporcionar os movimento de subida e descida do ROV.

FIGURA 18: ATTWOOD® TSUNAMI T1200 BILGE PUMP

3.4.2. ELETRÔNICA DE CONTROLE

É utilizado como controlador dos motores das bombas uma eletrônica desenvolvida pelo Alexandre Ormiga denominada de LEXTRONIC. Este controlador possui as seguintes especificações:

ESPECIFICAÇÕES:

TENSÃO (V+ - V-): 0 a 40V

TENSÃO DE ALIMENTAÇÃO DA PARTE LÓGICA: 4,8 a 5,3V

CORRENTE CONTÍNUA: 15A (<3min sem dissipador)

CORRENTE DE PICO (<0,5s): 50ª

PROTEÇÕES:

SOBRETEMPERATURA

SOBRETENSÃO

CURTO CIRCUITO NOS TERMINAIS DOS MOTORES

LIMITAÇÃO DE "SLEW RATE" ELETRÔNICO E POR SOFTWARE PARA SUPRESSÃO DE RUÍDOS

CONSIDERAÇÕES GERAIS:

A inversão na tensão de alimentação acarretará na inutilização da eletrônica.

O conector de sinal deve ser ligado corretamente ao receptor, que deverá fornecer 5V à placa.

É recomendável o uso de capacitores (0.1uF) nos terminais dos motores para redução de ruído.

É recomendável o uso de reguladores de tensão chaveados no para alimentar a parte lógica.

Caso a eletrônica entre em proteção térmica, a mesma irá parar o seu funcionamento durante apenas 1 segundo, cabendo ao usuário diminuir consideravelmente a corrente drenada. Sucessíveis proteções térmicas acarretarão na inutilização da eletrônica.

Abaixo temos a representação esquemático do controlador:

V+

MOTOR+

MOTOR -

Para o projeto do ROV foram utilizados 6 controladores, um controlador para cada bomba, assim conseguiu-se o acionamento independe de cada propulsor.

FIGURA 19: ORGANIZAÇÃO DOS COMPONENTES EM UMA MALA

3.4.3. RÁDIO TRANSMISSOR E RECEPTOR RC

É utilizado no projeto do ROV RC, o rádio transmissor Spectrum DX6 (Figura 28) e o Receptor BR 6000 (Figura 29).

3.4.4. SENSORES

Os sensores utilizados é uma central inercial Razor IMU de 9 graus de liberdade (Figura 20). Três sensores estão embutidos:

- Acelerômetro de três eixos ADXL345, 13-bit de resolução, ±16g;
- Giroscópio ITG-3200, três eixos digitais;
- Magnetômetro HMC5843, três eixos digitais;

As especificações estão no capítulo Apêndice (Tabelas 5,6 e 7).

FIGURA 20: RAZOR IMU E A DIMENSÕES

3.5. ESTRUTURA DO ROV E MONTAGEM:

O ROV no projeto é considerado como um cubo simples totalmente simétrico e com as massas uniformemente distribuídas.

3.5.1. VALIDAÇÃO DE UM PROJETO

A utilização de um software de modelagem, como o solidworks, ajudou na validação de um conceito da estrutura do protótipo do ROV. A Figura 17 representa uma das versões validadas antes da construção no software.

FIGURA 21: AVALIAÇÃO DO MODELO 3D

O software também permitiu simular o CG, e os momentos de inércia da estrutura (Figura 18). Isto permitiu validar um projeto antes da construção.

FIGURA 22: PROJETO RENDERIZADO NO SOLIDWORKS

3.5.2. MATERIAL DA ESTRUTURA:

A opção do material foi decidida pelo uso do PVC, pois além de ser um material de baixo custo, também nos providência uma estrutura rígida de fácil montagem e confiável para a realização dos diversos testes do protótipo.

3.5.3. VERSÕES DOS PROTÓTIPOS:

FIGURA 23: ESTRUTURA DA PRIMEIRA VERSÃO DO ROV

Na FIGURA 19 temos a primeira versão do protótipo, inicialmente ele iria ter apenas um andar com uma chapa de acrílico prendendo as bombas.

Foi necessária a modificação do projeto, pois não se obteve pontos de apoios confiáveis para prender as bombas, também foi confirmada a inviabilidade para instalar a central inercial.

FIGURA 24: ESTRUTURA DA SEGUNDA VERSÃO DO ROV

Na FIGURA 20, a segunda versão do protótipo, onde o conceito foi de criar um ROV com estrutura cúbica, para facilitar o controle e providenciar espaço para câmeras, e a Central Inercial ser posicionada no Centro de Gravidade do Corpo.

A dificuldade encontrada foi a fragilização da estrutura por estar relativamente grande, e também poucos pontos de apoio para prender as bombas.

FIGURA 25: ESTRUTURA DA VERSÃO FINAL DO ROV

A versão final do protótipo está representada na FIGURA 21, esta versão permitiu imprensar duas chapas de acrílico para prender as bombas, e deu o espaço suficiente para prender uma Central Inercial no Centro de Gravidade do ROV.

Esta versão foi testada e obteve sucesso nos testes realizados, controlado via RC, conseguindo realizar todos os movimentos esperados.

3.5.4. MONTAGEM

A montagem da estrutura do ROV foi realizada da maneira mais simples encontrada. Como a estrutura é simétrica, tubos de PVC de 40 mm foram cortados do mesmo tamanho para padronizar a montagem. A estrutura tubular foi fixada, com cola de silicone e a maior dificuldade encontrada foi na fixação das bombas. Por ser uma estrutura tubular, a fixação é feita por duas chapas de acrílico, prensadas por 8 parafusos. Na Figura 21 é possível visualizar as chapas de acrílico prensando os motores. A Figura 16 mostra a distribuição das bombas na estrutura.

FIGURA 26: PRÉ-MONTAGEM DA PRIMEIRA VERSÃO DO ROV

FIGURA 27: VISTA DO TOPO COM O POSICIONAMENTO DEFINIDO DAS BOMBAS

4. <u>RESULTADOS</u>

4.1. SIMULAÇÃO DA DINÂMICA

Para a realização da simulação do ROV, foi usada a equação em Espaço de Estado, variando no tempo, independendo do sistema de coordenadas usado. Definindo o controle de velocidade pelo sistema de coordenadas, solidário ao veículo e o controle de trajetória solidário ao sistema de coordenadas fixo no espaço. Considerando sensores para as velocidades e deslocamentos lineares e angulares, e ainda que estes sensores não possuam ruído ou variância, então podemos fazer:

$$\begin{cases} \dot{X}(t) = A(t)X(t) + B(t)U(t) \\ Y(y) = FX(t) \end{cases}$$
$$\begin{cases} \dot{X}(t) = A(t)X(t) + B(t)U(t) \\ Y(y) = FX(t) \end{cases}$$

Onde:

$$A(t) = -M^{-1}[C + D]$$
 $B(t) = -M^{-1}$ $U(t) = \tau$ $F = Id$.

Neste caso, as equações acima servem para o cálculo da dinâmica tanto no sistema de coordenada fixo, quanto no móvel, no entanto, para cada um dos casos temos diferentes vetores de estado. Para a dinâmica no sistema móvel, X(t)=v, já para o sistema fixo, temos que X(t)= $\dot{\eta}$.

FIGURA 28: SISTEMA DE MALHA ABERTA REPRESENTADO NO SIMULINK

Funções no Matlab:

```
function R_eb=rpy2R_eb(rpy)
```

```
% função da matriz de rotação
sf = sin(rpy(1));
cf = cos(rpy(1));
st = sin(rpy(2));
ct = cos(rpy(2));
sp = sin(rpy(3));
cp = cos(rpy(3));
         [ +ct*cp +ct*sp -st
+sf*st*cp-cf*sp +sf*st*sp+cf*cp +sf*ct
+cf*st*cp+sf*sp +cf*st*sp-sf*cp +cf*ct];
R eb = [ +ct*cp
function xdot=vxdot(xu)
global veh;
   tau_b=xu(12+[9:14]); % força externa e momento em b
tau_e=xu(12+[15:20]); % força externa e momento em e
   v cee=xu(12+[21:23]);
                                    % velocidade da corrente
   v_cee=xu(12+[21:23]); % velocidade da corrente
a cee=xu(12+[24:26]); % aceleração da corrente
                                      % posição geral (eta)
   p=xu(1:6);
                                     % velocidade geral (ni)
   v=xu(7:12);
   % matriz de rotação
   R eb=rpy2R eb(p(4:6));
   % vc e vcdot
   vc=[R eb*v cee; zeros(3,1)];
   vcdot=[R eb*a cee-vp(v(4:6), R eb*v cee); zeros(3,1)];
   % state derivative
   pdot=rpy2J(p(4:6))*v;
   vdot=vcdot+veh.iM*(tau cor(veh,v,v-vc)+tau damp(veh,v-vc,de)+...
         tau rest(veh,p)+tau b+[R eb*tau e(1:3);R eb*tau e(4:6)]);
```

```
xdot=[pdot;vdot];
```

Considerando um modelo genérico:

Inicializando o modelo no MATLAB:

```
u0=[zeros(8,1);416;zeros(17,1)];
x0=[zeros(6,1);3;zeros(5,1)];
```

Primeiramente, é realizada simulações de malha aberta, isto é, sem controle. Os parâmetros utilizados foram de um Thrust de 416 N, e uma velocidade constante de 3m/s ao longo do eixo x no sistema de coordenadas do corpo.

FIGURA 29: SIMULAÇÃO DAS VELOCIDADES X-Y EM UM INTERVALO DE 0 A 400 SEGUNDOS, A VELOCIDADE EM M/S.

FIGURA 30: SIMULAÇÃO DA POSIÇÃO X-Y EM UM INTERVALO DE 0 A 400 SEGUNDOS, DESLOCAMENTO EM METROS.

Pode-se então confirmar um sistema instável nas condições aplicadas.

4.2. <u>AQUISIÇÃO E CONTROLE</u>

4.2.1. TESTES DA COMUNICAÇÃO COM OS SENSORES USANDO O HYPERTERMINAL

DESCRIÇÃO GERAL DO HYPERTERMINAL:

O HyperTerminal é um programa que pode utilizar para ligar a outros computadores, a sites de Telnet, a uma ou mais BBS (*Bulletin Board System*), a serviços online e a computadores anfitriões, através de um modem, de um cabo de modem nulo ou de uma ligação Ethernet.

Neste caso, podemos utilizar o hyperterminal para identificar os valores de saída do programa da central inercial e então testar o funcionamento dos sensores. A central inercial é conectada por um cabo USB. O passo inicial é identificar a porta de comunicação como mostrado na Figura 30.

Teste Sensor - HyperTerminal File Edit View Call Transfer Help		
File Edit View Call Transfer Help	Connect To Image: Connect To Image: Connect To Image: Connect To Enter details for the phone number that you want to diak. Image: Connect To Country/region: Brasil (55) Image: Connect To Enter the area code without the long-distance prefix. Arga code: 55 Phone number Image: Configure Image: Configure Configure Configure Image: Configure Detect Carrier Loss Image: Sec country/region code and area code Image: Sec country/region code and area code Image: OK Cancel OK Cancel	
Disconnected Auto detect A	uto detect SCROLL CAPS NUM Capture Print echo	

FIGURA 31: HIPERTERMINAL IDENTIFICAÇÃO DA PORTA DE COMUNIÇÃO

Após identificar a porta de comunicação, o próximo passo é configurar a porta, apenas a quantidade de bits por segundo foi modificada para obter a melhor sincronização de resposta, todos os outros parâmetros são padrões, mostrado na Figura 31.

Teste Sensor - HyperTerminal File Edit View Call Transfer Help		
-	Propriedades de COM5	
	Configurações de porta	
	Bits por segundo: 57600	
	Bits de dados: 8	
	Paridade: Nenhum	
	Bits de parada: 1	
	Controle de fluxo: Nenhum	
	Restaurar padrões	
1 1	OK Cancelar Aplicar	
Disconnected Auto detect Auto detect	t SCROLL CAPS NUM Capture Print echo	

FIGURA 32: CONFIGURAÇÕES DA PORTA COM5

Em seguida, conecta-se com a central inercial, e conseguimos acessar o programa de acordo com a Figura 32. Para acessar os dados em tempo real:

- A tecla 1, seleciona os dados de saída do acelerômetro ADXL345;
- A tecla 2, seleciona os dados de saída do magnetômetro HMC 5843;
- A tecla 3, seleciona os dados de saída do giroscópio ITG-3200;
- A tecla 4, seleciona os todos os dados de saída dos sensores;
- A tecla 5 permite mudar a configuração de bits por segundo dos sensores;

FIGURA 33: FIRMWARE DA CENTRAL INCERCIAL 9DOF IMU

Pressionando a tecla 1, tem-se os resultados abaixo da Figura 33, com isso conseguimos identificar como os valores do acelerômetro são apresentados.

🎨 Teste Sensor - HyperTerminal	
File Edit View Call Transfer Help	
$ \begin{array}{c} x = -35, y = 271, z = 4 \\ x = -33, y = 273, z = 2 \\ x = -33, y = 273, z = 0 \\ x = -37, y = 270, z = -10 \\ x = -34, y = 270, z = -12 \\ x = -24, y = 269, z = 7 \\ x = -22, y = 271, z = 11 \\ x = -19, y = 269, z = 11 \\ x = -19, y = 269, z = 11 \\ x = -23, y = 268, z = 11 \\ x = -23, y = 268, z = 11 \\ x = -23, y = 269, z = 4 \\ x = -25, y = 267, z = 4 \\ x = -20, y = 271, z = 6 \\ x = -30, y = 270, z = 5 \\ x = -30, y = 270, z = 5 \\ x = -30, y = 269, z = 7 \\ x = -28, y = 270, z = 7 \\ x = -28, y = 270, z = 5 \\ x = -28, y = 270, z = 7 \\ x = -28, y = 270, z = 7 \\ x = -28, y = 270, z = 7 \\ x$	
Connected 00:03:26 Auto detect Auto detect SCROLL CAPS NUM Capture Print echo	/

FIGURA 34: VALORES DE SAÍDA DO ACELERÔMETRO

Steste Sensor - HyperTerminal						
File Edit View Call Transfer Help						
요 🚔 🍘 🐉 🗈 🎦 🗳						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
Connected 00:00:21 Auto detect Auto detect	SCROLL	CAPS	NUM	Capture	Print echo	1.

Pressionando a tecla 2, na Figura 34, pode-se ver os valores apresentados pelo magnetômetro.

FIGURA 35: VALORES APRESENTADOS PELO MAGNETÔMETRO

A tecla 3, os valores apresentados pelo giroscópio.

Reste Sensor - HyperTerminal	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Connected 00:00:28 Auto detect Auto detect SCROLL CAPS NUM Capture Print echo	

FIGURA 36: VALORES APRESENTADOS PELO GIROSCÓPIO

Finalmente, na Figura 36, com a tecla 4, tem-se todos os valores de todos os sensores, iniciando com um \$ e terminando com #.

🇞 Teste Sensor - HyperTerminal	
File Edit View Call Transfer Help	
$ \begin{aligned} \$-21, -14, 233, -55, 4, -2, 32, -271, 148 \\ \$-20, -13, 234, -56, 3, -5, 30, -272, 156 \\ \$-19, -12, 234, -57, 24, 1, 25, -273, 148 \\ \$-20, -13, 233, -54, 12, -4, 27, -272, 155 \\ \$-20, -13, 232, -55, 16, -3, 27, -272, 155 \\ \$-18, -12, 235, -58, 19, 0, 23, -272, 144 \\ \$-18, -13, 233, -57, 21, 0, 22, -271, 156 \\ \$-19, -12, 233, -57, 11, 0, 22, -271, 153 \\ \$-17, -13, 234, -58, 26, 3, 34, -273, 153 \\ \$-17, -12, 234, -57, 18, -2, 30, -270, 152 \\ \$-19, -12, 236, -57, 21, -1, 34, -273, 151 \\ \$-19, -13, 232, -57, 23, 0, 28, -274, 146 \\ \$-18, -12, 234, -58, 13, 1, 36, -278, 159 \\ \$-17, -12, 235, -57, 23, 0, 28, -274, 146 \\ \$-18, -12, 234, -58, 13, 1, 36, -278, 159 \\ \$-17, -12, 235, -54, 23, 0, 28, -270, 151 \\ \$-16, -12, 234, -59, 32, -1, 24, -270, 155 \\ \$-17, -12, 235, -57, 26, 1, 29, -264, 153 \\ \$-17, -12, 235, -57, 26, 1, 29, -264, 153 \\ \$-17, -12, 236, -57, 27, -1, 26, -270, 155 \\ \$-18, -13, 233, -58, 24, -3, 33, -276, 157 \\ \$-18, -13, 233, -58, 24, -3, 33, -276, 157 \\ \$-18, -13, 233, -58, 24, -3, 33, -276, 157 \\ \$-18, -13, 233, -58, 29, -1, 35, -281, 142 \\ \$-16, -12, 234, -57, 26, 1, 26, -270, 150 \\ \$-16, -12, 234, -57, 26, 1, 26, -270, 150 \\ \\ \$-18, -13, 233, -58, 29, -1, 35, -281, 142 \\ \\ \$-16, -12, 234, -57, 26, 1, 26, -270, 150 \\ \\ \$-16, -12, 234, -57, 26, 1, 26, -270, 150 \\ \\ \end{vmatrix}$	
Disconnected Auto detect Auto detect SCROLL CAPS NUM Capture Print echo	1.

FIGURA 37: TODOS OS VALORES DOS SENSORES REPRESENTADOS NO HYPERTERMINAL

Todos os testes acima são fundamentais para conseguir identificar a aquisição dos dados em uma plataforma de programação.

4.2.2. AQUISIÇÃO E CONTROLE PID USANDO O LABVIEW

A plataforma escolhida para obtenção do sinal dos sensores e implementação do controle PID, é o LABVIEW, pois se consegue obter em tempo real os dados aquisitados e também gerar um sinal de saída do controle PID.

O programa em Labview da Figura 37 tem o seguinte processo:

- Seleciona a porta COM5 com as configurações da central inercial;
- No ponto indicado pela Figura 37, selecionamos qual saída do sensor desejamos controlar;
- Separamos os dados em saídas desejadas;
- Realiza o controle PID dos parâmetros obtidos;

FIGURA 38: PROGRAMA NO LABVIEW PARA AQUISIÇÃO E CONTROLE PID

Na interface com o usuário, tem-se a leitura das variáveis dos sensores, o controle dos *setpoints*, o controle dos ganhos PID e a leitura da saída do controle PID (Figura 38).

FIGURA 39: INTERFACE COM O USUÁRIO

A Figura 39 exibe os testes com o magnetômetro, o intervalo é de -240 até 240, o 0 é definido quando a direção y está na mesma direção do norte, isto é, de 0 até -240 é 180° até 360° em uma bussola. para estabilização dos setpoints. A melhor calibração dos ganhos encontrada pra este caso foi um controlador PD, onde o ganho Kc = 0,4 e o ganho Td = 0,001.

FIGURA 40: CALIBRANDO O PID PELOS SETPONTS

O intervalo das saídas PID vai de -100 a 100 isto significa pra uma voltagem de saída de -12V a 12V. A Figura 40 mostra o comportamento da resposta do controle PD ao valor da variável se aproximar do *setpoint*. Igualando a variável x ao *setpoint* pode-se identificar uma oscilação em torno de 0 da saída após o controle PID. Enquanto que na variável y, o *setpoint* está em -267,00 e a leitura do sensor é -65, então se espera uma alimentação negativa da saída do PID na variável y para igualar a leitura do sensor ao *setpoint*, como identificado na Figura 40.

FIGURA 41: RESPOSTA PID AO SE APROXIMAR DO SETPOINT

Na Figura 41 tem-se a definição de um *setpoint* de 200 enquanto que a posição em x está -55. Isto implica em uma saída positiva pros *trusters* de 12 V.

FIGURA 42: SAÍDA POSITIVA PARA ESTABILIZAÇÃO DO SETPOINT

Na Figura 42, consegue-se identificar a velocidade de resposta do controle e a estabilização em torno do 0 quando se atinge o *setpoint*.

FIGURA 43: VELOCIDADE DE RESPOSTA DO CONTROLE PID

4.3. <u>TESTES DO ROV COM CONTROLE RC</u>

O projeto do ROV implementado com o controle RC, foi testado em uma piscina e os resultados obtidos foram bons, pois conseguimos uma grande estabilidade e suavidade em seus movimentos. O ROV se comportou muito bem nos testes, a seguir mostraremos como os testes foram realizados. Para realização do controle RC seis canais de rádio foram utilizados,

Toda a parte de construção e Testes fora d'agua foram realizados no laboratório de robótica da PUC-RIO.

FIGURA 44: PROTÓTIPO MONTADO

Os testes de submersão e funcionamento do ROV foram realizados na piscina do condomínio parque das gaivotas.

FIGURA 45: MOVIMENTAÇÃO DO PROTÓTIPO

Na figura abaixo podemos visualizar o ROV começando o processo de submersão, somente o atuador vertical superior está sendo acionado.

FIGURA 46: INICIANDO PROCESSO DE SUBMERSÃO

Nesta figura podemos visualizar o ROV já totalmente submerso, agora com 3 atuadores sendo acionados, o vertical superior e os dois da parte traseira do veículo.

FIGURA 47: PROTÓTIPO SUBMERSO

5. <u>CONCLUSÕES</u>

O projeto acabou sendo dividido em diversas etapas, do inicio teórico de como movimentar um corpo rígido dentro de um fluído até os testes em uma piscina do protótipo montado, validando a teoria.

Utilizando ferramentas computacionais para a realização de simulações, e definição da estrutura foi fundamental para economizar tempo e validar os conceitos antes da construção do protótipo.

Antes da realização do primeiro teste, 2 protótipos foram montados, onde o primeiro foi descartado por problema de fixação dos componentes e ter uma geometria desfavorável para a movimentação dentro de um fluído. O segundo protótipo, apesar de ter uma movimentação mais favorável, ainda foi encontrado dificuldade na fixação das bombas.

O terceiro protótipo foi um sucesso, pois teve sucesso na rigidez da estrutura, uma excelente geometria, e no teste com controle RC em uma piscina conseguiu-se realizar todos os movimentos esperados.

Um projeto nasce a partir de um esboço, e sendo assim evolui para a realidade, porém mesmo com todas as ferramentas de simulação, ainda descartamos duas versões, então um bom projeto nasce de um bom planejamento, sempre utilizando todos os recursos possíveis para evitar desperdiçar tempo e material.

6. **BIBLIOGRAFIA**

OGATA, K. Engenharia de Controle Moderno. 3a Edição. Editora LTC. Rio de Janeiro. 1998.

Salgado-Jimenez, T. (2004). Contribution à la comande d'un robot sous-marin de type torpille, PhD thesis, Université de Montpellier II.HOVER, 2002

YUH, 1995. Technologies in Oceanic Engineering

Kim, T.W., Yuh, J., 1999 Task description language for underwater robots.

Guidance and Control of Ocean Vehicles - Thor I. Fossen

http://www.rov.org/educational/pages/Small%20Vehicles.html

http://www.btinternet.com/~derek.mackay/offshore/images/rov/

http://www.soest.hawaii.edu/hannides/galleries/Calbasins/Tiburon.html

http://www.whoi.edu/science/GG/people/adeschamps/cruises/cruisee.html

7. <u>APÊNDICES</u>

With their innovative engineering and compact design, Tsunami pumps deliver high output from a small package. We use the most advanced material available, including the best quality bearings and state-of-the-art brushes, alloys and magnets. Our patented shaft seal prevents leaks caused by misalignment and our caulked and tinned wiring eliminates wicking, prevents water damage and resists corrosion.

Part No.	NMMA No.	IMCI (CE) Certificate No.
4606 Series	2456898	PATT042
4608 Series	2456899	PATT043
4609 Series	2456900	PATT044
4612 Series	2456901	PATT046
4613 Series	2456902	PATT045

Specifications

		GPH Ou	tput @ De	sign Vo	ltage 13	.6 VDC	GPH Output @ Nominal Voltage 12.0 VDC							
Model No.	Rated Voltage	Amp Draw	0 ft.	3.3 ft.	6.7 ft.	Max Head	Amp Draw	0 ft.	3.3 ft.	6.7 ft.	Max Head	Fuse Size	Hose Size	
T500	12	1.8	600	440	260	9 ft.	1.4	550	360	160	8 ft.	3-amp	3/4" I.D.	
T800	12	3	800	660	540	13 ft.	2.5	760	600	400	11 ft.	4-amp	3/4" I.D.	
	24	1.3	800	660	540	13 ft.	1.1	760	600	400	11 ft.	2-amp	3/4" I.D.	
T1200	12	3.5	1200	900	700	11 ft.	3	1100	810	480	9 ft.	5-amp	1-1/8" I.D.	
	24	1.5	1200	900	700	11 ft.	1.3	1100	810	480	9 ft.	2-amp	1-1/8" I.D.	

Pump Dimensions

Model No.	Α	В	C	D	E
T500	2-3/4"	2-7/8"	3-5/8"	3/4" I.D.	3-1/8"
T800	3-1/8"	3-1/4"	4-3/8"	3/4" I.D.	3-1/2"
T1200	3-1/8"	3-1/4"	4-3/8"	1-1/8" I.D.	3-3/4"

B	1
] 1 □
← Ε − − →	-

Teunami	Series	Pumn	Dimensions
Iounann	001103	I UIIIP	Dimonatona

Isunann series Funip Dimensions									
Model	A	В	C	D	E				
T500	2 ³ /4"	27/8"	35/8"	³ /4" I.D.	31/8"				
T800	31/8"	31/4"	4 ³ /8"	³ /4" I.D.	3 ¹ /2"				
T1200	31//=	31/4=	43%"	1 ¹ //*" D	33/4"				

Sahara Pump NMMA Numbers

Aodel No.	Rated Voltage	Amp Draw	GPH O O ft.	utput @De 3.3 ft.	esign Volta 6.7 ft.	ge 13.6 VDC Max. Head	Amp Draw	GPH (0 ft.	Dutput @ 3.3 ft.	Nomina) 6.7 ft.	l Voltage Max. Head	12.0 VDC Fuse Size	Hose Size
T500	12	1.7	500	400	230	8 ft.	1.3	475	330	125	7 ft.	3	³ /4" I.D.
T800	12	3	800	660	540	13 ft.	2.5	760	600	400	11 ft.	4	³ /4" I.D.
T800	24	1.3	800	660	540	13 ft.	1.1	760	600	400	11 ft.	2	³ /4" I.D.
T1200	12	3.5	1200	900	700	11 ft.	3	1100	810	480	9 ft.	5	1 ¹ /8" I.D.
T1200	24	1.5	1200	900	700	11 ft.	1.3	1100	810	480	9 ft.	2	1 ¹ /8" I.D.

TABELA 4: ESPECIFICAÇÃO ATTWOOD® TSUNAMI BILGE PUMP

FIGURA 48: RÁDIO SPECTRUM DX6

FIGURA 49: RECEPTOR SPECTRUM BR6000

$I_A = 25^{\circ}C, V_S = 2.5 V, V_D$	v, acceler	ation = 0	Jg, Cs = 1L	IF tantalum,	$C_{IO} \equiv 0.$	$1 \ \mu F, unit$	ess otherw	vise noted.		
Table 1. Specifications	Test Conditions		WIIN		тур		wax		Unit	
	Parameter				E e e la carda					
SENSOR INPUT										
Measurement Range		User sel	ectable		$\pm 2, \pm 4, \pm 8,$	±16		g		
Nonlinearity		Percenta	ge of ful	l scale	±0.5			%		
Inter-Axis Alignment Error			±0.1				Degrees			
Cross-Axis Sensitivity ₂			±1		-		%			
OUTPUT RESOLUTION		1			Each axis					
All g Ranges		10-bit res	solution		10			Bits		
±2 g Range		Full reso	lution		10			Bits		
±4 g Range		Full reso	lution		11			Bits		
±8 g Range		Full reso	lution		12			Bits		
±16 g Range		Full reso	lution		13			Bits		
SENSITIVITY					Each axis		1		1	
Sensitivity at Xour, Your,	±2 g, 10-	bit or full	232		256		286		LSB/g	
Zout	resolutio	n								
Scale Factor at Xour, Your,	±2 g, 10-	bit or full	3.5		3.9		4.3		mg/LSB	
	resolutio	n . :/			400		4.40			
Sensitivity at Xout, Yout,	±4 g, 10-	DIC	116		128		143		LSB/g	
Scole Easter at Your Your		hit	7.0		7.9		9.6		maisp	
	$\pm 4 g, 10$	n	7.0		7.0		0.0		mg/LSB	
Sensitivity at Your Your	$+8 \alpha 10$	hit	58		64		71		LSB/a	
Zout	resolutio	n	50		04				202,9	
Scale Factor at Xout. Yout.	±8 <i>a</i> . 10-	bit	14.0		15.6		17.2		ma/LSB	
Zout	resolutio	n	-		10.0		=		J* -	
Sensitivity at Xour, Your,	±16 g, 10)-bit	29		32		36		LSB/g	
Zout	resolutio	n								
Scale Factor at Xout, Yout,	±16 g, 10)-bit	28.1		31.2		34.3		mg/LSB	
Ζουτ	resolutio	n								
Sensitivity Change Due to Temperature			±0.01		-		%/°C			
0 g BIAS LEVEL					Each axis					
0 g Output for Хоит, Youт -150			±40		+150		m	g		
0 g Output for Zout	-250)		±80		+250	•	m	g	
0 g Offset vs. Temperature f	or x-, y-Ax	es	±0.8				mg∕°C			
0 g Offset vs. Temperature f	or z-Axis		±4.5				mg∕°C			
NOISE PERFORMANCE										
Noise (x-, y-Axes) Data rate				Iz for ±2 g,	<1.0			LSB rms	6	

x 7

		10-bit or full resolution						
Noise (z-Axis)		Data rate = 100 Hz for $\pm 2 g$,		<1.5		LSB rms		
		10-bit or full resolution						
OUTPUT DATA RATE AND BANDWIDTH				User selectable				
Measurement Rate ₃ 6.25		6.25	3200		3200		Hz	
SELF-TEST ₄				Data rate ≥ 100 Hz, 2.0 V ≤ Vs ≤ 3.6 V				
Output Change in x-Axis		0.20		2.10		g		
Output Change in y-Axis		-2.10		-0.20		g		
Output Change in z-Axis		0.30		3.40		g		
POWER SUPPLY								
Operating Voltage Range (Vs)	2.0		2.5		3.6		V	
Interface Voltage Range (VDD	(V _{DD} Vs≤2.5 V		1.7	1.8			VsV	
I/O)								
Vs≥ 2.5 V		2.0		2.5		VsV		
Supply Current		Data rate > 100 Hz		145		μA	μΑ	
Data rate < 10 Hz		40	40		μA			
Standby Mode Leakage Current 0.		0.1		2		μΑ		
Turn-On Time ₅ Data		Data rate = 3200 Hz		1.4		ms		
TEMPERATURE								
Operating Temperature Range -40		-40			+85		°C	
WEIGHT								
Device Weight		20			mg			

TABELA 5 : ESPECIFICAÇÕES DO ADXL345, ACELEROMETRO DIGITAL

Characteristics	Conditions*	Min	Тур	Max	Units	
Power Supply						
Supply Voltage	AVDD Referenced to AGND	2.5		3.3	Volts	
	DVDD Referenced to DGND	1.6	1.8	2.0	Volts	
Current Draw	Sleep Mode (dual supplies)	-	2.5	-	uA	
	Idle Mode (dual supplies)	-	240	-	uA	
	Measurement Mode	-	0.8	-	mA	
	AVDD = 2.5 volts, DVDD = 1.8 volts					
	Sleep Mode (single supply)	-	110	-	uA	
	Idle Mode (single supply)	-	340	-	uA	
	Measurement Mode	-	0.9	-	mA	
	AVDD = 2.5 volts					
Performance						
Field Range	Full scale (FS) - total applied field	-4		+4	gauss	
Cross-Axis Sensitivity	Cross field = 0.5 gauss, Happlied = ±3 gauss		±0.2%		%FS/gauss	
Disturbing Field	Sensitivity starts to degrade. Use S/R pulse to restore sensitivity.			20	gauss	
Max. Exposed Field	No perming effect on zero reading			10000	gauss	
Measurement Period	Output Rate = 50Hz (10Hz typ.)		-	10	msec	
I ² C Address	7-bit address		0x1E		hex	
	8-bit read address		0x3D		hex	
	8-bit write address		0x3C		hex	
PC Rate	Controlled by I ² C Master	-10		+10	%	
PC bus pull-up	Internal passive resistors		50		kilo-ohms	
PC Hysteresis	Hysteresis of Schmitt trigger inputs on SCL					
	and SDA - Fall (DVDD=1.8V)		0.603		Volts	
	Rise (DVDD=1.8V)		1.108		Volts	
Self Test	Positive and Negative Bias Mode		±0.55		gauss	
Mag Dynamic Range	3-bit gain control	±0.7	±1.0	±4.0	gauss	
Linearity	Full scale input range			0.1	±% FS	
Gain Tolerance	All gain/dynamic range settings		±5		%	
Bandwidth	-3dB point		10		kHz	
Resolution	AVDD=3.0V, GN		7		milli-gauss	
Signal-to Noise Ratio		70			dB	
Tum-on Time			200		US	
General	•		•			
ESD Voltage				700	v	
Operating Temperature	Ambient	-30		85	°C	
Storage Temperature	Ambient, unbiased	-40		125	°C	
Weight	Nominal		50		milli-grams	

TABELA 6: ESPECIFICAÇÕES DO MAGNETOMETRO DIGITAL, HMC5843

Typical Operating	Circuit of Section 4.2.	VDD = 2.5V	VLOGIC = 1	.71 V to VDD. T ₄ =25°C.	
Typical Operating	chedit of been on way	100 2.01	, vibooie - i		

Parameters	Conditions	Min	Typical	Max	Units	Notes
VDD POWER SUPPLY						
Operating Voltage Range		2.1		3.6	v	2
Power-Supply Ramp Rate	Monotonic ramp. Ramp rate	0		5	ms	2
	is 10% to 90% of the final					
	4.4)					
Normal Operating Current			6.5		mA	1
Sleep Mode Current			5		μA	5
VLOGIC REFERENCE						
VOLTAGE						
Voltage Range	VLOGIC must be ≤VDD at all times	1.71		VDD	v	
VLOGIC Ramp Rate	Monotonic ramp. Ramp rate is			1	ms	6
	10% to 90% of the final value					
	(see Figure in Section 4.4)		1.00			
Normal Operating Current			100		μA	
START-UP TIME FOR			20		ms	5
REGISTER READ/WRITE	170 0		1101000			
FC ADDRESS	AD0 = 0		1101000			0
	AD0 = 1		1101001			6
DIGITAL INPUTS (AD0,						
CLKIN) Vo. High Logal Impat Voltage		0.049/1.000/0			v	
V _B , Fign Level input Voltage		0.9-10006		0.169/1.0/010	v	
C. Input Canacitance				0.1-VLOGIC	- F	7
C6 input capacitance				3	pr	'
DIGITAL OUTPUT (INT)						
Voth High Level Output Voltage	OPEN=0, Rload=IMΩ	0.9*VLOGIC			v.	2
$V_{\alpha L}$, Low Level Output Voltage	OPEN=0, R load= IMΩ			0.1*VLOGIC	v	2
VoLIND, INF Low-Level Output Voltage	OPEN=1, 0.3mA sink current			0.1	v	2
Output Leakage Current	OPEN=1		100		nA	4
t _{NT} , INT Pulse Width	LATCH_INT_EN=0		50		μs	4

Notes:

- Tested in production
 Based on characterization of 30 pieces over temperature on evaluation board or in socket
 Typical. Randomly selected part measured at room temperature on evaluation board or in socket
 Based on characterization of 5 pieces over temperature
- 6. Guaranteed by design

TABELA 7 : ESPECIFICAÇÕES DO GIROMETRO, ITG-3200